
Modern Natural Language Interfaces to Databases:
Composing Statistical Parsing with Semantic Tractability

Ana-Maria Popescu Alex Armanasu Oren Etzioni
University of Washington

{amp, alexarm, etzioni, daveko, ayates}@cs.washington.edu

David Ko Alexander Yates

Abstract
Natural Language Interfaces to Databases
(NLIs) can benefit from the advances in statis-
tical parsing over the last fifteen years or so.
However, statistical parsers require training on
a massive, labeled corpus, and manually cre-
ating such a corpus for each database is pro-
hibitively expensive. To address this quandary,
this paper reports on the PRECISE NLI, which
uses a statistical parser as a “plug in”. The pa-
per shows how a strong semantic model cou-
pled with “light re-training” enables PRECISE

to overcome parser errors, and correctly map
from parsed questions to the corresponding
SQL queries. We discuss the issues in using
statistical parsers to build database-independent
NLIs, and report on experimental results with
the benchmark ATIS data set where PRECISE

achieves 94% accuracy.

1 Introduction and Motivation

Over the last fifteen years or so, much of the NLP
community has focused on the use of statistical
and machine learning techniques to solve a wide
range of problems in parsing, machine translation,
and more. Yet, classical problems such as building
Natural Language Interfaces to Databases (NLIs)
(Grosz et al., 1987) are far from solved.

There are many reasons for the limited success of
past NLI efforts (Androutsopoulos et al., 1995). We
highlight several problems that are remedied by our
approach. First, manually authoring and tuning a se-
mantic grammar for each new database is brittle and
prohibitively expensive. In response, we have im-
plemented a “transportable” NLI that aims to mini-
mize manual, database-specific configuration. Sec-
ond, NLI systems built in the 70s and 80s had lim-
ited syntactic parsing capabilities. Thus, we have an
opportunity to incorporate the important advances
made by statistical parsers over the last two decades
in an NLI.

However, attempting to use a statistical parser in
a database-independent NLI leads to a quandary. On
the one hand, to parse questions posed to a particu-

lar database, the parser has to be trained on a corpus
of questions specific to that database. Otherwise,
many of the parser’s decisions will be incorrect. For
example, the Charniak parser (trained on the 40,000
sentences in the WSJ portion of the Penn Treebank)
treats ‘list’ as a noun, but in the context of the ATIS
database it is a verb.1 On the other hand, manually
creating and labeling a massive corpus of questions
for each database is prohibitively expensive.

We consider two methods of resolving this
quandary and assess their performance individually
and in concert on the ATIS data set. First, we use
a strong semantic model to correct parsing errors.
We introduce a theoretical framework for discrim-
inating between Semantically Tractable (ST) ques-
tions and difficult ones, and we show that ST ques-
tions are prevalent in the well-studied ATIS data
set (Price, 1990). Thus, we show that the seman-
tic component of the NLI task can be surprisingly
easy and can be used to compensate for syntactic
parsing errors. Second, we re-train the parser using
a relatively small set of 150 questions, where each
word is labeled by its part-of-speech tag.

To demonstrate how these methods work in prac-
tice, we sketch the fully-implemented PRECISE

NLI, where a parser is a modular “plug in”. This
modularity enables PRECISE to leverage continuing
advances in parsing technology over time by plug-
ging in improved parsers as they become available.

The remainder of this paper is organized as fol-
lows. We describe PRECISE in Section 2, sketch our
theory in Section 3, and report on our experiments
in Section 4. We consider related work in Section 5,
and conclude in Section 6.

2 The PRECISE System Overview

Our recent paper (Popescu et al., 2003) introduced
the PRECISE architecture and its core algorithm for

1This is an instance of a well known machine learning prin-
ciple — typically, a learning algorithm is effective when its test
examples are drawn from roughly the same distribution as its
training examples.



reducing semantic interpretation to a graph match-
ing problem that is solved by MaxFlow. In this sec-
tion we provide a brief overview of PRECISE, focus-
ing on the components necessary to understanding
its performance on the ATIS data set in Section 4.

