
An Annotation System for Enhancing Quality of Natural Language
Processing

Hideo Watanabe*, Katashi Nagao**, Michael C. McCord*** and Arendse Bernth***

* IBM Research,

Tokyo Research Laboratory

1623-14 Shimotsuruma, Yamato,

Kanagawa 242-8502, Japan

hiwat@jp.ibm.com

** Dept. of Information Engineering

Nagoya University

Furo-cho, Chikusa-ku,

Nagoya 464-8603, Japan

nagao@nuie.nagoya-u.ac.jp

*** IBM T. J. Watson

Research Center

Route 134, Yorktown Heights,

NY 10598, USA

mcmccord@us.ibm.com,

arendse@us.ibm.com

Abstract

Natural language processing (NLP) programs are
confronted with various di�culties in processing
HTML and XML documents, and have the po-
tential to produce better results if linguistic infor-
mation is annotated in the source texts. We have
therefore developed the Linguistic Annotation Lan-

guage (or LAL), which is an XML-compliant tag set
for assisting natural language processing programs,
and NLP tools such as parsers and machine trans-
lation programs which can accept LAL-annotated
input. In addition, we have developed a LAL-
annotation editor which allows users to annotate
documents graphically without seeing tags. Fur-
ther, we have conducted an experiment to check
the translation quality improvement by using LAL
annotation.

1 Introduction

Recently there has been increasing interest in
applying natural language processing (NLP) sys-
tems, such as keyword extraction, automatic text
summarization, and machine translation, to Inter-
net documents. However, there are various ob-
stacles that make it di�cult for them to produce
good results. It is true that NLP technologies are
not perfect, but some of the di�culties result from
problems in HTML. Further, in general, if linguis-
tic information is added to source texts, it greatly
helps NLP programs to produce better results. In
what follows, we would like to show some examples
related to machine translation.

In general, it is very helpful for machine transla-
tion programs to know boundaries on many levels
(such as sentence, phrases, and words) and to know
word-to-word dependency relations. For instance,
in the following example, since \St." has two possi-
ble meanings, \street" and \saint," it is di�cult to

determine whether the following example consists
of one or two sentences.

I went to Newark St. Paul lived there
two years ago.

As another example, the following sentence has
two interpretations; one interpretation is that what
he likes is people and the other interpretation is
that what he likes is accommodating.

He likes accommodating people.

If there are tags indicating the direct-object mod-
i�er of the word \like," then the correct interpreta-
tion is possible. NLP may be able to resolve these
ambiguities eventually by using advanced context
processing techniques, but current NLP technology
generally needs a hint from the author for these
sorts of ambiguities.

Further, there are issues in HTML/XML. When
MT systems are applied to Web pages, most of the
errors are generated by the linguistic incomplete-
ness of MT technology, but some are generated by
problems in HTML and XML tag usage. For in-
stance, writers often use
 tag to sentence ter-
mination. Sometimes writers intend that a

tag should terminate the sentence (even without
terminating punctuation such as a period), and in
other cases writers intend
 only as a format-
ting device. In the HTML <table> shown in Figure
1, the writer intends each line of a cell to express
one linguistic unit. The MT program cannot tell
whether each line is a unit for translation, or, in-
stead, the two lines form one unit. In this example,
some MT programs would try to produce a transla-
tion of a unit \NetVista Models ThinkPad News."

As shown in the above examples, NLP appli-
cations do not achieve their full potential, on ac-
count of problems unrelated to the essential NLP
processes. If tags expressing linguistic information

<table><tr><td>

NetVista Models

ThinkPad News

</td></tr></table>

Figure 1: An example of using hbri tags in a table

are inserted into source documents, they help NLP
programs recognize document and linguistic struc-
tures properly, allowing the programs to produce
much better results. At the same time, it is true
that NLP technologies are incomplete, but their de-
�ciencies can sometimes be circumvented through
the use of such tags. Therefore, this paper proposes
a set of tags for helping NLP programs, called Lin-

guistic Annotation Language (or LAL).

2 Linguistic Annotation Language

LAL is an XML-compliant tag set and its XML
namespace pre�x is lal.

The LAL tag set is designed to be as simple as
possible for the following reasons: (1) A simple tag
set is easier for developers to check manually. (2)
An easy-to-use annotation tool is mandatory for
this annotation scheme. Simplicity is important
for making an easy-to-use annotation tool, since if
we use a feature-rich tag set, the user must check
many annotation items.

2.1 Basic Tags

The sentence tag s is used to delimit a sentence.

