Sear ching the Web by Voice

Alexander FRANZ Brian MILCH
Google Inc. Computer Science Division
2400 Bayshore Parkway University of California at Berkeley
Mountain View, CA 94043 Berkeley, CA 94720
alex@google.com milch@cs.berkeley.edu
Abstract At one extreme, a language model that simply

Spoken queries are a natural medium for searchingS€d a list of the most frequent queries in their en-
the Web in settings where typing on a keyboard idlréty would have the lowest coverage, but would
not practical. This paper describes a speech inteprow_de the best predictive power within the _covered
face to the Google search engine. We present egueries (have the lowest per-query perplexity), and
periments with various statistical language modelgvould be the least computationally expensive. At
concluding that a unigram model with collocationsthe other extreme, (Lau, 1998; Ng, 2000) report on
provides the best combination of broad coverageeXPeriments with sub-word n-gram language mod-
predictive power, and real-time performance. WeElS, which have very high coverage, but rather low
also report accuracy results of the prototype sysPredictive power (high per-query perplexity).

tem. We experimented with various configurations of
back-off word n-gram models (Katz, 1987; Jelinek,
1 Introduction 1997). In our experience with commercially avail-

Web search has a number of properties that make &0l€ speech recognition systems, we found that for
a particularly difficult speech recognition problem.& vVocabulary size of 100,000 items, unigram mod-
First, most queries are very short: typical querie€!s were the only computationally feasible choice,
range between one and five or six words, with a meyielding close to real-time performance. When us-
dian length of two words. Second, search enginéd the bigram model, the recognizer needed to
queries use a very large vocabulary. Even a vocalsiPend several minutes processing each utterance to
ulary of 100,000 words covers only about 80% ofachieve accuracy as hl_gh as it ach!eved with the uni-
the query traffic. Third, recognition must be donedram model. Recognition with a bigram model was
in close to real time. By contrast, the systems thagnacceptably slow even when we pruned the model
achieved good accuracy on the 2000 NIST convef®y removing bigrams that provided little improve-
sational telephone speech task required from 250 tgent in perplexity (Stolcke, 1998). For this rea-
820 times real time (Fiscus et al., 2000). In this paSOn, we explored a method to increase the predictive
per, we describe the language modeling techniqueower of the unigram model by adding collocations
that we used to address these problems in creatirl§ its vocabulary.
a prototype voice search system (setting aside th .
qguestion of how to browse the search results). ? Collocations
. . A collocation is "an expression of two or more
2 Trade-Offsin Language Modeling words that corresponds to some conventional way
A speech recognition system uses a language moded saying things” (Manning and Sal¥e, 1999).
to determine the probability of different recognition Sometimes, the notion of collocation is defined
hypotheses. For our application, there is a trade-offh terms of syntax (by possible part-of-speech
among three considerations: What fraction of thepatterns) or in terms of semantics (requiring
query traffic is covered by the vocabulary of the lan-collocations to exhibit non-compositional mean-
guage model? How much predictive power does theng) (Smadja, 1993). We adopt an empirical ap-
language model provide? And what is the observe@roach and consider any sequence of words that co-
computational complexity of applying the languageoccurs more often than chance a potential colloca-
model during hypothesis search? tion.



3.1 ThelLikelihood Ratio 6. Repeat through = 2.

We adopted a method for collocation discovery _

based on the likelihood ratio (Dunning, 1993). Sup- The constantsky,, which represent the number
pose we wish to test whether two wordsw, form of desired collocations of lengtl, are chosen man-

a collocation. Under the independence hypotheually. This algorithm solves two key problems in
sis we assume that the probability of observing théliscovering longer collocations. The first problem
second worduws, is independent of the first word; concerns long word sequences that include shorter
P(ws|wy) = P(ws|—w). The alternative is that collocations. For example, consider the sequence
the two words form a collocation:P(wy|w;) > New York flowers: this sequence does indeed occur
P(ws|—w). The likelihood ratio) is calculated by together more often than chance, but if we identify
dividing the likelihood of observing the data underNew York as a collocation then includiniyew York

the hypothesis of independends|H;), by the like- flowers as an additional collocation provides little
lihood of observing the data under the hypothesigdditional benefit (as measured by the reduction in

that the words form a collocatio,( H,): per-query perplexity).
To solve this problem, step 2 in the collocation
_ L(H;) discovery algorithm considers all — 1 possible
A= L(H.,) ways to divide a potential collocation of length

into two parts. For the case New York flowers, this

After counting how many times the wordhb and means considering the combinatioNew York +
the sequencey;w, occur in training data, we de- flowers andNew + York flowers. The likelihood ra-
rive maximum likelihood estimates faP(u»|wi)  tio used to decide whether the word sequence should
and Rws|—w;), and compute the two likelihoods be considered a collocation is the maximum of the
using the binomial distribution (see (Manning andratios for all possible splits. Sindéowers is close
Schitze, 1999) for details). If the likelihood ratio to independent fronNew York, the potential collo-
is small, thenH, explains the data much better thancation is rejected.
H;, and so the word sequence is likely to be a collo- The second problem concerns subsequences of
cation. long collocations. For example, consider the col-
32 Discovering Longer Collocations !oqation Ne\_N York City. N_ew _York is a cqllqcatipn

