
Deterministic Dependency Parsing of English Text

Joakim Nivre and Mario Scholz
School of Mathematics and Systems Engineering

Växjö University
SE-35195 Växjö

Sweden
joakim.nivre@msi.vxu.se

Abstract
This paper presents a deterministic dependency
parser based on memory-based learning, which
parses English text in linear time. When trained
and evaluated on the Wall Street Journal sec-
tion of the Penn Treebank, the parser achieves
a maximum attachment score of 87.1%. Unlike
most previous systems, the parser produces la-
beled dependency graphs, using as arc labels a
combination of bracket labels and grammatical
role labels taken from the Penn Treebank II an-
notation scheme. The best overall accuracy ob-
tained for identifying both the correct head and
the correct arc label is 86.0%, when restricted
to grammatical role labels (7 labels), and 84.4%
for the maximum set (50 labels).

1 Introduction
There has been a steadily increasing interest in syn-
tactic parsing based on dependency analysis in re-
cent years. One important reason seems to be that
dependency parsing offers a good compromise be-
tween the conflicting demands of analysis depth,
on the one hand, and robustness and efficiency, on
the other. Thus, whereas a complete dependency
structure provides a fully disambiguated analysis
of a sentence, this analysis is typically less com-
plex than in frameworks based on constituent anal-
ysis and can therefore often be computed determin-
istically with reasonable accuracy. Deterministic
methods for dependency parsing have now been ap-
plied to a variety of languages, including Japanese
(Kudo and Matsumoto, 2000), English (Yamada and
Matsumoto, 2003), Turkish (Oflazer, 2003), and
Swedish (Nivre et al., 2004).

For English, the interest in dependency parsing
has been weaker than for other languages. To some
extent, this can probably be explained by the strong
tradition of constituent analysis in Anglo-American
linguistics, but this trend has been reinforced by the
fact that the major treebank of American English,
the Penn Treebank (Marcus et al., 1993), is anno-
tated primarily with constituent analysis. On the
other hand, the best available parsers trained on the

Penn Treebank, those of Collins (1997) and Char-
niak (2000), use statistical models for disambigua-
tion that make crucial use of dependency relations.
Moreover, the deterministic dependency parser of
Yamada and Matsumoto (2003), when trained on
the Penn Treebank, gives a dependency accuracy
that is almost as good as that of Collins (1997) and
Charniak (2000).

The parser described in this paper is similar to
that of Yamada and Matsumoto (2003) in that it uses
a deterministic parsing algorithm in combination
with a classifier induced from a treebank. However,
there are also important differences between the two
approaches. First of all, whereas Yamada and Mat-
sumoto employs a strict bottom-up algorithm (es-
sentially shift-reduce parsing) with multiple passes
over the input, the present parser uses the algorithm
proposed in Nivre (2003), which combines bottom-
up and top-down processing in a single pass in order
to achieve incrementality. This also means that the
time complexity of the algorithm used here is linear
in the size of the input, while the algorithm of Ya-
mada and Matsumoto is quadratic in the worst case.
Another difference is that Yamada and Matsumoto
use support vector machines (Vapnik, 1995), while
we instead rely on memory-based learning (Daele-
mans, 1999).

Most importantly, however, the parser presented
in this paper constructs labeled dependency graphs,
i.e. dependency graphs where arcs are labeled with
dependency types. As far as we know, this makes
it different from all previous systems for depen-
dency parsing applied to the Penn Treebank (Eis-
ner, 1996; Yamada and Matsumoto, 2003), although
there are systems that extract labeled grammati-
cal relations based on shallow parsing, e.g. Buch-
holz (2002). The fact that we are working with la-
beled dependency graphs is also one of the motiva-
tions for choosing memory-based learning over sup-
port vector machines, since we require a multi-class
classifier. Even though it is possible to use SVM
for multi-class classification, this can get cumber-
some when the number of classes is large. (For the

The

� �

?

DEP

finger-pointing

� �

?

NP-SBJ

has already

� �

?

ADVP

begun

� �

?