To discuss PRECISE further, we must first intro-
duce some terminology. We say that a database is
made up of three types of elements: relations, at-
tributes and values. Each element is unique: an at-
tribute element is a particular column in a particular
relation and each value element is the value of a
particular attribute. A value is compatible with its
attribute and also with the relation containing this
attribute. An attribute is compatible with its rela-
tion. Each attribute in the database has associated
with it a special value, which we call a wh-value,
that corresponds to a wh-word (what, where, etc.).

We define a lexicon as a tuple (T, E, M), where
T is a set of strings, called tokens (intuitively, tokens
are strings of one or more words, like “New York”);
E is a set of database elements, wh-values, and join
paths; 2 and M is a subset of T × E — a binary
relation between tokens and database elements.

PRECISE takes as input a lexicon and a parser.
Then, given an English question, PRECISE maps it
to one (or more) corresponding SQL queries. We
concisely review how PRECISE works through a
simple example. Consider the following question
q: “What are the flights from Boston to Chicago?”
First, the parser plug-in automatically derives a
dependency analysis for q from q’s parse tree,
represented by the following compact syntactic log-
ical form: LF (q) = what(0), is(0, 1), f light(1),
from(1, 2), boston(2), to(1, 3), chicago(3).
LF (q) contains a predicate for each question word.
Head nouns correspond to unary predicates whose
arguments are constant identifiers.

Dependencies are encoded by equality con-
straints between arguments to different predicates.
The first type of dependency is represented by noun
and adjective pre-modifiers corresponding to unary
predicates whose arguments are the identifiers for
the respective modified head nouns. A second type
of dependency is represented by noun postmodifiers
and mediated by prepositions (in the above exam-
ple, “from” and “to”). The prepositions correspond
to binary predicates whose arguments specify the at-
tached noun phrases. For instance, “from” attaches
“flight” to “boston”. Finally, subject/predicate,
predicate/direct object and predicate/indirect object
dependency information is computed for the various

2A join path is a set of equality constraints between the at-
tributes of two or more tables. See Section 3 for more details
and a formal definition.

verbs present in the question. Verbs correspond to
binary or tertiary predicates whose arguments indi-
cate what noun phrases play the subject and object
roles. In our example, the verb “is” mediates the
dependency between “what” and “flight”. 3

PRECISE’s lexicon is generated by automatically
extracting value, attribute, and relation names from
the database. We manually augmented the lexicon
with relevant synonyms, prepositions, etc..

The tokenizer produces a single complete
tokenization of this question and lemmatizes
the tokens: (what, is, flight, from,
boston, to, chicago). By looking up the
tokens in the lexicon, PRECISE efficiently retrieves
the set of potentially matching database elements
for every token. In this case, what, boston and
chicago are value tokens, to and from are at-
tribute tokens and flight is a relation token.

In addition to this information, the lexicon also
contains a set of restrictions for tokens that are
prepositions or verbs. The restrictions specify the
database elements that are allowed to match to the
arguments of the respective preposition or verb. For
example, from can take as arguments a flight and
a city. The restrictions also specify the join paths
connecting these relations/attributes. The syntactic
logical form is used to retrieve the relevant set of
restrictions for a given question.