' in its own right, butYork City is not. To distinguish
Two-word collocations can be discovered by carryfetween these two cases, we need to note it
ing out the calculations described above for all freity occurs more often than chance, but usually as
quent two-word sequences, ranking the sequencegrt of the larger collocatiohlew York City, while

according to their likelihood ratiOS, and SeIeCting a.”NeN York occurs more often than chance outside the
sequences with ratios below a threshold. Collocagrger collocation as well.

tions are not limited to two words, however. We  The solution to this problem is to find larger col-
have extended Dunning’s scheme to discover longgpcations first, and to re-tokenize the data to treat
collocations by performing the likelihood ratio testsg||ocations as a single token (step 4 above). In this
iteratively. The algorithm for this is shown below. way, afterNew York City is identified as a colloca-
__tion, all instances of it are treated as a single token,
1. Count occurrences of sequences of tokens (ink 4 4o not contribute to the counts fdew York or
tially, words) for lengths of up ta tokens. York City. SinceNew York occurs outside the larger

2. For each sequence = wi, ..., w, 0f 7 10- o 50ati0n it is still correctly identified as a collo-
kens in the training data, 18(S) be the great- ,iion butYork City drops out
est likelihood ratio found by considering all ’ '

possible ways to split the-token sequence 4 |mplementing Voice Search
into two contiguous parts. o
3. Sort then-token sequence§ by A(S), and 41 Trainingand Test Data
designate theK,, sequences with the lowest To create the various language models for the voice

A(S) values as collocations. search system, we used training data consisting of
4. Re-tokenize the data by treating each collocal9.8 million query occurrences, with 12.6 million
tion as a single token. distinct queries. There were 54.9 million word

5. Setn = n — 1. occurrences, and 3.4 million distinct words. The



Voice Search
Results

Google Search

evaluation data consisted of 2.5 million query oc-
currences, with 1.9 million distinct queries. It in-

. . Query Logs
cluded 7.1 million word occurrences, corresponding

to 750,000 distinct words.

We used a vocabulary of 100,000 items (depend-
ing on the model, the vocabulary included words
only, or words and collocations). The word with the Filtering and

lowest frequency occurred 31 times. Spelling Correctior| A
4.2 Constructing the Language M odel
. Query
The procedure for constructing the language mode v : Construction
was as follows: Collocation
Discovery

1. Obtain queries by extracting a sample from
Google’s query logs. v

N-Best
Hypothesis List

frequent words and collocations.

6. Use a dictionary and an automatic text-to-
phonemes tool to obtain phonetic transcrip-
tions for the vocabulary, applying a separate
algorithm to special terms (such as acronyms,
numerals, URLSs, and filenames).

7. Estimate n-gram probabilities to create the lan-
guage model.

Acoustic Models

2. Filter out non-English queries by discarding L
. Pronunciation

queries that were made from abroad, requested Modeling

result sets in foreign languages, etc. S
3. Use Google’s spelling correction mechanism ' Speech Recognition Engirje

to correct misspelled queries. v 1 :
4. Create lists of collocations as described in Sec+ | .

. b Vocabulary —p Statistical

tion 3 above. Lo Construction | Language Model
5. Create the vocabulary consisting of the most |

|

,,,,,,,,,,,,,,,,,,

4.3 System Architecture Figure 1: Voice Search Architecture

Figure 1 presents an overview of the voice search

system. The left-hand side of the diagram reprecontext. We evaluated unigram, bigram, and tri-

sents the off-line steps of creating the statistical Iangram language models to see the effect of taking
guage model. The language model is used with ghore context into account.

commercially available speech recognition engine _
which supplies the acoustic models and the decodérollocations.  We evaluated language models
The right-hand side of the diagram represents th/10S€ vocabulary included only the 100,000 most

run-time flow of a voice query. The speech recog_requent words, as well as models whose vocabu-

nition engine returns a list of the n-best recognition@'y included the most frequent words and collo-

hypotheses. A disjunctive query is derived from thisc_ations. Specifically, we ran the algorithm in Sec-
n}'g’est list and tr{e queryqis isysued to the Googlé'on 3.2 to obtain 5000 three-word collocations, and

search engine. then 20,000 two-tokerj collocations (Whi.Ch cou'Id

contain two, four, or six words). To obtain the fi-
nal vocabulary of 100,000 words and collocations,
we tokenized the training corpus using a vocabulary
We evaluated the coverage and perplexity of differwith all 25,000 collocations, and then selected the
ent language models. In our experiments, we varie@00,000 most frequent tokens. Most of the colloca-
the language models along two dimensions: tions were included in the final vocabulary.

