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Abstract

Parsli is a finite-state(FS) parserwhich canbe
tailored to the lexicon, syntax, and semantics
of a particularapplicationusinga hand-editable
declarative lexicon. The lexicon is definedin
termsof a lexicalizedTreeAdjoining Grammar,
which is subsequentlymappedto a FSrepresen-
tation. This approachgives the applicationde-
signerbetterandeasiercontrol over the natural
languageunderstandingcomponentthan using
anoff-the-shelfparser. We presentresultsusing
Parsli on an applicationthat creates3D-images
from typedinput.

1 Parsing and Application-Specific
Semantics

One type of Natural LanguageUnderstanding
(NLU) applicationisexemplifiedby thedatabase
accessproblem:theusermaytypein freesource
languagetext, but the NLU componentmust
map this text to a fixed set of actionsdictated
by the underlying application program. We
will call such NLU applications“application-
semanticNLU”. Otherexamplesof application-
semanticNLU include interfacesto command-
basedapplications(such as airline reservation
systems),oftenin theguiseof dialogsystems.

Several general-purposeoff-the-shelf (OTS)
parsers have become widely available (Lin,
1994; Collins, 1997). For application-semantic
NLU, it is possibleto usesuchanOTS parserin
conjunctionwith a post-processorwhich trans-
fers the outputof the parser(be it phrasestruc-
tureor dependency) to thedomainsemantics.In
addition to mappingthe parseroutput to appli-
cationsemantics,the post-processoroften must
also“correct” theoutputof theparser:theparser
maybetailoredfor a particulardomain(suchas

Wall StreetJournal (WSJ)text), but thenew do-
mainpresentslinguistic constructionsnot found
in the original domain (such as questions). It
mayalsobethecasethattheOTS parserconsis-
tently misanalyzescertainlexemesbecausethey
do not occur in the OTS corpus,or occur there
with differentsyntacticproperties.While many
of the parserscan be retrained,often an anno-
tatedcorpusis not available in the application
domain(since, for example, the applicationit-
self is still underdevelopmentand thereis not
yetausercommunity).Theprocessof retraining
mayalsobequitecomplex in practice.A further
disadvantageof this approachis that the post-
processormusttypically be written by hand,as
proceduralcode. In addition, the application-
semanticNLU maynotevenexploit thestrengths
of the OTS parser, becausethe NLU required
for the applicationis not only different (ques-
tions), but generallysimpler (the WSJcontains
very long and syntacticallycomplex sentences
which arenot likely to be found as input in in-
teractive systems,includingdialogsystems).

This discussionsuggeststhat we (i) needan
easyway to specifyapplicationsemanticsfor a
parserand(ii) thatwedonotusuallyneedthefull
powerof a full recursiveparser. In thispaper, we
suggestthat application-semanticNLP may be
betterserved by a lexicalized finite-state (FS)
parser. We presentPARSLI, a FS parserwhich
canbe tailoredto the applicationsemanticsus-
ing a hand-editabledeclarative lexicon. This ap-
proachgivestheapplicationdesignerbetterand
easiercontrolovertheNLU component.Further-
more,while thefinite-stateapproachmaynotbe
sufficient for WSJtext (given its syntacticcom-
plexity), it is sufficient for most interactive sys-
tems,andtheadvantagein speedofferedby FS
approachesin morecrucial in interactive appli-



cations. Finally, in speech-basedsystems,the
latticethatis outputfrom thespeechrecognition
componentcaneasilyusedasinputtoaFS-based
parser.

2 SampleApplication: WORDSEYE

WORDSEYE (Coyne and Sproat, 2001) is a
systemfor converting English text into three-
dimensionalgraphicalscenesthat representthat
text. WORDSEYE performssyntacticand se-
mantic analysison the input text, producinga
descriptionof the arrangementof objectsin a
scene. An image is then generatedfrom this
scenedescription. At the core of WORDSEYE

is the notion of a “pose”, which canbe loosely
definedasafigure(e.g.ahumanfigure)in acon-
figurationsuggestive of aparticularaction.