The matcher takes as input the information de-
scribed above and reduces the problem of satisfy-
ing the semantic constraints imposed by the defi-
nition of a valid interpretation to a graph matching
problem (Popescu et al., 2003). In order for each
attribute token to match a value token, Boston
and Chicago map to the respective values of the
database attribute city.cityName, from maps to
flight.fromAirport or fare.fromAirport and to
maps to flight.toAirport or fare.toAirport. The
restrictions validate the output of the matcher and
are then used in combination with the syntactic in-
formation to narrow down even further the possi-
ble interpretations for each token by enforcing lo-
cal dependencies. For example, the syntactic in-
formation tells us that “from” refers to “flight” and
since “flight” uniquely maps to flight, this means
that from will map to flight.fromAirport rather
than fare.fromAirport (similarly, to maps to
flight.toAirport and whatmaps to flight.flightId).
Finally, the matcher compiles a list of all relations
satisfying all the clauses in the syntactic logical
form using each constant and narrows down the set

3PRECISE uses a larger set of constraints on dependency
relations, but for brevity, we focus on those relevant to our ex-
amples.



of possible interpretations for each token accord-
ingly. Each set of (constant, corresponding database
element) pairs represents a semantic logical form.

The query generator takes each semantic logical
form and uses the join path information available in
the restrictions to form the final SQL queries corre-
sponding to each semantic interpretation.

pronoun
 verb
 noun
 prep
 noun
 prep
 noun
 prep
 noun


NP
 NP


NP


PP


PP


PP


NP
NP
 NP


VP


S


NP


What
are
flights
from
Boston
to
Chicago
on
Monday?


Figure 1: Example of an erroneous parse tree corrected
by PRECISE’s semantic over-rides. PRECISE detects that the
parser attached the PP “on Monday” to “Chicago” in error.
PRECISE attempts to re-attach “on Monday” first to the PP
“to Chicago”, and then to the NP “flights from Boston to
Chicago”, where it belongs.

2.1 Parser Enhancements
We used the Charniak parser (Charniak, 2000) for
the experiments reported in this paper. We found
that the Charniak parser, which was trained on
the WSJ corpus, yielded numerous syntactic errors.
Our first step was to hand tag a set of 150 questions
with Part Of Speech (POS) tags, and re-train the
parser’s POS tagger. As a result, the probabilities
associated with certain tags changed dramatically.
For example, initially, ‘list’ was consistently tagged
as a noun, but after re-training it was consistently la-
beled as a verb. This change occurs because, in the
ATIS domain, ‘list’ typically occurs in imperative
sentences, such as “List all flights.”

Focusing exclusively on the tagger drastically re-
duced the amount of data necessary for re-training.
Whereas the Charniak parser was originally trained
on close to 40,000 sentences, we only required 150
sentences for re-training. Unfortunately, the re-
trained parser still made errors when solving dif-
ficult syntactic problems, most notably preposition
attachment and preposition ellipsis. PRECISE cor-
rects both types of errors using semantic informa-
tion.

We refer to PRECISE’s use of semantic informa-
tion to correct parser errors as semantic over-rides.
Specifically, PRECISE detects that an attachment de-
cision made by the parser is inconsistent with the
semantic information in its lexicon.4 When this oc-
curs, PRECISE attempts to repair the parse tree as
follows. Given a noun phrase or a prepositional
phrase whose corresponding node n in the parse tree
has the wrong parent p, PRECISE traverses the path
in the parse tree from p to the root node, search-
ing for a suitable node to attach n to. PRECISE

chooses the first ancestor of p such that when n is
attached to the new node, the modified parse tree
agrees with PRECISE’s semantic model. Thus, the
semantic over-ride procedure is a generate-and-test
search where potential solutions are generated in the
order of ancestors of node n in the parse tree. The
procedure’s running time is linear in the depth of the
parse tree.

Consider, for example, the question “What are
flights from Boston to Chicago on Monday?” The
parser attaches the prepositional phrase “on Mon-
day” to ‘Chicago’ whereas it should be attached to
‘flights’ (see Figure 1). The parser merely knows
that ‘flights’, ‘Boston’, and ‘Chicago’ are nouns. It
then uses statistics to decide that “on Monday” is
most likely to attach to ‘Chicago’. However, this
syntactic decision is inconsistent with the semantic
information in PRECISE’s lexicon — the preposition
‘on’ does not take a city and a day as arguments,
rather it takes a flight and a day.