VP

.
?

� �

DEP

Figure 1: Dependency graph for English sentence

unlabeled dependency parser of Yamada and Mat-
sumoto (2003) the classification problem only in-
volves three classes.)

The parsing methodology investigated here has
previously been applied to Swedish, where promis-
ing results were obtained with a relatively small
treebank (approximately 5000 sentences for train-
ing), resulting in an attachment score of 84.7% and
a labeled accuracy of 80.6% (Nivre et al., 2004).1

However, since there are no comparable results
available for Swedish, it is difficult to assess the sig-
nificance of these findings, which is one of the rea-
sons why we want to apply the method to a bench-
mark corpus such as the the Penn Treebank, even
though the annotation in this corpus is not ideal for
labeled dependency parsing.

The paper is structured as follows. Section 2 de-
scribes the parsing algorithm, while section 3 ex-
plains how memory-based learning is used to guide
the parser. Experimental results are reported in sec-
tion 4, and conclusions are stated in section 5.

2 Deterministic Dependency Parsing
In dependency parsing the goal of the parsing pro-
cess is to construct a labeled dependency graph of
the kind depicted in Figure 1. In formal terms, we
define dependency graphs as follows:

1. LetR = {r1, . . . , rm} be the set of permissible
dependency types (arc labels).

2. A dependency graph for a string of words
W = w1· · ·wn is a labeled directed graph
D = (W,A), where

(a) W is the set of nodes, i.e. word tokens in
the input string,

(b) A is a set of labeled arcs(wi, r, wj)
(wi, wj ∈ W , r ∈ R),

(c) for everywj ∈ W , there is at most one
arc(wi, r, wj) ∈ A.

1The attachment score only considers whether a word is as-
signed the correct head; the labeled accuracy score in addition
requires that it is assigned the correct dependency type; cf. sec-
tion 4.

3. A graphD = (W,A) is well-formed iff it is
acyclic, projective and connected.

For a more detailed discussion of dependency
graphs and well-formedness conditions, the reader
is referred to Nivre (2003).

The parsing algorithm used here was first de-
fined for unlabeled dependency parsing in Nivre
(2003) and subsequently extended to labeled graphs
in Nivre et al. (2004). Parser configurations are rep-
resented by triples〈S, I,A〉, whereS is the stack
(represented as a list),I is the list of (remaining)
input tokens, andA is the (current) arc relation
for the dependency graph. (Since in a dependency
graph the set of nodes is given by the input to-
kens, only the arcs need to be represented explic-
itly.) Given an input stringW , the parser is initial-
ized to〈nil,W, ∅〉2 and terminates when it reaches
a configuration〈S,nil, A〉 (for any listS and set of
arcsA). The input stringW is acceptedif the de-
pendency graphD = (W,A) given at termination
is well-formed; otherwiseW is rejected. Given an
arbitrary configuration of the parser, there are four
possible transitions to the next configuration (where
t is the token on top of the stack,n is the next input
token,w is any word, andr, r′ ∈ R):

1. Left-Arc: In a configuration〈t|S,n|I,A〉, if
there is no arc(w, r, t) ∈ A, extendA with
(n, r′, t) and pop the stack, giving the configu-
ration〈S,n|I,A∪{(n, r′, t)}〉.

2. Right-Arc: In a configuration〈t|S,n|I,A〉, if
there is no arc(w, r, n) ∈ A, extendA with
(t, r′, n) and pushn onto the stack, giving the
configuration〈n|t|S,I,A∪{(t, r′, n)}〉.

3. Reduce: In a configuration〈t|S,I,A〉, if there
is an arc(w, r, t)∈A, pop the stack, giving the
configuration〈S,I,A〉.

4. Shift: In a configuration〈S,n|I,A〉, push
n onto the stack, giving the configuration
〈n|S,I,A〉.

2We usenil to denote the empty list anda|A to denote a list
with heada and tailA.

TH.POS

� �

?

T.DEP

. . . TL.POS

� �

?

TL.DEP

. . . T.POS
T.LEX

� �

?