<lal:s>This is the first sentence.</lal:s>

<lal:s>This is the second sentence.</lal:s>

The attribute type="hdr" means that the sen-
tence is a title or header.

The word tag w is used to delimit a word. It
can have attributes for additional information such
as base form (lex), part-of-speech (pos), features
(ftrs), and sense (sense) of a word. The values of
these attributes are language-dependent, and are
not described in this paper because of space limi-
tations. The following example illustrates some of
these tags and attributes.

<lal:s>

<lal:w lex="this" pos="det">This</lal:w>

<lal:w lex="be" pos="verb" ftr="sg,3rd">

is</lal:w>

<lal:w lex="a" pos="det">a</lal:w>

<lal:w lex="pen" pos="noun" ftr="sg,count">

pen</lal:w>

</lal:s>

The dependency (or word-to-word modi�cation)
relationship can be expressed by using the id and
mod attributes of a word tag; that is, a word can
have the ID value of its modi�ee in a mod attribute.
The ID value of a mod attribute must be an ID value
of a word tag or a segment tag. For instance, the
following example contains attributes showing that
the word \with" modi�es the word \saw," meaning
that \she" has a telescope.

She <lal:w id="w1" lex="see" pos="v"

sense="see1">saw</lal:w> a man

<lal:w mod="w1">with</lal:w>

a telescope.

The phrase (or segment) tag seg is used to spec-
ify a phrase scope on any level. In addition, you
can specify the syntactic category for a phrase by
using an optional attribute cat. The following ex-
ample speci�es the scope of a noun phrase \a man
... a telescope," and it is a noun phrase. This also
implies that the prepositional phrase \with a tele-
scope" modi�es the noun phrase \a man."

She saw <lal:seg cat="np">a man with a

telescope</lal:seg>.

The attribute para="yes" means that the seg-
ment is a coordinated segment. The following ex-
ample shows that the word \software" and the word
\hardware" are coordinated.

This company deals with <lal:seg cat="np"

para="yes">software and hardware</lal:seg>

for networking.

The ref attribute has the ID value of the refer-
ent of the current word. This can be used to specify
a pronoun referent, for instance:

<lal:s>He bought <lal:seg id="w1">a

new car</lal:seg> yesterday.</lal:s>

<lal:s>She was very surprised to

learn that <lal:w ref="w1">it</lal:w>

was very expensive.</lal:s>

2.2 Expressing Multiple Parses

As mentioned earlier, since natural language con-
tains ambiguities, it is useful for LAL annotation
to have a mechanism for expressing syntactic am-
biguities.

We have introduced a parse identi�er (or PID)
in attribute values for distinguishing parses. An
attribute value which may be changed according

to parses can be allowed to be expressed as space-
separated multiple values, each of which consists of
a PID pre�x followed by a colon and an attribute
value.

<lal:s>

<lal:w id="1" mod="2">He</lal:w>

<lal:w id="2" mod="0">likes</lal:w>

<lal:w id="3" mod="p1:2 p2:4">

accommodating</lal:w>

<lal:w id="4" mod="p1:3 p2:2">people

</lal:w>.</lal:s>

This example shows that there are two interpre-
tations whose PIDs are p1 and p2, and that the p1
interpretation is \He likes people" and p2 is \He
likes accommodating."

3 LAL-Aware NLP Programs

We have modi�ed certain NLP systems to be
LAL-aware. ESG [5, 6] is an English parsing sys-
tem developed by the IBM Watson Research Cen-
ter, and updated to accept and generate LAL-annotated
English. We have also developed a Japanese pars-
ing system with LAL output functionality. These
LAL-aware versions of parsers are used as a back-
end process to show users the system's default in-
terpretation for a given sentence in the LAL-annotation
editor described below.

Further, the English to German, French, Span-
ish, Italian and Portuguese translation engines [6,
7] and English to Japanese translation engine [9]
are modi�ed to accept LAL-annotated English HTML
input.1

4 The LAL-Annotation Editor

Since inserting tags into documents manually is
not generally an easy task for end users, it is impor-
tant to provide an easy-to-use GUI-based editing
environment. In developing such an environment,
we took into consideration the following points: (1)
Users should not have to see any tags. (2) Users
should not have to see internal representations ex-
pressing linguistic information. (3) Users should be
able to view and modify linguistic information such
as feature values, but only if they want to.

Considering these points, we have found that
most of the errors made by NLP programs result
from their failure to recognize the phrasal struc-
tures of sentences. Therefore, we have decided to

1In addition, Watanabe [11] reported on an algorithm

for accelerating CFG-parsing by using LAL tag informa-

tion, and it is implemented in the above English-to-Japanese

translation engine.

show only a structural view of a sentence in the ini-
tial screen; other information is shown only if the
user requests it.

