An Indexing Scheme for Typed Feature Structures

Takashi NINOMIYA, T# Takaki MAKINO, #T and Jun’ichi TSUJIl T+

TDepartment of Computer Science, University of Tokyo
*CREST, Japan Science and Technology Corporation
#Department of Complexity Science and Engineering, University of Tokyo

~TBsI,RIKEN _
e-mail: {ninomi, mak, tsuji} @is.s.u-tokyo.ac.jp

Abstract TFS F, and FollowedTypém,F) be the

This paper describes an indexing substrate for typed typg assigned 1t° the node reached by fol-
feature structures (ISTFS), which is an efficient re- ~ lowing path .- If two TFSs F and G
trieval engine for typed feature structures. Givena ~ &re unifiable, therFollowedTypér,F) and
set of typed feature structures, the ISTFS efficiently ~ FollowedTyper, G) are defined and unifiable
retrieves its subset whose elements are unifiable or o all < (Path r UPath g).

in a subsumption relation with a query feature StrUC~rne Ouick Check algorithm described in (Torisawa
ture. The efficiency of the ISTFS is achieved byand ?sujii, 1995: l\/gllalouf et al., 2000) ;Iso USes

calculating a unifiability checking table prior to re- this condition for the efficient checking of unifia-

trieval and finding the best index paths dyna‘m"bility between two TFSs. Given two TFSs and stat-
cally. ically determined paths, the Quick Check algorithm
. can efficiently determine whether these two TFSs
1 Introduction are non-unifiable or there is some uncertainty about
This paper describes an indexing substrate for typetheir unifiability by checking the path values. It is
feature structures (ISTFS), which is an efficient re-worth noting that this algorithm is used in many
trieval engine for typed feature structures (TFSs)modern unification grammar-based systems, e.g.,
(Carpenter, 1992). Given a set of TFSs, the ISTFShe LKB system (Copestake, 1999) and the PAGE
can efficiently retrieve its subset whose elements areystem (Kiefer et al., 1999).
unifiable or in a subsumption relation with a query Unlike the Quick Check algorithm, which checks
TFS. unifiability between two TFSs, our ISTFS checks
The ultimate purpose of the substrate is aimed atinifiability between one TFS and TFSs. The
the construction of large-scale intelligent NLP sys-ISTFS checks unifiability by using dynamically de-
tems such as IR or QA systems based on unificatiortermined paths, not statically determined paths. In
based grammar formalisms (Emele, 1994). Recerur case, using only statically determined paths
studies on QA systems (Harabagiu et al., 2001) havanight extremely degrades the system performance.
shown that systems using a wide-coverage noun tax8uppose that any statically determined paths are not
onomy, quasi-logical form, and abductive inferencedefined in the query TFS. Because there is no path
outperform other bag-of-words techniques in accuto be used for checking unifiability, it is required to
racy. Our ISTFS is an indexing substrate that enunify a query with every element of the data set. It
ables such knowledge-based systems to keep arghould also be noted that using all paths defined in
retrieve TFSs, which can represent symbolic struca query TFS severely degrades the system perfor-
tures such as quasi-logical forms or a taxonomy andnance because a TFS is a huge data structure com-
the output of parsing of unification-based grammargrised of hundreds of nodes and paths, i.e., most of
for a very large set of documents. the retrieval time will be consumed in filtering. The
The algorithm for our ISTFS is concise and effi-
cient. The basic idea used in our algorithm uses g

IMore preciselyFollowed Typér, F) returns the type as-
ned to the node reached by followimgrom the root node

necessary condition for unification. of FSPATH,F), which is defined as follows.
(Necessary condition for unification) Let Path ¢ FSPATH,F) =FUPV(m)
be the set of all feature paths defined in PV(m) = { ehoast featurg structure where

* This research is partially funded by JSPS Research FellowThat is, FollowedTypér, F) might be defined even ift does
ship for Young Scientists. not exist inF.

ISTFS dynamically finds the index paths in order of Assuming thaw is the type of the node reached by
highest filtering rate. In the experiments, most ‘non-following m in a query TFS, we can limiZ to a
unifiable’ TFSs were filtered out by using only a few smaller set by filtering out ‘non-unifiable’ TFSs. We
index paths found by our optimization algorithm. have the smaller set:

2 Algorithm Uiy = U Dyt
Briefly, the algorithm for the ISTFS proceeds ac- Tvbe A ouris define
cording to the following steps. (reType A ouris defined

