
Learning theories from text

Maria LIAKATA and Stephen PULMAN
Centre for Linguistics and Philology

Walton Street
University of Oxford

U.K.,
maria.liakata@clg.ox.ac.uk, stephen.pulman@clg.ox.ac.uk

Abstract
In this paper we describe a method of automati-
cally learning domain theories from parsed cor-
pora of sentences from the relevant domain and
use FSA techniques for the graphical represen-
tation of such a theory. By a ‘domain theory’ we
mean a collection of facts and generalisations
or rules which capture what commonly happens
(or does not happen) in some domain of interest.
As language users, we implicitly draw on such
theories in various disambiguation tasks, such
as anaphora resolution and prepositional phrase
attachment, and formal encodings of domain
theories can be used for this purpose in natural
language processing. They may also be objects
of interest in their own right, that is, as the out-
put of a knowledge discovery process. The ap-
proach is generizable to different domains pro-
vided it is possible to get logical forms for the
text in the domain.

1 Introduction

It is an old observation that in order to choose the
correct reading of an ambiguous sentence, we need
a great deal of knowledge about the world. How-
ever, the observation that disambiguation decisions
depend on knowledge of the world can be made to
cut both ways:just as we need a lot of knowledge
of the world to make disambiguation decisions, so a
given disambiguation decision can be interpreted as
telling us a lot about the way we view the structure
of the world.Our method for inducing domain theo-
ries relies on this inversion, since in the general case
it is a much easier job to disambiguate sentences
than to directly encode the theory that we are draw-
ing on in so doing. Our strategy for trying to build a
domain theory is to try to capitalise on the informa-
tion that is tacitly contained in those disambiguation
decisions.

2 Some background

(Pulman, 2000) showed that it was possible to learn
a simple domain theory from a disambiguated cor-
pus: a subset of the ATIS (air travel information ser-

vice) corpus (Doddington and Godfrey, 1990). Am-
biguous sentences were annotated as shown to indi-
cate the preferred reading:

[i,would,like,
[the,cheapest,flight,
from,washington,to,atlanta]

]

[do,they,[serve,a,meal],on,
[the,flight,from,san_francisco,to,atlanta]]

[i,would,like,
[a,flight,from,boston,

to,san_francisco,
[that,leaves,before,’8:00’]
]

]

The ‘good’ and the ‘bad’ parses were used to pro-
duce simplified first order logical forms represent-
ing the semantic content of the various readings of
the sentences. The ‘good’ readings were used as
positive evidence, and the ‘bad’ readings (or more
accurately, the bad parts of some of the readings)
were used as negative evidence. Next a particu-
lar Inductive Logic Programming algorithm, Pro-
gol (Muggleton, 1995), was used to learn a theory
of prepositional relations in this domain: i.e. what
kinds of entities can be in these relations, and which
cannot:

on(+any,+any)
from(+any,+any)
to(+any,+any)
at(+any,+any)

The +any declaration says that there are no prior
assumptions about sortal restrictions on these
predicates. Among others generalisations like the
following were obtained (all variables are implicitly
universally quantified):

fare(A) ∧ airline(B) → on(A, B)
meal(A) ∧ flight(B) → on(A, B)
flight(A) ∧ day(B) → on(A, B)
flight(A) ∧ airline(B) → on(A, B)



This domain theory was then used successfully
in disambiguating a small held-out section of the
corpus, by checking for consistency between logi-
cal forms and domain theories.

While the numbers of sentences involved in that
experiment were too small for the results to be sta-
tistically meaningful, the experiment proved that the
method works in principle, although of course in re-
ality the notion of logical consistency is too strong
a test in many cases. Note also that the results of
the theory induction process are perfectly compre-
hensible - the outcome is a theory with some logical
structure, rather than a black box.

The method requires a fully parsed corpus with
corresponding logical forms. Using a similar tech-
nique, we have experimented with slightly larger
datasets, using the Penn Tree Bank (Marcus et al.,
1994) since the syntactic annotations for sentences
given there are intended to be complete enough for
semantic interpretation, in principle, at least.