For WORDSEYE, the NLP task is thus to
mapfrom an input sentenceto a representation
that thegraphicsenginecandirectly interpretin
termsof poses. The graphicalcomponentcan
renderafixedsetof situations(asdeterminedby
its designer);eachsituationhasseveralactorsin
situation-specificposes,and eachsituationcan
be describedlinguistically using a given set of
verbs. For example, the graphicalcomponent
mayhaveawayof depictingacommercialtrans-
action,with two humansin particularposes(the
buyerandtheseller),thegoodsbeingpurchased,
and the paymentamount. In English,we have
differentverbsthat canbe usedto describethis
situation(buy, sell, cost, andsoon). Theseverbs
have differentmappingsof their syntacticargu-
mentsto thecomponentsin thegraphicalrepre-
sentation.We assumea mappingfrom syntaxto
domainsemantics,leaving to lexical semantics
the questionof how sucha mappingis devised
andderived. (For many applications,suchmap-
pingscanbe derived by hand,with the seman-
tic representationanad-hocnotation.)We show
a sampleof suchmappingin Figure 1. Here,
we assumethat the graphicsengineof WORD-
SEYE knows how to depict a TRANSACTION

whensomeof thesemanticargumentsof a trans-
action (suchas CUSTOMER, ITEM, AMOUNT)
arespecified.

We show somesampletransductionsin Fig-
ure 2. In the output, syntacticconstituentsare
bracketed.Following eachargumentis informa-
tion aboutits grammaticalfunction(“GF=0” for

example)andaboutits semanticrole (ITEM for
example). If a lexical item hasa semanticsof
its own, the semanticsreplacesthe lexical item
(this is thecasefor verbs),otherwisethe lexical
item remainsin place. In thecaseof the transi-
tive cost, theverbalsemanticsin Figure1 spec-
ifies an implicit CUSTOMER argument. This is
generatedwhencost is usedtransitively, ascan
beseenin Figure2.

3 Mapping TreeAdjoining Grammar
to Finite StateMachines

What is crucial for beingableto definea map-
ping from words to applicationsemanticsis a
very abstractnotionof grammaticalfunction: in
devising sucha mapping,we arenot interested
in how English realizescertainsyntacticargu-
ments,i.e., in the phrasestructureof the verbal
projection.Instead,wejustwantto beableto re-
fer to syntacticfunctions,suchassubjector indi-
rectobject. TreeAdjoining Grammar(TAG) rep-
resentstheentiresyntacticprojectionfrom alex-
emein its elementarystructuresin anelementary
tree; becauseof this, eachelementarytree can
beassociatedwith a lexical item (lexicalization,
(Joshiand Schabes,1991)). Eachlexical item
canbe associatedwith oneor moretreeswhich
representthe lexeme’s valency; thesetreesare
referredto asits supertags. In a derivation,sub-
stitutingor adjoiningthetreeof onelexemeinto
that of anothercreatesa direct dependency be-
tweenthem. Thesyntacticfunctionsarelabeled
with integersstartingwith zero(to avoid discus-
sionsaboutnames),andareretainedacrossop-
erationssuchas topicalization,dative shift and
passivization.

A TAG consistsof asetof elementarytreesof
two types,initial treesandauxiliary trees.These
treesare then combinedusing two operations,
substitutionandadjunction. In substitution,an
initial tree is appendedto a specially marked
nodewith thesamelabelastheinitial tree’s root
node. In adjunction,a non-substitutionnodeis
rewritten by an auxiliary tree,which hasa spe-
cially marked frontier nodecalledthe footnode.
The effect is to insert the auxiliary treeinto the
middleof theothertree.

We distinguishtwo types of auxiliary trees.
Adjunct auxiliary treesare usedfor adjuncts;
they have the property that the footnodeis al-



Verb Supertag Verbsemantics Argumentsemantics
paid A nx0Vnx1 transaction 0=Customer1=Amount
cost A nx0Vnx1 transaction 0=Item1=AmountImplicit=Customer
cost A nx0Vnx2nx1 transaction 0=Item1=Amount2=Customer

bought,purchased A nx0Vnx1 transaction 0=Customer1=Item
socks A NXN none none

Figure1: Sampleentriesfor acommercialtransactionsituation

In : I boughtsocks
Out: ( ( I ) GF=0AS=CUSTOMER TRANSACTION ( socks) GF=1AS=ITEM )
In :thepajamascostmy mother-in-law 12dollars
Out: ( ( ( the) pajamas) GF=0AS=ITEM TRANSACTION ( ( my ) mother-in-law ) GF=2AS=CUSTOMER ( (
12 ) dollars) GF=1AS=AMOUNT )
In : thepajamascost12dollars
Out: ( ( ( the ) pajamas) GF=0 AS=ITEM TRANSACTION IMP:CUSTOMER ( ( 12 ) dollars ) GF=1
AS=AMOUNT )