TR.DEP

. . . TR.POS . . . NL.POS

� �

?

NL.DEP

. . . N.POS
N.LEX

L1.POS L2.POS L3.POS

T = Top of the stack
N = Next input token

TL = Leftmost dependent ofT
TR = Rightmost dependent ofT

NL = Leftmost dependent ofN
Li = Next plusi input token

X .LEX = Word form ofX

X .POS = Part-of-speech ofX
X .DEP = Dependency type ofX

Figure 2: Parser state features

After initialization, the parser is guaranteed to ter-
minate after at most2n transitions, given an input
string of lengthn (Nivre, 2003). Moreover, the
parser always constructs a dependency graph that is
acyclic and projective. This means that the depen-
dency graph given at termination is well-formed if
and only if it is connected (Nivre, 2003). Otherwise,
it is a set of connected components, each of which
is a well-formed dependency graph for a substring
of the original input.

The transition system defined above is nondeter-
ministic in itself, since several transitions can of-
ten be applied in a given configuration. To con-
struct deterministic parsers based on this system,
we use classifiers trained on treebank data in or-
der to predict the next transition (and dependency
type) given the current configuration of the parser.
In this way, our approach can be seen as a form of
history-based parsing (Black et al., 1992; Mager-
man, 1995). In the experiments reported here, we
use memory-based learning to train our classifiers.

3 Memory-Based Learning

Memory-based learning and problem solving is
based on two fundamental principles: learning is the
simple storage of experiences in memory, and solv-
ing a new problem is achieved by reusing solutions
from similar previously solved problems (Daele-
mans, 1999). It is inspired by the nearest neighbor
approach in statistical pattern recognition and arti-
ficial intelligence (Fix and Hodges, 1952), as well
as the analogical modeling approach in linguistics
(Skousen, 1989; Skousen, 1992). In machine learn-
ing terms, it can be characterized as a lazy learn-
ing method, since it defers processing of input un-

til needed and processes input by combining stored
data (Aha, 1997).

Memory-based learning has been successfully
applied to a number of problems in natural language
processing, such as grapheme-to-phoneme conver-
sion, part-of-speech tagging, prepositional-phrase
attachment, and base noun phrase chunking (Daele-
mans et al., 2002). Previous work on memory-based
learning for deterministic parsing includes Veenstra
and Daelemans (2000) and Nivre et al. (2004).

For the experiments reported in this paper, we
have used the software package TiMBL (Tilburg
Memory Based Learner), which provides a vari-
ety of metrics, algorithms, and extra functions on
top of the classicalk nearest neighbor classification
kernel, such as value distance metrics and distance
weighted class voting (Daelemans et al., 2003).

The function we want to approximate is a map-
ping f from configurations to parser actions, where
each action consists of a transition and (except for
Shift andReduce) a dependency type:

f : Config → {LA, RA, RE, SH} × (R ∪ {nil})

HereConfig is the set of all configurations andR
is the set of dependency types. In order to make the
problem tractable, we approximatef with a func-
tion f̂ whose domain is a finite space of parser
states, which are abstractions over configurations.
For this purpose we define a number of features
that can be used to define different models of parser
state.

Figure 2 illustrates the features that are used to
define parser states in the present study. The two
central elements in any configuration are the token
on top of the stack (T) and the next input token

(N), the tokens which may be connected by a de-
pendency arc in the next configuration. For these
tokens, we consider both the word form (T.LEX,
N.LEX) and the part-of-speech (T.POS, N.POS), as
assigned by an automatic part-of-speech tagger in
a preprocessing phase. Next, we consider a selec-
tion of dependencies that may be present in the cur-
rent arc relation, namely those linkingT to its head
(TH) and its leftmost and rightmost dependent (TL,
TR), and that linkingN to its leftmost dependent
(NL),3 considering both the dependency type (arc
label) and the part-of-speech of the head or depen-
dent. Finally, we use a lookahead of three tokens,
considering only their parts-of-speech.