1. When a set oflata TFSsis given, the ISTFS . corresponds to the size bf, ;. Note that the
prepares gpath value tableand aunifiability TS goes not prepare a tablef, statically, but
checking tablein advance. . 0 Lo

just prepares a table bf; ; whose elements are in-

2. When aquery TFS is given, the ISTFS re- tegers. This is because the system’s memory would
trieves TFSs which are unifiable with the query easily be exhausted if we actually made a table of
from the set of data TFSs by performing theU;, . Instead, the ISTFS finds the best paths by re-
following steps. ferring toU,;; and calculates only;, , whereris

() The ISTFS finds the index paths by usingthe bestindex path. , ,
the unifiability checking table. The index _ Suppose the type hierarchy ad depicted in

paths are the most restrictive paths in theFigure 1 are given. The tables in Figure 2 st
qguery in the sense that the set of the datsNdUno calculated from Figure 1.
TFSs can be limited to the smallest one. 22 Retrieval

(b) The ISTFS filters out TFSs that are non- In what follows, we suppose tha? was given, and

unifiable by referring to the values of the
index path)s/ in the pgth value table. we have already calculatédl,g andUr,o.

(c) The ISTFS finds exactly unifiable TFSs Finding Index Paths

??{ unifying t_rge_query and the remains of 1, et index path is the most restrictive path in the

litering one-by-one, in succession. guery in the sense th&t can be limited to the small-

est set by referring to the type of the node reached

by following the index path in the query.

Suppose a query TESand a constark, which is

e maximum number of index paths, are given. The

best index path iPath x is pathrrsuch thatl, s is

minimum whereo is the type of the node reached

2.1 Preparing Path Value Table and by following T from the root node oX. We can
Unifiability Checking Table also find the second best index path by finding the

Let Z(= {F1,F,...,Fn}) be the set of data TFSs. pathns.t.U,w_— is th_e second_ smallest. In. the same
When 2 is given, the ISTFS prepares two tables, avay, we can find theth best index path s.t.< k.

path value tabl® ; and a unifiability checking ta-
ble U g, for all me Path 4, ando € Type. 2 A _
TFS might have a cycle in its graph structure. InSUPPOSEK best index paths have already been cal-
that case, a set of paths becomes infinite. Fortuculated. Given an index pati let o be the type of
nately, our algorithm works correctly even if the setthe node reached by following in the query. An

of paths is a subset of all existing paths. Therefore€lement ofZ that is unifiable with the query must
paths which might cause an infinite set can be rehave a node that can be reached by followmand
moved from the path set. We define the path valudvhose type is unifiable witlr. Such TFSg=Uy, ;)

table and the unifiability checking table as follows: can be collected by taking the unionDf; r, where
T is unifiable withg. For each index path); ;

This algorithm can also find the TFSs that are
in the subsumption relation, i.e., more-specific or
more-general, by preparing subsumption checkinqh
tables in the same way it prepared a unifiability
checking table.

Filtering

Drnoe = {F|F €2 A FollowedTypém,F) =0} can be calculated, and the can be limited to the
U - z Do smaller one by taking their intersection. After filter-
o 4 T ing, the ISTFS can find exactly unifiable TFSs by
(teType A our is defined unifying the query with the remains of filtering one
by one.

2Type is a finite set of types. Suppose the type hierarchy agdin Figure 1 are

r cons

CAR: 1
cons
cons FL= CAR: 2
1 2 3 4 5 6 [CAR; D} nil CDR: COR. [‘é%r;f_ 3 }
cbr: list . e
CDR: nil
W \/ | cons
integer list R = CAR: 4
CDR: nil
- cons
O CAR:5
Fs= cons
CDR: | CAR:6
L CDR:nil
2 ={F1, Rz, Fs}
Figure 1: An example of a type hierarchy and TFSs
DT{.U
i I infeger 1 2 3 40 5 6 Tist cons nil
B N N N N N N N N {F1,F2,F3}
CAR: {F1} Rt {R} : :
CDR: : : : - : {F1.Fs} {R}
CDR:CAR: {F1} . {F3} - :
CDR:CDR: : - . {F1} {Fs}
CDR:CDR:CAR: {F1} . . ;
CDR:CDR:CDR:] . . . {F}
-1s an empty set.
UTLU
T T infeger 1 2 3 (Z 5 6 Tist cons nil
£ 3 0 0 0 0 0 0 0 3 *3 0
CAR: 3 *3 1 0 0 1 1 0 0 0 0
CDR: 3 0 0 0 0 0 0 0 3 *2 1
CDR:CAR: 2 2 0 1 0 0 9] *1 9] 0 0
CDR:CDR: 2 0 0 0 0 0 0 0 *2 1 1
CDR:CDR:CAR 1 1 0 0] 1 9] 9] 9] 0 0 0
CDR:CDR:CDR 1 0 0 0 0 0 0 0 1 0 1
Figure 2: An example 0D ¢ andUr o
[[QuerySetAl QuerySetB| 1200
of the data TFSs 249,994 249,994
Avg. # of unifiables 68,331.58 1,310.70 1000 |
Avg. # of more specificy 66,301.37 0.00 o0 |
Avg. # of more generalg 0.00 0.00