Thus, PRECISE decides to over-ride the parser
and attach ‘on’ elsewhere. As shown in Figure
1, PRECISE detects that the parser attached the PP
“on Monday” to “Chicago” in error. PRECISE at-
tempts to re-attach “on Monday” first to the PP “to
Chicago”, and then to the NP “flights from Boston
to Chicago”, where it belongs. While in our ex-
ample the parser violated a constraint in PRECISE’s
lexicon, the violation of any semantic constraint will
trigger the over-ride procedure.

In the above example, we saw how semantic over-
rides help PRECISE fix prepositional attachment er-
rors; they also enable it to correct parser errors
in topicalized questions (e.g., “What are Boston to
Chicago flights?”) and in preposition ellipsis (e.g.,
when ‘on’ is omitted in the question “What are
flights from Boston to Chicago Monday?”).

Unfortunately, semantic over-rides do not correct
all of the parser’s errors. Most of the remaining
parser errors fall into the following categories: rel-
ative clause attachment, verb attachment, numeric

4We say that node n is attached to node p if p is the parent
of n in the parse tree.



noun phrases, and topicalized prepositional phrases.
In general, semantic over-rides can correct local at-
tachment errors, but cannot over-come more global
problems in the parse tree. Thus, PRECISE can be
forced to give up and ask the user to paraphrase her
question.

3 PRECISE Theory
The aim of this section is to explain the theoretical
under-pinnings of PRECISE’s semantic model. We
show that PRECISE always answers questions from
the class of Semantically Tractable (ST) questions
correctly, given correct lexical and syntactic infor-
mation.5

We begin by introducing some terminology that
builds on the definitions given Section 2.

3.1 Definitions
A join path is a set of equality constraints between
a sequence of database relations. More formally, a
join path for relations R1, . . . , Rn is a set of con-
straints C ⊂ {Ri.a = Ri+1.b|1 ≤ i ≤ n−1}. Here
the notation Ri.a refers to the value of attribute a in
relation Ri.

We say a relation between token set T and a set
of database elements and join paths E respects a
lexicon L if it is a subset of M .

A question is simply a string of characters. A to-
kenization of a question (with respect to a lexicon)
is an ordered set of strings such that each element
of the tokenization is an element of the lexicon’s to-
ken set, and the concatenation of the elements of the
tokenization, in order, is equal to the original ques-
tion. For a given lexicon and question, there may
be zero, one, or several tokenizations. Any question
that has at least one tokenization is tokenizable.

An attachment function is a function FL,q : T →
T , where L is the lexicon, q is a question, and T

is the set of tokens in the lexicon. The attachment
function is meant to represent dependency informa-
tion available to PRECISE through a parser. For
example, if a question includes the phrase “restau-
rants in Seattle”, the attachment function would at-
tach “Seattle” to “restaurants” for this question. Not
all tokens are attached to something in every ques-
tion, so the attachment function is not a total func-
tion. We say that a relation R between tokens
in a question q respects the attachment function if
∀t1, t2, R(t1, t2) ⇒ (FL,q(t1) = t2) ∨ (FL,q does
not take on a value for t1).

5We do not claim that NLI users will restrict their questions
to the ST subset of English in practice, but rather that identify-
ing classes of questions as semantically tractable (or not), and
experimentally measuring the prevalence of such questions, is
a worthwhile avenue for NLI research.

In an NLI, interpretations of a question are SQL
statements. We define a valid interpretation of a
question as being an SQL statement that satisfies a
number of conditions connecting it to the tokens in
the question. Because of space constraints, we pro-
vide only one such constraint as an example: There
exists a tokenization t of the question and a set of
database elements E such that there is a one-to-one
map from t to E respecting the lexicon, and for each
value element v ∈ E, there is exactly one equality
constraint in the SQL clause that uses v.

For a complete definition of a valid interpretation,
see (Popescu et al., 2003).