In practice, (Liakata and Pulman, 2002) report,
it is by no means easy to do this. It is possible to
recover partial logical forms from a large propor-
tion of the treebank, but these are not complete or
accurate enough to simply replicate the ATIS exper-
iment. In the work reported here, we selected about
40 texts containing the verb ‘resign’, all reporting,
among other things, ‘company succession’ events, a
scenario familiar from the Message Understanding
Conference (MUC) task (Grishman and Sundheim,
1995). The texts amounted to almost 4000 words
in all. Then we corrected and completed some
automatically produced logical forms by hand to
get a fairly full representation of the meanings
of these texts (as far as is possible in first order
logic). We also resolved by hand some of the
simpler forms of anaphoric reference to individuals
to simulate a fuller discourse processing of the texts.

To give an example, a sequence of sentences like:

J.P. Bolduc, vice chairman of W.R. Grace & Co.
(...) was elected a director. He succeeds Terrence
D. Daniels,... who resigned.

was represented by the following sequence of liter-
als:

verb(e1,elect).
funct_of(’J.P._Bolduc’,x1).
...
subj(e1,unspecified).
obj(e1,x1).
description(e1,x1,director,de1).
verb(e5,succeed).

subj(e5,x1).
funct_of(’Terrence_D._Daniels’,x6).
obj(e5,x6).
verb(e4,resign).
subj(e4,x6).

The representation is a little opaque, for various
implementation reasons. It can be paraphrased as
follows: there is an event, e1, of electing, the sub-
ject of which is unspecified, and the object of which
is x1. x1 is characterised as ‘J P Bolduc’, and e1 as-
signs the description de1 of ‘director’ to x1. There
is an event e5 of succeeding, and x1 is the subject of
that event. The object of e5 is x6, which is charac-
terised as Terrence D Daniels. There is an event e4
of resigning and the subject of that event is x6.

The reason for all this logical circumlocution is
that we are trying to learn a theory of the ‘verb’
predicate, in particular we are interested in relations
between the arguments of different verbs, since
these may well be indicative of causal or other reg-
ularities that should be captured in the theory of
the company succession domain. If the individual
verbs were represented as predicates rather than ar-
guments of a ‘verb’ predicate we would not be able
to generalise over them: we are restricted to first or-
der logic, and this would require higher order vari-
ables.

We also need to add some background knowl-
edge. We assume a fairly simple flat ontology so
as to be able to reuse existing resources. Some en-
tities were assigned to classes automatically using
clustering techniques others had to be done by hand.
The set of categories used were:
company, financial instrument, financial transac-
tion, location, money, number, person, company
position, product, time, and unit (of organisation).

As before, the representation has these categories as
an argument of a ‘class’ predicate to enable gener-
alisation:

class(person,x1).
class(company,x3).
etc.

Ideally, to narrow down the hypothesis space for
ILP, we need some negative evidence. But in the
Penn Tree Bank, only the good parse is represented.
There are several possible ways of obtaining nega-
tive data, of course: one could use a parser trained
on the Tree Bank to reparse sentences and recover
all the parses. However, there still remains the prob-
lem of recovering logical forms from ‘bad’ parses.
An alternative would be to use a kind of ‘closed



world’ assumption: take the set of predicates and ar-
guments in the good logical forms, and assume that
any combination not observed is actually impossi-
ble. One could generate artificial negative evidence
this way.

Alternatively, one can try learning from positive
only data. The ILP systems Progol (Muggleton,
1995) and Aleph (Srinivasan, 1999) are able to learn
from positive only data, with the appropriate set-
tings. Likewise, so-called ‘descriptive’ ILP systems
like WARMR (DeHaspe, 1998) do not always need
negative data: they are in effect data mining en-
gines for first order logic, learning generalisations
and correlations in some set of data.

3 Domain Theory for Company
Succession Events

We found that the most successful method, given
the absence of negative data, was to use WARMR
to learn association rules from the positive data. As
with all types of association rule learning, WARMR
produces a huge number of rules, of varying degrees
of coverage. We spent some time writing filters to
narrow down the output to something useful. Such
filters consist of constraints ruling out patterns that
are definitely not useful, for example patterns con-
taining a verb but no arguments or attributes. An
example of such a restriction is provided below:

pattern_constraint(Patt):-
member(verb(_,E,_A,_,_),Patt),
(member(attr(_,E,Attr),Patt)
->
\+constraint_on_attr(Patt,Attr)).

If pattern constraint/1 succeeds for a pattern
Patt, then Patt is discarded. Basically, this says that
a rule isn’t useful unless it contains a verb and one
of its attributes that satisfies a certain constraint. A
constraint might be of the following form:

constraint_on_attr(Patt, Attr) :-
member(class(_,Attr), Patt).