Figure2: Sampletransductionsgeneratedby Parsli (“GF” for grammaticalfunction,“AS” for argu-
mentsemantics,“Imp” for implicit argument)

waysa daughternodeof the root node,andthe
labelon thesenodesis not, linguistically speak-
ing, part of the projectionof the lexical item of
that tree. For example,anadjective will project
to AdjP, but theroot-andfootnodeof its treewill
be labeledNP, sincean adjective adjoinsto NP.
We will referto theroot- andfootnodeof anad-
junct auxiliary treeasits passive valencystruc-
tur e. Notethatthetreefor anadjectivealsospec-
ifies whetherit adjoinsfrom the left (footnode
on right) or right (footnodeon left). Predicative
auxiliary tr eesareprojectedfrom verbswhich
subcategorizefor clauses.Sincea verbprojects
to aclausalcategory, andhasanodelabeledwith
a clausalcategory on its frontier (for the argu-
ment),theresultingtreecanbeinterpretedasan
auxiliary tree,which is usefulin analyzinglong-
distancewh-movement(Frank,2001).

To derive a finite-statetransducer(FST) from
a TAG, we do a depth-firsttraversalof eachele-
mentarytree(but excluding the passive valency
structure,if present)to obtainasequenceof non-
terminalnodes. For predicative auxiliary trees,
westopat thefootnode.Eachnodebecomestwo
statesof theFST, onestaterepresentingthenode
on the downward traversalon the left side, the
otherrepresentingthestateontheupwardtraver-
sal, on the right side. For leaf nodes,the two
statesarejuxtaposed.Thestatesarelinearlycon-

nectedwith � -transitions,with theleft nodestate
of theroot nodethestartstate,andits right node
statethefinal state(exceptfor predicative auxil-
iary trees– seeabove). To eachnon-leafstate,
we addoneself loop transitionfor eachtree in
the grammarthat can adjoin at that statefrom
thespecifieddirection(i.e., for astaterepresent-
ing a nodeon thedownwardtraversal,theauxil-
iary treemustadjoinfrom theleft), labeledwith
the treename. For eachpair of adjacentstates
representinga substitutionnode,we addtransi-
tions betweenthem labeledwith the namesof
thetreesthatcansubstitutethere.We outputthe
numberof thegrammaticalfunction,andthear-
gumentsemantics,if any is specified. For the
lexical head,we transitionon thehead,andout-
put the semanticsif defined,or simply the lex-
emeotherwise.Thereareno othertypesof leaf
nodessincewe do not traversethe passive va-
lency structureof adjunctauxiliary tees. At the
beginningof eachFST, an � -transitionoutputsan
open-bracket, andat theend,an � -transitionout-
putsa close-bracket. The resultof this phaseof
theconversionis a setof FSTs,oneperelemen-
tary treeof thegrammar. We will refer to them
as“elementaryFSTs”.
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4 Constructing the Parser

In our approach,eachelementaryFSTdescribes
the syntacticpotentialof a setof (syntactically
similar)words(asexplainedin Section3). There
areseveralwaysof associatingwordswith FSTs.
SinceFSTscorresponddirectlyto supertags(i.e.,
trees in a TAG grammar), the basic way to
achieve sucha mappingis to list words paired
with supertags,along with the desiredseman-
tic associatedwith eachargumentposition(see
Figure 1). The parsercanalso be divided into
a lexical machinewhich transduceswords to
classes,and a syntacticmachine,which trans-
ducesclassesto semantics.This approachhas
the advantageof reducingthe sizeof the over-
all machinesincethesyntaxis factoredfrom the
lexicon.

Thelexical machinetransducesinputwordsto
classes.To determinethemappingfrom word to
supertag,we usethe lexical probability ������� 	�

where 	 is the word and � the class. These
are derived by maximumlikelihood estimation
from a corpus.Oncewe have determinedfor all
wordswhich classeswe want to pair themwith,
wecreateadisjunctive FSTfor all wordsassoci-
atedwith agivensupertagmachine,whichtrans-
ducesthewordsto theclassname.We replaces
theclass’s FST(asdeterminedby its associated
supertag(s))with the disjunctive headFST. The
weightson the lexical transitionsare the nega-

tivelogarithmof theemitprobability�
��	�� ��
 (ob-
tainedin thesamemannerasarethelexical prob-
abilities).