3.2 Semantic Tractability Model

In this section we formally define the class of
ST questions, and show that PRECISE can prov-
ably map such questions to the corresponding SQL
queries. Intuitively, ST questions are “easy to un-
derstand” questions where the words or phrases
correspond to database elements or constraints on
join paths. Examining multiple questions sets and
databases, we have found that nouns, adjectives, and
adverbs in “easy” questions refer to database rela-
tions, attributes, or values.

Moreover, the attributes and values in a question
“pair up” naturally to indicate equality constraints in
SQL. However, values may be paired with implicit
attributes that do not appear in the question (e.g., the
attribute ’cuisine’ in “What are the Chinese restau-
rants in Seattle?” is implicit). Interestingly, there is
no notion of “implicit value” — the question “What
are restaurants with cuisine in Seattle?” does not
make sense.

A preposition indicates a join between the rela-
tions corresponding to the arguments of the prepo-
sition. For example, consider the preposition ‘from’
in the question “what airlines fly from Boston to
Chicago?” ‘from’ connects the value ‘Boston’ (in
the relation ‘cities’) to the relation ‘airlines’. Thus,
we know that the corresponding SQL query will join
‘airlines’ and ‘cities’.

We formalize these observations about questions
below. We say that a question q is semantically
tractable using lexicon L and attachment function
FL,q if:

1. It is possible to split q up into words and
phrases found in L. (More formally, q is to-
kenizable according to L.)

2. While words may have multiple meanings in
the lexicon, it must be possible to find a one-
to-one correspondence between tokens in the
question and some set of database elements.



(More formally, there exists a tokenization t

and a set of database elements and join paths
Et such that there is a bijective function f from
t to Et that respects L.)

3. There is at least one such set Et that has exactly
one wh-value.

4. It is possible to add ‘implicit’ attributes to Et

to get a set E ′

t with exactly one compatible
attribute for every value. (More formally, for
some Et with a wh-value there exist attributes
a1, . . . , an such that E ′

t = Et ∪ {a1, . . . , an}
and there is a bijective function g from the set
of value elements (including wh-values) V to
the set of attribute elements A in E ′

t.)

5. At least one such E ′

t obeys the syntactic
restrictions of FL,q. (More formally, let
A′ = A ∩ Et. Then we require that
{(f−1(g−1(a)), f−1(a)) | a ∈ A′} respects
FL,q.)

3.3 Results and Discussion

We say that an NLI is sound for a class of questions
Q using lexicon L and attachment function FL if
for every input q ∈ Q, every output of the NLI is a
valid interpretation. We say the NLI is complete if
it returns all valid interpretations. Our main result is
the following:

Theorem 1 Given a lexicon L and attachment
function FL, PRECISE is sound and complete for the
class of semantically tractable questions.

In practical terms, the theorem states that given
correct and complete syntactic and lexical informa-
tion, PRECISE will return exactly the set of valid
interpretations of a question. If PRECISE is missing
syntactic or semantic constraints, it can generate ex-
traneous interpretations that it “believes” are valid.
Also, if a person uses a term in a manner incon-
sistent with PRECISE’s lexicon, then PRECISE will
interpret her question incorrectly. Finally, PRECISE

will not answer a question that contains words ab-
sent from its lexicon.

The theorem is clearly an idealization, but the ex-
periments reported in Section 4 provide evidence
that it is a useful idealization. PRECISE, which em-
bodies the model of semantic tractability, achieves
very high accuracy because in practice it either has
correct and complete lexical and syntactic informa-
tion or it has enough semantic information to com-
pensate for its imperfect inputs. In fact, as we ex-
plained in Section 2.1, PRECISE’s semantic model
enables it to correct parser errors in some cases.