We have experimented with two different state
models, one that incorporates all the features de-
picted in Figure 2 (Model 1), and one that ex-
cludes the parts-of-speech ofTH, TL, TR, NL (Model
2). Models similar to model 2 have been found to
work well for datasets with a rich annotation of de-
pendency types, such as the Swedish dependency
treebank derived from Einarsson (1976), where the
extra part-of-speech features are largely redundant
(Nivre et al., 2004). Model 1 can be expected to
work better for datasets with less informative de-
pendency annotation, such as dependency trees ex-
tracted from the Penn Treebank, where the extra
part-of-speech features may compensate for the lack
of information in arc labels.

The learning algorithm used is theIB1 algorithm
(Aha et al., 1991) withk = 5, i.e. classification based
on 5 nearest neighbors.4 Distances are measured us-
ing the modified value difference metric (MVDM)
(Stanfill and Waltz, 1986; Cost and Salzberg, 1993)
for instances with a frequency of at least 3 (and
the simple overlap metric otherwise), and classifica-
tion is based on distance weighted class voting with
inverse distance weighting (Dudani, 1976). These
settings are the result of extensive experiments par-
tially reported in Nivre et al. (2004). For more infor-
mation about the different parameters and settings,
see Daelemans et al. (2003).

4 Experiments
The data set used for experimental evaluation is
the standard data set from the Wall Street Journal
section of the Penn Treebank, with sections 2–21

3Given the parsing algorithm,N can never have a head or a
right dependent in the current configuration.

4In TiMBL, the value ofk in fact refers tok nearest dis-
tances rather thank nearest neighbors, which means that, even
with k = 1, the nearest neighbor set can contain several in-
stances that are equally distant to the test instance. This is dif-
ferent from the originalIB1 algorithm, as described in Aha et
al. (1991).

used for training and section 23 for testing (Collins,
1999; Charniak, 2000). The data has been con-
verted to dependency trees using head rules (Mager-
man, 1995; Collins, 1996). We are grateful to Ya-
mada and Matsumoto for letting us use their rule set,
which is a slight modification of the rules used by
Collins (1999). This permits us to make exact com-
parisons with the parser of Yamada and Matsumoto
(2003), but also the parsers of Collins (1997) and
Charniak (2000), which are evaluated on the same
data set in Yamada and Matsumoto (2003).

One problem that we had to face is that the stan-
dard conversion of phrase structure trees to de-
pendency trees gives unlabeled dependency trees,
whereas our parser requires labeled trees. Since the
annotation scheme of the Penn Treebank does not
include dependency types, there is no straightfor-
ward way to derive such labels. We have therefore
experimented with two different sets of labels, none
of which corresponds to dependency types in a strict
sense. The first set consists of the function tags for
grammatical roles according to the Penn II annota-
tion guidelines (Bies et al., 1995); we call this set G.
The second set consists of the ordinary bracket la-
bels (S, NP, VP, etc.), combined with function tags
for grammatical roles, giving composite labels such
as NP-SBJ; we call this set B. We assign labels to
arcs by letting each (non-root) word that heads a
phraseP in the original phrase structure have its in-
coming edge labeled with the label ofP (modulo
the set of labels used). In both sets, we also include
a default label DEP for arcs that would not other-
wise get a label. This gives a total of 7 labels in the
G set and 50 labels in the B set. Figure 1 shows a
converted dependency tree using the B labels; in the
corresponding tree with G labels NP-SBJ would be
replaced by SBJ, ADVP and VP by DEP.

We use the following metrics for evaluation:

1. Unlabeled attachment score (UAS): The pro-
portion of words that are assigned the correct
head (or no head if the word is a root) (Eisner,
1996; Collins et al., 1999).

2. Labeled attachment score (LAS): The pro-
portion of words that are assigned the correct
head and dependency type (or no head if the
word is a root) (Nivre et al., 2004).

3. Dependency accuracy (DA): The proportion
of non-root words that are assigned the correct
head (Yamada and Matsumoto, 2003).