The above states that there should be a classifi-
cation of the attribute Attr present in the rule. A
useful pattern Patt will satisfy such constraints.

Some of the filtered output, represented in a more
readable form compatible with the examples above
are as follows (note that the first argument of the
verb/2 predicate refers to an event):

Companies report financial transactions:
subj(B,C) ∧ obj(B,D)∧
class(fin tran,D) ∧ class(company,C) →

verb(B, report)

Companies acquire companies:
subj(B,C) ∧ obj(B,D) ∧ class(company,D) ∧
class(company,C) → verb(B, acquire)

Companies are based in locations:
obj(A,C) ∧ class(company,C) ∧ in(A,D) ∧
class(location,D) → verb(A, base)

If a person is elected, another person resigns:
verb(H, elect) ∧ obj(H, I) ∧ class(person, I)∧
subj(C,L) ∧ class(person,L) →
verb(C, resign)

If person C succeeds person E, then someone has
elected person C:
obj(A,C) ∧ class(person,C)∧
verb(D, succeed)∧subj(D,C)∧obj(D,E)∧
class(person,E) → verb(A, elect)

If someone elects person C, and person D resigns,
then C succeeds D:
subj(G,C) ∧ verb(A, elect) ∧ obj(A,C) ∧
class(person,C) ∧ verb(E, resign)∧
subj(E,D) ∧ class(person,D) →
verb(G, succeed)

While there are many other rules learned that are
less informative than this, the samples given here
are true generalisations about the type of events de-
scribed in these texts: unremarkable, perhaps, but
characteristic of the domain. It is noteworthy that
some of them at least are very reminiscent of the
kind of templates constructed for Information Ex-
traction in this domain, suggesting a possible further
use for the methods of theory induction described
here.

4 Learning weighted finite state automata

While this experiment was reasonably successful, in
that we were able to induce plausible looking do-
main generalisations, the process of selecting these
from the output of WARMR requires further super-
vision of the learning process. We therefore tried to
devise a method of taking the output directly from
WARMR and processing it in order to automatically
produce domain knowledge. Presenting the data as
weighted FSAs serves the twofold purpose of re-
ducing the amount of rules output from WARMR,
thanks to minimization techniques, while providing
a more visualisable representation. Weighted FSAs
can also be seen as a simple kind of probabilistic
graphical model. We intend to go on to produce



more complex models of this type like Bayesian
Networks, which are easier to use in a more ro-
bust setting, e.g. for disambiguation purposes, than
the traditional symbolic knowledge representation
methods presupposed so far.
Before explaining the conversion to FSAs we look
in more detail at the representation of the WARMR
output.

5 Representing WARMR Output
Each of the numerous patterns resulting from
WARMR consists of a list of frequently associated
predicates, found in the flat quasi-logical forms of
the input sentences. An example of such a pattern is
provided by the following:

freq(6,[verb(A,B,elect,p,d),
verb(C,D,succeed,p,d),
attr(subj,B,unspecified),
attr(obj,D,E),class(cperson,E),
attr(subj,D,F),class(cperson,F),
attr(obj,B,F)],

0.1463).

The first argument of the predicatefreq/3 shows
the level of the algorithm at which the pattern/query
was acquired (DeHaspe, 1998). The fact that the
pattern was acquired at the sixth level means it was
created during the sixth iteration of the algorithm
trying to satisfy the constraints input as settings to
the system. This pattern satisfied four constraints,
two of them twice. The second argument offreq/3
is the query itself and the third is its frequency.
What is meant by frequency of the query in this in-
stance is the number of times it succeeds (i.e. the
number of training examples it subsumes), divided
by the number of training examples. To illustrate
the meaning of such a pattern one needs to recon-
struct the predicate-argument structures while main-
taining the flat format. Thus, the above pattern is
converted to the following:

list(529,0.1463,[elect(A,B,C),
cperson(C),
succeed(D,C,E),
cperson(E)]).