Finding all the valid interpretations for a question
is computationally expensive in the worst case (even
just tokenizing a question is NP-complete (Popescu
et al., 2003)). Moreover, if the various syntac-
tic and semantic constraints are fed to a standard
constraint solver, then the problem of finding even
a single valid interpretation is exponential in the
worst case. However, we have been able to formu-
late PRECISE’s constraint satisfaction problem as a
graph matching problem that is solved in polyno-
mial time by the MaxFlow algorithm:

Theorem 2 For lexicon L, PRECISE finds one valid
interpretation for a tokenization T of a semantically
tractable question in time O(Mn2), where n is the
number of tokens in T and M is the maximum num-
ber of interpretations that a token can have in L.

4 Experimental Evaluation

Semantic Tractability (ST) theory and PRECISE’s
architecture raise a four empirical questions that
we now address via experiments on the ATIS data
set (Price, 1990): how prevalent are ST questions?
How effective is PRECISE in mapping ATIS ques-
tions to SQL queries? What is the impact of se-
mantic over-rides? What is the impact of parser re-
training? Our experiments utilized the 448 context-
independent questions in the ATIS “Scoring Set A”.
We chose the ATIS data set because it is a standard
benchmark (see Table 2) where independently gen-
erated questions are available to test the efficacy of
an NLI.

We found that 95.8% of the ATIS questions were
ST questions. We classified each question as ST
(or not) by running PRECISE on the question and

System Setup PRECISE PRECISE-1

ParserORIG 61.9% 60.3%
ParserORIG+ 89.7% 85.5%
ParserTRAINED 92.4% 88.2%
ParserTRAINED+ 94.0% 89.2%
ParserCORRECT 95.8% 91.9%

Table 1: Impact of Parser Enhancements. The PRECISE

column records the percentage of questions where the small
set of SQL queries returned by PRECISE contains the cor-
rect query; PRECISE-1 refers to the questions correctly in-
terpreted if PRECISE is forced to return exactly one SQL
query. ParserORIG is the original version of the parser,
ParserTRAINED is the version re-trained for the ATIS do-
main, and ParserCORRECT is the version whose output is
corrected manually. System configurations marked by +

indicate the automatic use of semantic over-rides to correct
parser errors.



PRECISE PRECISE-1 AT&T CMU MIT SRI BBN UNISYS MITRE HEY

94.0% 89.1% 96.2% 96.2% 95.5% 93% 90.6% 76.4% 69.4% 92.5%

Table 2: Accuracy Comparison between PRECISE , PRECISE-1 and the major ATIS NLIs. Only PRECISE and the HEY NLI
are database independent. All results are for performance on the context-independent questions in ATIS.

recording its response. Intractable questions were
due to PRECISE’s incomplete semantic informa-
tion. Consider, for example, the ATIS request “List
flights from Oakland to Salt Lake City leaving after
midnight Thursday.” PRECISE fails to answer this
question because it lacks a model of time, and so
cannot infer that “after midnight Thursday” means
“early Friday morning.”

In addition, we found that the prevalence of ST
questions in the ATIS data is consistent with our ear-
lier results on the set of 1,800 natural language ques-
tions compiled by Ray Mooney in his experiments
in three domains (Tang and Mooney, 2001). As re-
ported in (Popescu et al., 2003), we found that ap-
proximately 80% of Mooney’s questions were ST.
PRECISE performance on the ATIS data was also
comparable to its performance on the Mooney data
sets.

Table 1 quantifies the impact of the parser en-
hancements discussed in Section 2.1. Since PRE-
CISE can return multiple distinct SQL queries when
it judges a question to be ambiguous, we report its
results in two columns. The left column (PRECISE)
records the percentage of questions where the set
of returned SQL queries contains the correct query.
The right column (PRECISE-1) records the percent-
age of questions where PRECISE is correct if it is
forced to return exactly one query per question. In
our experiments, PRECISE returned a single query
92.4% of the time, and returned two queries the rest
of the time. Thus, the difference between the two
columns is not great.