Table 1. The average number of data TFSs and an-

swers forQuerySetAandQuerySetB

given, and the following quer¥(is given:
CDR: [CAR: 6

cons
CDR: list

CAR: mtecqoenrS
In Figure 2,U;; s where therr and o pair exists in

600

400 -

the size of D (Mbyte)

200

0
0 50 100 150
the size of the data set (MByte)

200

Figure 3: The size oD for the size of the data
set

the query is indicated with an asterisk. The best ingog pracketed sentences in the Wall Street Journal

dex paths are determined in ascending ordéfgf

corpus (the first 800 sentences in Wall Street Jour-

indicated with an asterisk in the figure. In this ex-ng|'00) in the Penn Treebank (Marcus et al., 1993)

ample, the bestindex path@®R:CAR:and its corre-
sponding type in the query & Therefore the unifi-
able TFS can be found by referring@g.pr.car:6:

and this is{Fs}.
3 Performance Evaluation

with the XHPSG grammar (Tateisi et al., 1998). The
size of the data set was 151 MB. We also generated
two sets of query TFSs by parsing five randomly
selected sentences in the Wall Street Journal cor-
pus QuerySetfandQuerySetlR Each set had 100
query TFSs. Each element QuerySetAwas the

We measured the performance of the ISTFS on @aughter part of the grammar rules. Each element of

IBM xSeries 330 with a 1.26-GHz PentiumlIl pro-

QuerySetBvas the right daughter part of the gram-

cessor and a 4-GB memory. The data set consistnhar rules whose left daughter part is instantiated.
ing of 249,994 TFSs was generated by parsing th&able 1 shows the number of data TFSs and the av-

erage number of unifiable, more-specific and moremize the searching cost. Basically, their algorithms
general TFSs foQuerySetAand QuerySetB The take an intersection of candidates for all paths in a
total time for generating the index tables (i.e., a seguery, or just limiting the length of paths (McCune,
of paths, the path value tablB£), the unifiabil- 2001). Because such a set of paths often contains
ity checking tableW), and the two subsumption many paths ineffective for limiting answers, our ap-
checking tables) was 102.59 seconds. The size gfroach should be more efficient than theirs.
the path value table was 972 MByte, and the size of .
the unifiability checking table and the two subsump-2 Conclusion and Future Work
tion checking tables was 13 MByte. The size of thewe developed an efficient retrieval engine for TFSs,
unifiability and subsumption checking tables is neg4STFS. The efficiency of ISTFS is achieved by cal-
ligible in comparison with that of the path value ta- culating a unifiability checking table prior to re-
ble. Figure 3 shows the growth of the size of thetrieval and finding the best index paths dynamically.
path value table for the size of the data set. As seen In future work, we are going to 1) minimize the
in the figure, it grows proportionally. size of the index tables, 2) develop a feature struc-
Figures 4, 5 and 6 show the results of retrievalture DBMS on a second storage, and 3) incorporate
time for finding unifiable TFSs, more-specific TFSs structure-sharing information into the index tables.
and more-general TFSs respectively. In the figures
the X-axis shows the number of index paths thafReferences
are used for limiting the data set. The ideal timeB. Carpenter. 1992The Logic of Typed Feature Struc-
means the unification time when the filtering rate is tures Cambridge University Press, Cambridge, U.K.
100%, i.e., our algorithm cannot achieve higher efA- r%ggftﬁgﬁ-l 13311%&26 L}r?is\évr)sli_tiB system. Technical
ficiency than this optimum. The overall time is the ’ ' :
sum of the filtering time and the unification time. M'tC' Emele. %9;34- fTFSI.‘ th?mtype(i tfhea}utre struc-
As illustrated in the figures, using one to ten index ure represeiation formansm. Broc. o fhe fmerma-

; tional Worksh Sharable Natural L Re-
paths achieves the best performance. The ISTFS S'gﬂ?}:es‘(’g,ig‘_’l‘;gm arable Tallral -anguiage e

achieved 2.84 times speed-ups in finding unifiabless Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea,

for QuerySetAand 37.90 times speed-ups in find- M. Surdeanu, R. Bunescu, R.ifs, V. Rus, and

ing unifiables forQuerySetB Morarescu. 2001. Falcon: Boosting knowledge for
Figure 7 plots the filtering rate. In finding unifi- _ answer engines. IRroc. of TREC 9

able TFSs inQuerySetAmore than 95% of non- - JGCcqr, g of userd iechniques fo effident and ro