It is now easier to understand the pattern as :‘A
person C who is elected succeeds a person E’. How-
ever, it is still not straightforward how one can eval-
uate the usefulness of such patterns or indeed how
one can incorporate the information they carry into
a system for disambiguation or reasoning. This
problem is further aggravated by the large number
of patterns produced. Even after employing filters
to discard patterns of little use, for example ones

containing a verb but no classification of its argu-
ments, over 26,000 of them were obtained. This
is because many of the patterns are overly general:
the training set consists of only 372 verb predicates
and a total of 436 clauses. Such overgeneration is a
well known problem of data mining algorithms and
requires sound criteria for filtering and evaluation.
Most of the patterns generated are in fact variants of
a much smaller group of patterns. The question then
arises of how it is possible to merge them so as to
obtain a small number of core patterns, representa-
tive of the knowledge obtained from the training set.
Representing the patterns in a more compact format
also facilitates evaluation either by a human expert
or through incorporation into a pre-existing system
to measure improvement in performance.

6 FSA conversion

Given the large amount of shared information in
these outputs, we decided to try to represent it as
a set of Finite State Automata, where each transi-
tion corresponds to a literal in the original clauses.
Since all the literals in the raw output are simply
conjoined, the interpretation of a transition is sim-
ply that if one literal is true, the next one is also
likely to be true. Our aim was to be able to use
standard FSA minimisation and determination algo-
rithms (Aho et al., 1986),(Aho et al., 1974) to re-
duce the large set of overlapping clauses to some-
thing manageable and visualisable, and to be able to
use the frequency information given by WARMR as
the basis for the calculation of weights or probabil-
ities on transitions.

To convert our patterns into FSAs (and in partic-
ular recognizers), we used the package FSA Utili-
ties (version FSA6.2.6.5)(van Noord, 2002), which
includes modules for compiling regular expressions
into automata (recognizers and transducers) by im-
plementing different versions of minimisation and
determinisation algorithms. The package also al-
lows operations for manipulating automata and reg-
ular expressions such as composition, complemen-
tation etc. As the FSA Utilities modules apply to
automata or their equivalent regular expressions, the
task required converting the patterns into regular ex-
pressions. To do this we treat each literal as a sym-
bol. This means each verb and attribute predicate
with its respective arguments is taken to denote a
single symbol. The literals are implicitly conjoined
and thus ordering does not matter. Thus we chose
to impose an ordering on patterns, whereby the
main verb appears first, followed by predicates re-
ferring to its arguments. Any other verbs come next,
followed by predicates describing their arguments.



This ordering has the advantage over alphanumeric
ordering that it allows filtering out alphabetic vari-
ants of patterns where the predicates referring to the
arguments of a verb precede the verb and the vari-
ables are thus given different names which results
in different literals. This ordering on patterns is
useful as it allows common prefixes to be merged
during minimisation. Since variable names play an
important role in providing co-indexation between
the argument of a verb and a property of that argu-
ment, designated by another predicate, terms such
as ’elect(A,B,C)’ and ’elect(D,E,F )’ are con-
sidered to be different symbols. Thus a pattern like:

list(768,0.07,[elect(A,B,C),cperson(C),
chairman(C,D),old(C,E,F),
of(D,G),ccompany(G)]).

was converted to the regular expression:

macro(x768,[’elect(A,B,C)’,
’cperson(C)’,
’chairman(C,D)’,
’old(C,E,F)’,
’of(D,G)’,
’ccompany(G)’]).

The first argument of themacro/2 pred-
icate is the name of the regular expression
whereas the second argument states that the
regular expression is a sequence of the symbols
’elect(A,B,C)’,’cperson(C)’,’chairman(C,D)’ and
so on. Finally, the entire WARMR output can be
compiled into an FSA as the regular expression
which is the union of all expressions named via
an xnumber identifier. This is equivalent to saying
that a pattern can be any of the xnumber patterns
defined.
We took all the patterns containing ’elect’ as the
main verb and transformed them to regular expres-
sions, all of which started with ’elect(A,B,C)’. We
then applied determinisation and minimisation to
the union of these regular expressions. The result
was an automaton of 350 states and 839 transitions,
compared to an initial 2907 patterns.
However, an automaton this size is still very hard
to visualize. To circumvent this problem we made
use of the properties of automata and decomposed
the regular expressions into subexpressions that
can then be conjoined to form the bigger picture.
Patterns containing two and three verbs were
written in separate files and each entry in the files
was split into two or three different segments, so
that each segment contained only one verb and
predicates referring to its arguments. Therefore, an
expression such as:

macro(x774,[elect(A,B,C),cperson(C),
resign(D,E,F),cperson(E),
succeed(G,C,E)]).

was transformed into:

macro(x774a,[’elect(A,B,C)’,
’cperson(C)’]).

macro(x774b,[’resign(D,E,F)’,
’cperson(E)’]).

macro(x774c,[’succeed(G,C,E)’]).