The important issue here is how to represent the
syntactic structure of a sentence to the user. NLP
programs normally deal with a linguistic structure
by means of a syntactic tree, but such a structure
is not necessarily easy for end users to understand.
For instance, Figure 2 shows the dependency struc-
ture of the English sentence \IBM announced a new
computer system for children with voice function."
This dependency structure is di�cult for end users,
partly because a dependency tree does not keep the
surface word order, so that it is di�cult to map it
to the original sentence quickly.2 Therefore, an im-
portant property for the linguistic structural view
is that users can easily reconstruct the original sur-
face sentence string.

The next important issue is how easily a user
can understand the overall linguistic structure. If
a user is, at �rst, presented with detailed linguistic
structure at the word level, then it is di�cult to
grasp the important linguistic skeleton of a sen-
tence. Therefore, another necessary property is
to give users a view in which the overall sentence
structure is easily recognized.

Figure 2: An example of tree structure of an En-
glish sentence

With these requirements in mind, we have devel-
oped a GUI tool called the LAL Editor. To satisfy
the last requirement, this editor has two presenta-
tion modes: the reduced presentation view and the
expanded presentation view. In the reduced pre-
sentation view, a main verb and its modi�ers are
basic units for presenting dependencies, and they
are located on di�erent lines, keeping the surface
order. Figure 3 shows an example of this reduced
presentation view. In this view, since dependen-
cies that are obvious for native speakers (e.g. \a"
and \computer") are not displayed explicitly, the
user can concentrate on dependencies between key

2You must perform an inorder tree walk to reconstruct a

surface sentence string.

Figure 3: Screen Images of LAL Editor - Reduced
View

units (or phrases). If the user �nds any depen-
dency errors in the reduced view, he or she can
enter the expanded view mode in which all words
are basic units for presenting dependencies. Fig-
ure 4 (a, b) shows examples of this expanded view.
In these views, to satisfy the former requirement,
dependencies between basic units are expressed by
using indentation. Therefore you can easily recon-
struct the surface sentence string by just looking at
words from top to bottom and from left to right,
and easily know dependencies of words by looking
at words located in the same column. For details
of the algorithm, see [12].

In Figure 3, you can easily grasp the overall
structure. In this case, since the dependencies be-
tween \for" and \announced," and \with" and \an-
nounced" are wrong, the user can change the mode
to the expanded view (as shown in Figure 4 (a)).
In this view, the user can change dependencies by
dragging a modi�er to the correct modi�ee using
a mouse. The corrected dependency structure is
shown in Figure 4 (b).

In addition, the LAL Editor has the capability of
testing translation by using LAL annotation. Fig-
ure 5 shows a window in which the top pane shows
the input sentence, the second pane shows the LAL-
annotation of the input, the third pane shows the
translation result using the LAL annotation, and
the fourth pane shows the default translation with-
out using the LAL annotation. The user can easily
check whether the current annotation can improve
translations.

5 Experiment

We have conducted a small experiment for eval-
uating LAL annotation to our English-to-Japanese
machine translation system[9]. We gathered about
60 sentences from Web pages in the computer do-
main, and added LAL annotation to these sen-

(a) Expanded View (before correction)

(b) Expanded View (after correction)

Figure 4: Screen Images of LAL Editor - Expanded
View

tences with the LAL annotation editor. In this
experiment, only word-to-word modi�cations were
corrected. Due to severe parsing errors and glitches
of the annotation editor, 53 of the 60 sentences
were used in this experiment. The average sentence
length for this test set was 21 words. Two evalu-
ators assigned a quality evaluation ranging from 1
(worst) to 5 (best) for each translation, with and
without use of annotation.

Translation results for 18 sentences (about 34%)
were better for the annotated case than the non-
annotated case. These better sentences were 1.16

Figure 5: Translation test window of LAL Editor

points better (27% better in quality score). On
the other hand, 26 sentences (about 49%) were not
changed, and 9 sentences (about 17%) were worse.
The main reason why these 9 sentences were worse
was the structural mismatch between the output
of the LAL Editor and the expected structure of
EtoJ translation system, since the LAL Editor and
the EtoJ MT system use di�erent parsing systems.
We have developed a structure conversion routine
from LAL editor output to EtoJ input, but it does
not yet cover all situations. This is the reason why
these 9 sentences become worse.