5 Coverage and Perplexity Results



5.1 Query Coverage in perplexity from the unigram model to the bigram

We say that a vocabulary covers a query when afodel, but there is a much smaller decrease in per-
words (and collocations, if applicable) in the queryPlexity in moving to a trigram model. Furthermore,
are in the vocabulary. Table 1 summarizes the covhe per-token perplexity of the unigram model with

erage of different-sized vocabularies composed dfollocations is about 25% higher than that of the
words, words + collocations, or entire queries. ~ Word-based unigram model. This shows that the

distribution of the word plus collocation vocabulary

Words | Collocations | Queries is more random than the distribution of words alone.
25k | 62.2% 50.0% 12.4% The bigram and trigram models exhibit the same ef-
50k | 72.2% 65.2% 15.3% fect.
75k | 76.7% 72.8% 17.1% ,

100k | 79.2%| 76.9% | 18.4% 53 Per-Query Perplexity

200k | 83.9% 83.2% 21.5% Per-query perplexity shows the gains from includ-
300k | 85.9% 85.5% 23.204 ing collocations in the vocabulary. Using collo-
400k | 87.1% 86.8% 24.3% cations means that the average number of tokens
500k | 87.9% 87.7% 25.204 (words or collocations) per query decreases, which

leads to less uncertainty per query, making recogni-
tion of entire queries significantly easier. For the un-
Table 1: Percent of Query Occurrences Covered igram model, collocations lead to a reduction of per-
. _ _query perplexity by a factor of 14. We can see that
At a vocabulary size of 100,000 items, there isthe per-query perplexity of the unigram model with
only a difference of 2.7% between an all-word vo-qq|iocations is about halfway between the word-
cabulary, and a vocabulary that includes words anflased unigram and bigram models. In other words,
collocations. Thus, using collocations does not regg|iocations seem to give us about half the effect of
sultin a large loss of coverage. word bigrams.
Similarly, the per-query perplexity of the bigram

. . model with collocations is very close to the perplex-
We compared the perplexity of different mOCIeISity of the word-based trigram model. Furthermore,

erlégsir%r?c),t?]%o g?_;r;igncak;lsli\g/d;n 2’;’% \évaﬁzeazﬁ rr_noving from a collocation bigram model to a collo-
) 9 P perpiexity, y .. cation trigram model only yields a small additional
ing the per-query perplexity. Per-token perplexity er-query perplexity decrease

measures how well the language model is able t8 '

predict the next word (or collocation), while per- 5 Recall Evaluation

query perplexity measures the contribution of the

language model to recognizing the entire quer We also evaluated the recall of the voice search sys-

To avoid complications related to out-of-vocabulary!®M Using audio recordings that we collected for

words, we computed perplexity only on queries coyNiS Purpose. Since only unigram models yielded
ered by the vocabulary (79.2% of the test queries fof!0S€ t0 real-time performance for the speech rec-
the all-word vocabulary, and 76.9% for words plusC9NiZer, We limited our attention to comparing un-

collocations). The results are shown in Table 2. '

5.2 Perplexity Results

igram models with a vocabulary size of 100,000
items consisting of either words, or words and collo-

Table 2: Language Model Perplexity

M odel Per-token | Per-query cations. With these unigram models, the recognizer
Word unigram 1614 3.5 x 102 took only 1-2 seconds to process each query.

Word bigram 409 | 1.6 x 10'0 :

Word trigram 340| 7.9 x 10° 61 Daa Collegtlon _

Collocation unigram 2019| 2.5 x 10! We co_IIected voice query data using a prototype of
Collocation bigram 763 | 8.8 x 10° the voice search system connected to th_e phone'net-
Collocation trigram 696 | 6.4 % 10° work. In total, 18 speakers made 809 voice queries.

The collected raw samples exhibited a variety of
problems, such as low volume, loud breath sounds,
clicks, distortions, dropouts, initial cut-off, static,
hiccups, and other noises. We set aside all samples

These results show that there is a large decreaséth insurmountable problems and speakers with



very strong accents. This left 581 good samples. The language models described in this paper were
These good samples include a variety of speakergrained from typed queries, but queries made by
various brands of cell phones as well as desktopoice in different settings might have quite different

phones, and different cell phone carriers. The aveharacteristics. For example, our data consisted of

erage length of the utterances was 2.1 words. keyword queries, but voice search users might pre-
fer to ask questions or make other typesafural
6.2 Recall Results language queries (which would actually be easier

We used the 581 good audio samples from the dat® model and recognize). The voice search system
collection to evaluate recognition recall, for whichis currently available dtabs. googl e. com the

we adopted a strict definition: disregarding singudata from this demonstration system could lead to
lar/plural variations of nouns, did the recognizer reimproved language models in the future.

turn the exact transcription of the audio sample as

one of the topr (1, 5, 10) hypotheses? Note that References

this recall metric incorporates coverage as well a§, punning. 1993. Accurate methods for the statis-
cabulary, the recognizer cannot possibly recognize | jnguistics, 19(1):61-74.

it correctly. The results are shown in Table 3. J. Fiscus, W. M. Fisher, A. Martin, M. Przybocki
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