One can then define the automaton xpression1,
consisting of the union of all first segment expres-
sions, such as x774a, the automaton resign2, con-
isting of all expressions where resign is the sec-
ond verb and succeed3. The previous can be com-
bined to form the automata[xpression1, resign2]
or [xpression1, resign2, succeed3] and so on. The
automaton[xpression1, resign2] which represents
292 patterns, has 32 states and 105 transitions and
is much more manageable.

7 Adding weights
The FSA rules derived from the WARMR patterns
would be of more interest if weights were assigned
to each transition, indicating the likelihood of any
specific path/pattern occurring. For this we needed
to obtain weights, equivalent to probabilities for
each predicate-argument term. Such information
was not readily available to us. The only statistics
we have correspond to the frequency of each entire
pattern, which is defined as:

Freq = number of times the pattern matched the training data
number of examples in the training set

We took this frequency measure as the proba-
bility of patterns consisting of single predicates
(e.g. ’elect(A,B,C)’, which is equivalent to ’B
elects C’) whereas the probabilities of all other
pattern constituents have to be conditioned on the
probabilities of terms preceding them. Thus, the
probability of ’cperson(C)’, given ’elect(A,B,C)’ is
defined by the following:

P (′cperson(C)′|′elect(A, B, C)′) =
P (′elect(A,B,C)′,′cperson(C)′)

P (′elect(A,B,C′)

whereP (′elect(A,B,C)′,′ cperson(C))′

is the frequency of the pattern
[′elect(A,B,C)′,′ cperson(C)′] and
P (′elect(A,B,C)′) is defined as:

P (′elect(A, B, C)′) =
∑

X P (′elect(A, B, C)′, X)



That is, the probability ofP (′elect(A,B,C)′) is
the sum of all the probabilities of the patterns that
contain ’elect(A,B,C)’ followed by another predi-
cate. If such patterns didn’t exist, in which case the
sum would be equal to zero, the probability would
be just the frequency of the pattern ’elect(A,B,C)’.

In principle the frequency ratios described above
are probabilities but in practice, because of the
size of the dataset, they may not approximate
real probabilities. Either way they are still valid
quantities for comparing the likelihood of different
paths in the FSA.
Having computed the conditional probabili-
ties/weights for all patterns and constituents,
we normalized the distribution by dividing each
probability in a distribution by the total sum of the
probabilities. This was necessary in order to make
up for discarded alphabetic variants of patterns.
We then verified that the probabilities summed up
to 1. To visualise some of the FSAs (weighted
recognizers) we rounded the weights to the second
decimal digits and performed determinization and
minimization as before. Rules obtained can be
found in Figures 1 and 2 (see figures on last page):

The automaton of Figure 1 incorporates the fol-
lowing rules:

1. ‘If a person C is elected, another person E has
resigned and C succeeds E’

2. ‘If a person C is elected director then another
person F has resigned and C succeeds F’

3. ‘If a person C is elected and another person E
pursues (other interests) C succeeds E’

The automaton of Figure 2 provides for rules such
as:
‘If a person is elected chairman of a company E then
C succeeds another person G’.

At each stage, thanks to the weights, it is possi-
ble to see which permutation of the pattern is more
likely.

8 Related Work
Rules such as the above express causality and in-
terdependence between semantic predicates, which
can be used to infer information for various linguis-
tic applications. The idea of deriving inference rules
from text has been pursued in (Lin and Pantel, 2001)
as well, but that approach differs significantly from
the current one in that it is aimed mainly at discover-
ing paraphrases. In their approach text is parsed into
paths, where each path corresponds to predicate ar-
gument relations and rules are derived by comput-
ing similarity between paths. A rule in this case

constitutes an association between similar paths.
This is quite different to the work currently pre-
sented, which provides more long range causality
relations between different predicates, which may
not even occur in adjacent sentences in the origi-
nal texts. Other approaches such as (Collin et al.,
2002) also aim to learn paraphrases for improving a
Question-Answering system. Our work is perhaps
more closely related to the production of causal net-
works as in (Subramani and Cooper, 1999), where
the goal is to learn interdependency relations of
medical conditions and diseases. In their work the
dependencies only involve key words, but we be-
lieve that our techniques could be applied to similar
biomedical domains to discover causal theories with
richer inferential structure.