4. Root accuracy (RA): The proportion of root
words that are analyzed as such (Yamada and
Matsumoto, 2003).

5. Complete match (CM): The proportion of
sentences whose unlabeled dependency struc-
ture is completely correct (Yamada and Mat-
sumoto, 2003).

All metrics except CM are calculated as mean
scores per word, and punctuation tokens are con-
sistently excluded.

Table 1 shows the attachment score, both unla-
beled and labeled, for the two different state models
with the two different label sets. First of all, we
see that Model 1 gives better accuracy than Model
2 with the smaller label set G, which confirms our
expectations that the added part-of-speech features
are helpful when the dependency labels are less in-
formative. Conversely, we see that Model 2 outper-
forms Model 1 with the larger label set B, which
is consistent with the hypothesis that part-of-speech
features become redundant as dependency labels get
more informative. It is interesting to note that this
effect holds even in the case where the dependency
labels are mostly derived from phrase structure cate-
gories.

We can also see that the unlabeled attachment
score improves, for both models, when the set of
dependency labels is extended. On the other hand,
the labeled attachment score drops, but it must be
remembered that these scores are not really com-
parable, since the number of classes in the classifi-
cation problem increases from 7 to 50 as we move
from the G set to the B set. Therefore, we have also
included the labeled attachment score restricted to
the G set for the parser using the B set (BG), and we
see then that the attachment score improves, espe-
cially for Model 2. (All differences are significant
beyond the .01 level; McNemar’s test.)

Table 2 shows the dependency accuracy, root
accuracy and complete match scores for our best
parser (Model 2 with label set B) in comparison
with Collins (1997) (Model 3), Charniak (2000),
and Yamada and Matsumoto (2003).5 It is clear that,
with respect to unlabeled accuracy, our parser does
not quite reach state-of-the-art performance, even
if we limit the competition to deterministic meth-
ods such as that of Yamada and Matsumoto (2003).
We believe that there are mainly three reasons for
this. First of all, the part-of-speech tagger used
for preprocessing in our experiments has a lower
accuracy than the one used by Yamada and Mat-
sumoto (2003) (96.1% vs. 97.1%). Although this
is not a very interesting explanation, it undoubtedly
accounts for part of the difference. Secondly, since

5The information in the first three rows is taken directly
from Yamada and Matsumoto (2003).

our parser makes crucial use of dependency type in-
formation in predicting the next action of the parser,
it is very likely that it suffers from the lack of real
dependency labels in the converted treebank. Indi-
rect support for this assumption can be gained from
previous experiments with Swedish data, where al-
most the same accuracy (85% unlabeled attachment
score) has been achieved with a treebank which
is much smaller but which contains proper depen-
dency annotation (Nivre et al., 2004).

A third important factor is the relatively low root
accuracy of our parser, which may reflect a weak-
ness in the one-pass parsing strategy with respect to
the global structure of complex sentences. It is note-
worthy that our parser has lower root accuracy than
dependency accuracy, whereas the inverse holds for
all the other parsers. The problem becomes even
more visible when we consider the dependency and
root accuracy for sentences of different lengths, as
shown in Table 3. Here we see that for really short
sentences (up to 10 words) root accuracy is indeed
higher than dependency accuracy, but while depen-
dency accuracy degrades gracefully with sentence
length, the root accuracy drops more drastically
(which also very clearly affects the complete match
score). This may be taken to suggest that some kind
of preprocessing in the form of clausing may help
to improve overall accuracy.

Turning finally to the assessment of labeled de-
pendency accuracy, we are not aware of any strictly
comparable results for the given data set, but Buch-
holz (2002) reports a labeled accuracy of 72.6%
for the assignment of grammatical relations using
a cascade of memory-based processors. This can be
compared with a labeled attachment score of 84.4%
for Model 2 with our B set, which is of about the
same size as the set used by Buchholz, although the
labels are not the same. In another study, Blaheta
and Charniak (2000) report an F-measure of 98.9%
for the assignment of Penn Treebank grammatical
role labels (our G set) to phrases that were correctly
parsed by the parser described in Charniak (2000).
If null labels (corresponding to our DEP labels) are
excluded, the F-score drops to 95.7%. The corre-
sponding F-measures for our best parser (Model 2,
BG) are 99.0% and 94.7%. For the larger B set,
our best parser achieves an F-measure of 96.9%
(DEP labels included), which can be compared with
97.0% for a similar (but larger) set of labels in
Collins (1999).6 Although none of the previous re-
sults on labeling accuracy is strictly comparable to
ours, it nevertheless seems fair to conclude that the

6This F-measure is based on the recall and precision figures
reported in Figure 7.15 in Collins (1999).