Initially, plugging the Charniak parser into PRE-
CISE yielded only 61.9% accuracy. Introducing se-
mantic over-rides to correct prepositional attach-
ment and preposition ellipsis errors increased PRE-
CISE’s accuracy to 89.7% — the parser’s erroneous
POS tags still led PRECISE astray in some cases.
After re-training the parser on 150 POS-tagged
ATIS questions, but without utilizing semantic over-
rides, PRECISE achieved 92.4% accuracy. Combin-
ing both re-training and semantic over-rides, PRE-
CISE achieved 94.0% accuracy. This accuracy is
close to the maximum that PRECISE can achieve,
given its incomplete semantic information— we
found that, when all parsing errors are corrected by
hand, PRECISE’s accuracy is 95.8%.

To assess PRECISE’s performance, we compared
it with previous work. Table 2 shows PRECISE’s

accuracy compared with the most successful ATIS
NLIs (Minker, 1998). We also include, for com-
parison, the more recent database-independent HEY
system (He and Young, 2003). All systems were
compared on the ATIS scoring set ’A’, but we
did “clean” the questions by introducing sentence
breaks, removing verbal errors, etc.. Since we could
add modules to PRECISE to automatically handle
these various cases, we don’t view this as signifi-
cant.

Given the database-specific nature of most previ-
ous ATIS systems, it is remarkable that PRECISE is
able to achieve comparable accuracy. PRECISE does
return two interpretations a small percentage of the
time. However, even when restricted to returning
a single interpretation, PRECISE-1 still achieved an
impressive 89.1% accuracy (Table 1).

5 Related Work
We discuss related work in three categories:
Database-independent NLIs, ATIS-specific NLIs,
and sublanguages.

Database-independent NLIs There has been ex-
tensive previous work on NLIs (Androutsopoulos et
al., 1995), but three key elements distinguish PRE-
CISE. First, we introduce a model of ST questions
and show that it produces provably correct inter-
pretations of questions (subject to the assumptions
of the model). We measure the prevalence of ST
questions to demonstrate the practical import of our
model. Second, we are the first to use a statistical
parser as a “plug in”, experimentally measure its
efficacy, and analyze the attendant challenges. Fi-
nally, we show how to leverage our semantic model
to correct parser errors in difficult syntactic cases
(e.g., prepositional attachment). A more detailed
comparison of PRECISE with a wide range of NLI
systems appears in (Popescu et al., 2003). The
advances in this paper over our previous one in-
clude: reformulation of ST THEORY, the parser re-
training, semantic over-rides, and the experiments
testing PRECISE on the ATIS data.

ATIS NLIs The typical ATIS NLIs used either
domain-specific semantic grammars (Seneff, 1992;
Ward and Issar, 1996) or stochastic models that re-
quired fully annotated domain-specific corpora for
reliable parameter estimation (Levin and Pieraccini,
1995). In contrast, since it uses its model of se-
mantically tractable questions, PRECISE does not



require heavy manual processing and only a small
number of annotated questions. In addition, PRE-
CISE leverages existing domain-independent pars-
ing technology and offers theoretical guarantees ab-
sent from other work. Improved versions of ATIS
systems such as Gemini (Moore et al., 1995) in-
creased their coverage by allowing an approximate
question interpretation to be computed from the
meanings of some question fragments. Since PRE-
CISE focuses on high precision rather than recall, we
analyze every word in the question and interpret the
question as a whole. Most recently, (He and Young,
2003) introduced the HEY system, which learns a
semantic parser without requiring fully-annotated
corpora. HEY uses a hierarchical semantic parser
that is trained on a set of questions together with
their corresponding SQL queries. HEY is similar to
(Tang and Mooney, 2001). Both learning systems
require a large set of questions labeled by their SQL
queries—an expensive input that PRECISE does not
require—and, unlike PRECISE, both systems can-
not leverage continuing improvements to statistical
parsers.