9 Conclusions & Future Work

We have shown that it is possible to induce logically
structured inference rules from parsed text. We have
also shown that by using FSA techniques it is pos-
sible to construct a weighted automaton for the rep-
resentation of rules/patterns generated via a knowl-
edge mining process. This enables merging together
permutations of the same pattern and facilitates hu-
man evaluation of the pattern. Furthermore, the fact
that we have learned what is in effect a simple prob-
abilistic graphical model means that we can now
produce representations of this knowledge suitable
for more robust inference methods of the type that
we can deploy to aid reasoning and disambiguation
tasks.

10 Acknowledgements

We would particularly like to thank Ashwin Srini-
vasan (IBM, New Delhi), Steve Moyle (Oxford),
and James Cussens (York) for their help with Aleph
and Jan Struyf, Hendrik Blockeel and Jan Ra-
mon (K.U. Leuven), for their generous help with
WARMR.

References

A.H. Aho, J.E. Hopcroft, and J.D. Ullman. 1974.
The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Publishing Company.

A.H. Aho, R. Sethi, and J.D. Ullman. 1986.
Compilers - Principles, Techniques, and Tools.
Addison-Wesley, Reading, Massachusetts, USA.

O. Collin, F. Duclaye, and F. Yvon.
2002. Learning Paraphrases to Im-
prove a Question-Answering System.
staff.science.uva.nl/ mdr/NLP4QA/10duclaye-et-
al.pdf.



Luc DeHaspe. 1998.Frequent Pattern Discovery in
First-Order Logic. Ph.D. thesis, Katholieke Uni-
versiteit Leuven.

G. Doddington and C.H.J. Godfrey. 1990. The
ATIS Spoken Language Systems Pilot Corpus. In
Speech and Natural Language Workshop, Hidden
Valley, Pennsylvania.

R. Grishman and B. Sundheim. 1995. “Message
Understanding Conference-6: A Brief History”.
www.cs.nyu.edu/cs/projects/proteus/muc/muc6-
history-coling.ps.

M. Liakata and S. Pulman. 2002. From Trees to
Predicate-Argument Structures. InInternational
Conference for Computational Linguistics (COL-
ING), pages 563–569, Taipei, Taiwan.

D. Lin and P. Pantel. 2001. Dirt-Discovery of Infer-
ence Rules from Text. InIn ACM SIGKDD Con-
ference on Knowledge Discovery and Data Min-
ing, pages 323–328.

M. Marcus, G. Kim, M. Marcinkiewicz, R. Mac-
Intyre, A. Bies, M. Ferguson, K. Katz, and
B. Schasberger. 1994. The Penn Treebank: An-
notating predicate argument structure. InARPA
Human Language Technology Workshop.

Stephen Muggleton. 1995. Inverse Entailment and
Progol. New Generation Computing, special
issue on Inductive Logic Programming, 13(3-
4):245–286.

Stephen Pulman. 2000. Statistical and Logi-
cal Reasoning in Disambiguation.Philosophical
Transactions of the Royal Society, 358 number
1769:1267–1279.

Ashwin Srinivasan. 1999. “the Aleph Manual”.
www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

M. Subramani and G.F. Cooper. 1999. Causal
Discovery from Medical Textual Data.
http://www.amia.org/pubs/symposia/D200558.PDF.

Gertjan van Noord. 2002. FSA6 Reference Man-
ual. http://odur.let.rug.nl/ vannoord/Fsa/.



Figure 1: The more likely path in this FSA segment is given by the choice ofresign(D,E,F ) : 0.15,
followed bycperson(E) : 0.64 and finallysucceed(G,C,E) : 0.26. This can be interpreted as follows: ‘If
a person C is elected, another person E has resigned and C succeeds E’

Figure 2: Here the more likely path is provided by the sequence:
cperson(C) : 0.32, director(C,D) : 0.08, of(D,E) : 0.13, company(E) : 1, succeed(F,C,G) : 0.25,
cperson(F ) : 1. This can be read as: ‘If a person C is elected director of a company E then C succeeds
another person G’.

Notice the above illustrate only parts of the FSAs, which justifies why the probabilites of arcs leav-
ing a node don’t add up to 1