Model 1 Model 2
G B BG G B BG

UAS 86.4 86.7 85.8 87.1
LAS 85.3 84.0 85.5 84.6 84.4 86.0

Table 1: Parsing accuracy: Attachment score (BG = evaluation of B restricted to G labels)

DA RA CM
Charniak 92.1 95.2 45.2
Collins 91.5 95.2 43.3
Yamada & Matsumoto 90.3 91.6 38.4
Nivre & Scholz 87.3 84.3 30.4

Table 2: Comparison with related work (Yamada and Matsumoto, 2003)

labeling accuracy of the present parser is close to the
state of the art, even if its capacity to derive correct
structures is not.

5 Conclusion
This paper has explored the application of a data-
driven dependency parser to English text, using data
from the Penn Treebank. The parser is deterministic
and uses a linear-time parsing algorithm, guided by
memory-based classifiers, to construct labeled de-
pendency structures incrementally in one pass over
the input. Given the difficulty of extracting labeled
dependencies from a phrase structure treebank with
limited functional annotation, the accuracy attained
is fairly respectable. And although the structural ac-
curacy falls short of the best available parsers, the
labeling accuracy appears to be competitive.

The most important weakness is the limited ac-
curacy in identifying the root node of a sentence,
especially for longer sentences. We conjecture that
an improvement in this area could lead to a boost
in overall performance. Another important issue
to investigate further is the influence of different
kinds of arc labels, and in particular labels that are
based on a proper dependency grammar. In the
future, we therefore want to perform more experi-
ments with genuine dependency treebanks like the
Prague Dependency Treebank (Hajic, 1998) and the
Danish Dependency Treebank (Kromann, 2003).
We also want to apply dependency-based evaluation
schemes such as the ones proposed by Lin (1998)
and Carroll et al. (1998).

Acknowledgements
The work presented in this paper has been supported
by a grant from the Swedish Research Council (621-
2002-4207). The memory-based classifiers used in

the experiments have been constructed using the
Tilburg Memory-Based Learner (TiMBL) (Daele-
mans et al., 2003). The conversion of the Penn Tree-
bank to dependency trees has been performed using
head rules kindly provided by Hiroyasu Yamada and
Yuji Matsumoto.

References
D. W. Aha, D. Kibler, and M. Albert. 1991.

Instance-based learning algorithms.Machine
Learning, 6:37–66.

D. Aha, editor. 1997.Lazy Learning. Kluwer.
A. Bies, M. Ferguson, K. Katz, and R. MacIn-

tyre. 1995. Bracketing guidelines for Treebank II
style, Penn Treebank project. University of Penn-
sylvania, Philadelphia.

E. Black, F. Jelinek, J. Lafferty, D. Magerman,
R. Mercer, and S. Roukos. 1992. Towards
history-based grammars: Using richer models for
probabilistic parsing. InProceedings of the 5th
DARPA Speech and Natural Language Workshop.

D. Blaheta and E. Charniak. 2000. Assigning
function tags to parsed text. InProceedings of
NAACL, pages 234–240.

S. Buchholz. 2002.Memory-Based Grammatical
Relation Finding. Ph.D. thesis, University of
Tilburg.

J. Carroll, E. Briscoe, and A. Sanfilippo. 1998.
Parser evaluation: A survey and a new pro-
posal. InProceedings of LREC, pages 447–454,
Granada, Spain.

E. Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of NAACL.