Note that this experiment only uses word-to-
word modi�cation corrections, so there is room for
producing better translations if we use other types
of annotation such as part-of-speech, and word sense.

6 Discussion

There have been several e�orts to de�ne tags
for describing language resources, such as TEI [10],
OpenTag [8], CES [1], EAGLES [2], GDA [3]. The
main focus of these e�orts other than GDA has
been to share linguistic resources by expressing them
in a standard tag set, and therefore they de�ne very
detailed levels of tags for expressing linguistic de-
tails. GDA has almost the same purposes but it
has also de�ned a very complex tag set. This com-
plexity discourages people from using these tag sets
when writing documents, and it also becomes dif-
�cult to make an annotation tool for these tags.
LAL is not opposed to these previous e�orts, but
attempts to strike a useful balance between expres-
siveness and simplicity, so that annotation can be
used widely.

As mentioned in the discussion of the experi-
ment, there is an issue when the parsing system
of LAL editor and the parsing system of a NLP
tool which accepts the output of LAL editor are
di�erent. As mentioned before, we used the ESG
parser for producing LAL-annotated English, and
Japanese-to-EnglishMT system for accepting LAL-
annotated English. Since these systems have been
independently developed based on di�erent approaches
by di�erent developers, we found there are some
structural di�erences. For instance, given a prepo-
sitional phrase Prep N, ESG's head word of the
prepositional phrase is Prep, but EtoJ MT engine's
head is N. In most cases, we can make systematic
conversion routines for di�erent structures. In fact,
for most of sentences whose translation is worse
when annotation is used, we can provide struc-
tural conversion routines for linguistic structures
included in them. The basic idea of LAL-awareness
for NLP tools is that an NLP tool uses LAL infor-

mation as much as possible, but if LAL information
produces a severe con
ict with the internal process-
ing, then such information should not be used. Our
EtoJ MT program was basically implemented this
way based on the algorithm described in [11], but
we seem to need more research on this issue.

7 Conclusion

In this paper, we have proposed an XML-compliant
tag set called Linguistic Annotation Language (or
LAL), which helps NLP programs perform their
tasks more correctly. LAL is designed to be as
simple as possible so that humans can use it with
minimal help from assisting tools. We have also de-
veloped a GUI-based LAL annotation editor, and
have shown in an experiment that use of LAL anno-
tation enhances translation quality. We hope that
wide acceptance of LAL will make it possible to use
more intelligent Internet tools and services.

References
[1] CES, \Corpus Encoding Standard (CES),"

(http://www.cs.vassar.edu/CES/)

[2] EAGLES, \Expert Advisory Group on Language Engi-

neering Standards,"

(http://www.ilc.pi.cnr.it/EAGLES/home.html)

[3] GDA, \Global Document Annotation,"

(http://www.etl.go.jp/etl/nl/gda/)

[4] Koichi Hashida, Katashi Nagao, et. al, \Progress

and Prospect of Global Document Annotation," (in

Japanese) Proc. of 4th Annual Meeting of the Asso-

ciation of Natural Language Processing, pp. 618{621,

1998

[5] McCord, M. C., \Slot Grammars," Computational Lin-

guistics, Vol. 6, pp. 31{43, 1980.

[6] McCord, M. C., \Slot Grammar: A System for Sim-

pler Construction of Practical Natural Language Gram-

mars," in (ed) R. Studer, Natural Language and Logic:

International Scienti�c Symposium, Lecture Notes in

Computer Science, pp. 118{145, Springer Verlag, 1990.

[7] McCord, M. C., and Bernth, A., \The LMT Transfor-

mational System," Proc. of Proceedings of AMTA-98,

pp. 344{355, 1998.

[8] OpenTag, \A Standard Extraction/Abstraction Text

Format for Translation and NLP Tools,"

(http://www.opentag.org/)

[9] Takeda, K., \Pattern-Based Machine Translation,"

Proc. of 16th COLING, Vol. 2, pp. 1155{1158, August

1996.

[10] TEI, \Text Encoding Initiative (TEI),"

(http://www.uic.edu:80/orgs/tei/)

[11] Watanabe, H., \A Method for Accelerating CFG-

Parsing by Using Dependency Information," Proc. of

18th COLING, 2000.

[12] Watanabe, H., Nagao, K., McCord, M. C., and Bernth,

A., \Improving Natural Language Processing by Lin-

guistic Document Annotation," Proc. of COLING 2000

Workshop for Semantic Annotation and Intelligent Con-

tent, pp. 20{27, 2000.

	Table of Content
	Topics
	Authors