Sublanguages The early work with the most sim-
ilarities to PRECISE was done in the field of sublan-
guages. Traditional sublanguage work (Kittredge,
1982) has looked at defining sublanguages for var-
ious domains, while more recent work (Grishman,
2001; Sekine, 1994) suggests using AI techniques
to learn aspects of sublanguages automatically. Our
work can be viewed as a generalization of tradi-
tional sublanguage research. We restrict ourselves
to the semantically tractable subset of English rather
than to a particular knowledge domain. Finally, in
addition to offering formal guarantees, we assess the
prevalence of our “sublanguage” in the ATIS data.

6 Conclusion

This paper is the first to provide evidence that sta-
tistical parsers can support NLIs such as PRECISE.
We identified the quandary associated with appro-
priately training a statistical parser: without special
training for each database, the parser makes numer-
ous errors, but creating a massive, labeled corpus of
questions for each database is prohibitively expen-
sive. We solved this quandary via light re-training
of the parser’s tagger and via PRECISE’s semantic
over-rides, and showed that in concert these meth-
ods enable PRECISE to rise from 61.9% accuracy to
94% accuracy on the ATIS data set. Even though
PRECISE is database independent, its accuracy is
comparable to the best of the database-specific ATIS
NLIs developed in previous work (Table 2).

References
I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.

1995. Natural Language Interfaces to Databases - An
Introduction. In Natural Language Engineering, vol
1, part 1, pages 29–81.

E. Charniak. 2000. A Maximum-Entropy-Inspired
Parser. In Proc. of NAACL-2000.

R. Grishman. 2001. Adaptive information extraction
and sublanguage analysis. In Proc. of IJCAI 2001.

B.J. Grosz, D. Appelt, P. Martin, and F. Pereira. 1987.
TEAM: An Experiment in the Design of Trans-
portable Natural Language Interfaces. In Artificial In-
telligence 32, pages 173–243.

Y. He and S. Young. 2003. A data-driven spoken lan-
guage understanding system. In IEEE Workshop on
Automatic Speech Recognition and Understanding.

R. Kittredge. 1982. Variation and homogeneity of sub-
languages. In R. Kittredge and J. Lehrberger, editors,
Sublanguage: Studies of Language in Restricted Se-
mantic Domains, pages 107–137. de Gruyter, Berlin.

E. Levin and R. Pieraccini. 1995. Chronus, the next gen-
eration. In Proc. of the DARPA Speech and Natural
Language Workshop, pages 269–271.

W. Minker. 1998. Evaluation methodologies for inter-
active speech systems. In First International Confer-
ence on Language Resources and Evaluation, pages
801–805.

R. Moore, D. Appelt, J. Dowding, J. M. Gawron, and
D. Moran. 1995. Combining linguistic and statistical
knowledge sources in natural-language processing for
atis. In Proc. of the ARPA Spoken Language Technol-
ogy Workshop.

A. Popescu, O. Etzioni, and H. Kautz. 2003. Towards a
theory of natural language interfaces to databases. In
Proc. of IUI-2003.

P. Price. 1990. Evaluation of spoken language systems:
the atis domain. In Proc. of the DARPA Speech and
Natural Language Workshop, pages 91–95.

S. Sekine. 1994. A New Direction For Sublanguage
NLP. In Proc. of the International Conference on New
Methods in Language Processing, pages 165–177.

S. Seneff. 1992. Robust parsing for spoken language
systems. In Proc. of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing.

L.R. Tang and R.J. Mooney. 2001. Using Multiple
Clause Constructors in Inductive Logic Programming
for Semantic Parsing. In Proc. of the 12th Eu-
ropean Conference on Machine Learning (ECML-
2001), Freiburg, Germany, pages 466–477.

W. Ward and S. Issar. 1996. Recent improvements in the
cmu spoken language understanding system. In Proc.
of the ARPA Human Language Technology Workshop,
pages 213–216.