For the syntacticmachine,we take eachele-
mentarytree machinewhich correspondsto an
initial tree (i.e., a tree which neednot be ad-
joined) andform their union. We thenperform
a seriesof iterative replacements;in eachiter-
ation, we replaceeacharc labeledby the name
of anelementarytreemachineby thelexicalized
versionof that treemachine.Of course,in each
iteration,therearemany morereplacementsthan
in thepreviousiteration.Weuse5 roundsof iter-
ation;obviously, thenumberof iterationsrestrict
the syntacticcomplexity (but not the length)of
recognizedinput. However, becausewe output
brackets in the FSTs, we obtain a parsewith
full syntactic/lexical semantic(i.e., dependency)
structure,nota “shallow parse”.

This constructionis in many wayssimilar to
similar constructionsproposedfor CFGs,in par-
ticular thatof (Nederhof,2000). Onedifference
is that,sincewe startfrom TAG, recursionis al-
readyfactored,andweneednotfindcyclesin the
rulesof thegrammar.

5 Experimental Results

We presentresultsin which our classesarede-
fined entirely with respectto syntacticbehav-
ior. This is becausewe do not have available
an importantcorpusannotatedwith semantics.
We train on the Wall StreetJournal(WSJ)cor-
pus. We evaluateby taking a list of 205 sen-
tenceswhich arechosenat randomfrom entries
to WORDSEYE madeby the developers(who
weretestingthegraphicalcomponentusingadif-
ferentparser).Theiraveragelengthis 6.3words.
We annotatedthe sentencesby handfor the de-
sired dependency structure,and then compared
thestructuraloutputof PARSLI to thegold stan-
dard(we disregardedthe functionalandseman-
tic annotationsproducedby PARSLI). We eval-
uateperformanceusingaccuracy, the ration of



n Correctness Accuracy Nb
2 1.00 1.00 12
4 0.83 0.84 30
6 0.70 0.82 121
8 0.62 0.80 178
12 0.59 0.79 202
16 0.58 0.79 204
20 0.58 0.78 205

Figure5: Resultsfor sentenceswith � or fewer
words; Nb refersto the numberof sentencesin
thiscategory

n Correctness Accuracy
1 0.58 0.78
2 0.60 0.79
4 0.62 0.81
8 0.69 0.85
12 0.68 0.86
20 0.70 0.87
30 0.73 0.89

Figure6: Resultsfor � -bestanalyses

the numberof dependency arcswhich are cor-
rectly found (sameheadanddaughternodes)in
the bestparsefor eachsentenceto the number
of arcsin the entiretestcorpus. We alsoreport
thepercentageof sentencesfor whichwefind the
correctdependency tree(correctness). For our
test corpus,we obtainan accuracy of 0.78 and
a correctnessof 0.58. Theaveragetransduction
time persentence(includinginitialization of the
parser)is 0.29s. Figure5 shows thedependence
of the scoreson sentencelength. As expected,
thelongerthesentence,theworsethescore.

We can obtain the n-bestpathsthrough the
FST; thescoresfor n-bestpathsaresummarized
in Figure6. Sincethescoreskeepincreasing,we
believe that we can further improve our 1-best
resultsby betterchoosingthe correctpath. We
intendto adaptthe FSTsto useprobabilitiesof
attachingparticularsupertagsto othersupertags
(ratherthanuniformweightsfor all attachments)
in orderto bettermodeltheprobabilityof differ-
entanalyses.Anotheroption,of course,is bilex-
ical probabilities.

6 Discussionand Outlook
We have presentedPARSLI, a systemthat takes
a high-level specificationof domainlexical se-
manticsand generatesa finite-stateparserthat
transducesinput to the specified semantics.
PARSLI usesTreeAdjoining Grammarasan in-
terface betweensyntax and lexical semantics.
Initial evaluationresultsareencouraging,andwe
expect to greatly improve on current1-bestre-
sults by using probabilitiesof syntacticcombi-
nation. While we have arguedthat many appli-
cationsdo not needa fully recursive parser, the
sameapproachto usingTAG asan intermediate
betweenapplicationsemanticsandsyntaxcanbe
usedin achartparser;for achartparserusingthe
FSmachinesdiscussedin thispaper, see(Nasret
al., 2002).
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