:Jnncigibgztﬁglslsna,[fefgtaesrgdgﬁ ér;t;)é gtslgrrlr?o?g I%/hg::ee bust parsing. IrProc. of ACL-1999pages 473-480,

98% of non-unifiable TFSs are filtered out by usingg ,\ljlgfduf J. Carroll, and A. Copestake. 2000. Effi-

only one index path. cient feature structure operations without compilation.
Journal of Natural Language Engineering(1):29—
4 Discussion 46.
i . o i M. Marcus, B. Santorini, and M. A. Marcinkiewicz.
Our approach is said to be a variation qth in- 1993. Building a large annotated corpus of En-

dexing Path indexing has been extensively studied glish: the Penn Treebankomputational Linguistics

in the field of automated reasoning, declarative pro- 19(2):313-330.

gramming and deductive databases for term indexW. McCune. 2001. Experiments with discrimination-
ing (Sekar et al., 2001), and was also studied in the tree indexing and path indexing for term retrieval-
field of XML databases (Yoshikawa et al., 2001). In _ tomated Reasoning8(2):147-167.

path indexing, all existing paths in the database ar&- Sekar, I. V. Ramakrishnan, and A. Voronkov. 2001.
first enumerated, and then an index for each path is ;€' indexing. InHandbook of Automated Reason-

o . . ing, pages 1853-1964. Elsevier Science Publishers.
prepared. Other existing algorithms differed fromY. Tateisi, K. Torisawa, Y. Miyao, and J. Tsujii. 1998.

ours in i) data structures and ii) query optimization. - Transjating the XTAG English grammar to HPSG. In
In terms of data structures, our algorithm deals with proc. of TAG+4 pages 172-175.

typed feature structures while their algorithms deak. Torisawa and J. Tsujii. 1995. Compiling HPSG-
with PROLOG terms, i.e., variables and instanti- style grammar to object-oriented language.Pioc.
ated terms. Since a type matches not only the same of NLPRS-1995ages 568-573.

type or variables but unifiable types, our problem isM. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
much more complicated. Yet, in our system, hierar- 2001. XRel: A path-based approach to storage and re-
chical relations like a taxonomy can easily be repre- X‘g‘l\’ﬂa'_l_o‘c XML _documelnts usmgl_relr?tmlnal (ia_tf\fgses.
sented by types. In terms of query optimization, our 7,3 ransactions on Internet Technology1):110-
algorithm dynamically selects index paths to mini- '

processing time (msec)

4000

3500

= = NN W
S a 9o a ©
8 8 8 o ©
S & & & o

@
1=}
S

o

—— filtering time
—=— unification time
—— overall time

- ideal time

0 5

10 15 20 25 30 35
the number of index paths

processing time (msec)

~
=}
15}

=
=1
3

@
=3
1S3

N
S
3

@
S
15}

)
=1
3

=}
15}

=)

5 10 15 20 25
the number of index paths

—— filtering time
—=— unification time
—— overall time

- - - ideal time

Figure 4: Average retrieval time for finding unifiable TF&a1erySetAleft), QuerySetRright)

processing time (msec)

1500

—— filtering time
—=— subsumption
checking time

—— overall time

- - - ideal time

10 15 20
the number of index paths

processing time (msec)

3000

2500

n
S
S
S

@
=}
S

=)
S
=3

173
=}
15}

"

.

10 15 20 25
the number of index paths

30

35

—— filtering time
—=— subsumption
checking time

—+— overall time

- - - ideal time

Figure 5:

Average retrieval time for finding more-specific TFQaerySetAleft), QuerySetRright)

processing time (msec)

2500

2000

1500

1000

500

0 5

—+— filtering time
r —=— subsumption
checking time
—— overall time
- - - ideal time
L

L L L . I
10 15 20 25 30 35
the number of index paths

processing time (msec)

600

500

400

300

200

100

5 10 15 20 25

the number of index paths

30

35

—— filtering time
—=— subsumption
checking time

—— overall time

- ideal time

Figure 6:

Average retrieval time for finding more-general TH3gerySetAleft), QuerySetRright)

filtering rate

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

[- unifiable

r —=—more specific

L —+ more general
0 5 10 15 20 25 30 35

the number of index paths

filtering rate

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

—— unifiable
—=—more specific
—— more general

10 15 20 25
the number of index paths

30

35

Figure 7: Filtering rateQuerySetAleft) andQuerySetRright)

	Table of Content
	Topics
	Authors