M. Collins, J. Hajič, E. Brill, L. Ramshaw, and
C. Tillmann. 1999. A Statistical Parser of Czech.
In Proceedings of ACL, pages 505–512, Univer-
sity of Maryland, College Park, USA.

DA RA CM
≤ 10 93.7 96.6 83.6
11–20 88.8 86.4 39.5
21–30 87.4 83.4 20.8
31–40 86.8 78.1 9.9
≥ 41 84.6 74.9 1.8

Table 3: Accuracy in relation to sentence length (number of words)

M. Collins. 1996. A new statistical parser based on
bigram lexical dependencies. InProceedings of
ACL, pages 184–191, Santa Cruz, CA.

M. Collins. 1997. Three generative, lexicalised
models for statistical parsing. InProceedings of
ACL, pages 16–23, Madrid, Spain.

M. Collins. 1999.Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Uni-
versity of Pennsylvania.

S. Cost and S. Salzberg. 1993. A weighted near-
est neighbor algorithm for learning with symbolic
features.Machine Learning, 10:57–78.

W. Daelemans, A. van den Bosch, and J. Zavrel.
2002. Forgetting exceptions is harmful in lan-
guage learning.Machine Learning, 34:11–43.

W. Daelemans, J. Zavrel, K. van der Sloot, and
A. van den Bosch. 2003. Timbl: Tilburg mem-
ory based learner, version 5.0, reference guide.
Technical Report ILK 03-10, Tilburg University,
ILK.

W. Daelemans. 1999. Memory-based language
processing. Introduction to the special issue.
Journal of Experimental and Theoretical Artifi-
cial Intelligence, 11:287–292.

S. A. Dudani. 1976. The distance-weightedk-
nearest neighbor rule.IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-6:325–327.

J. Einarsson. 1976. Talbankens skriftspråkskonkor-
dans. Lund University.

J. M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. InPro-
ceedings of COLING, Copenhagen, Denmark.

E. Fix and J. Hodges. 1952. Discriminatory anal-
ysis: Nonparametric discrimination: Consistency
properties. Technical Report 11, USAF School of
Aviation Medicine, Randolph Field, Texas.

J. Hajic. 1998. Building a syntactically annotated
corpus: The prague dependency treebank. InIs-
sues of Valency and Meaning, pages 106–132.
Karolinum.

M. T. Kromann. 2003. The Danish dependency
treebank and the DTAG treebank tool. InPro-
ceedings of the Second Workshop on Treebanks

and Linguistic Theories, pages 217–220, Växjö,
Sweden.

T. Kudo and Y. Matsumoto. 2000. Japanese depen-
dency structure analysis based on support vec-
tor machines. InProceedings of EMNLP/VLC,
Hongkong.

D. Lin. 1998. Dependency-based evaluation of
MINIPAR. In Proceedings of LREC.

D. M. Magerman. 1995. Statistical decision-tree
models for parsing. InProceedings of ACL,
pages 276–283, Boston, MA.

M. P. Marcus, B. Santorini, and M. A.
Marcinkiewicz. 1993. Building a large an-
notated corpus of English: The Penn Treebank.
Computational Linguistics, 19:313–330.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-
based dependency parsing. InProceedings of
CoNLL, pages 49–56.

J. Nivre. 2003. An efficient algorithm for projective
dependency parsing. InProceedings of IWPT,
pages 149–160, Nancy, France.

K. Oflazer. 2003. Dependency parsing with an ex-
tended finite-state approach.Computational Lin-
guistics, 29:515–544.

R. Skousen. 1989.Analogical Modeling of Lan-
guage. Kluwer.

R. Skousen. 1992.Analogy and Structure. Kluwer.
C. Stanfill and D. Waltz. 1986. Toward memory-

based reasoning.Communications of the ACM,
29:1213–1228.

V. N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag.

J. Veenstra and W. Daelemans. 2000. A memory-
based alternative for connectionist shift-reduce
parsing. Technical Report ILK-0012, University
of Tilburg.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines.
In Proceedings of IWPT, pages 195–206, Nancy,
France.

