
Searching the Web by Voice

Alexander FRANZ
Google Inc.

2400 Bayshore Parkway
Mountain View, CA 94043

alex@google.com

Brian MILCH
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720

milch@cs.berkeley.edu

Abstract
Spoken queries are a natural medium for searching
the Web in settings where typing on a keyboard is
not practical. This paper describes a speech inter-
face to the Google search engine. We present ex-
periments with various statistical language models,
concluding that a unigram model with collocations
provides the best combination of broad coverage,
predictive power, and real-time performance. We
also report accuracy results of the prototype sys-
tem.

1 Introduction
Web search has a number of properties that make it
a particularly difficult speech recognition problem.
First, most queries are very short: typical queries
range between one and five or six words, with a me-
dian length of two words. Second, search engine
queries use a very large vocabulary. Even a vocab-
ulary of 100,000 words covers only about 80% of
the query traffic. Third, recognition must be done
in close to real time. By contrast, the systems that
achieved good accuracy on the 2000 NIST conver-
sational telephone speech task required from 250 to
820 times real time (Fiscus et al., 2000). In this pa-
per, we describe the language modeling techniques
that we used to address these problems in creating
a prototype voice search system (setting aside the
question of how to browse the search results).

2 Trade-Offs in Language Modeling
A speech recognition system uses a language model
to determine the probability of different recognition
hypotheses. For our application, there is a trade-off
among three considerations: What fraction of the
query traffic is covered by the vocabulary of the lan-
guage model? How much predictive power does the
language model provide? And what is the observed
computational complexity of applying the language
model during hypothesis search?

At one extreme, a language model that simply
used a list of the most frequent queries in their en-
tirety would have the lowest coverage, but would
provide the best predictive power within the covered
queries (have the lowest per-query perplexity), and
would be the least computationally expensive. At
the other extreme, (Lau, 1998; Ng, 2000) report on
experiments with sub-word n-gram language mod-
els, which have very high coverage, but rather low
predictive power (high per-query perplexity).

We experimented with various configurations of
back-off word n-gram models (Katz, 1987; Jelinek,
1997). In our experience with commercially avail-
able speech recognition systems, we found that for
a vocabulary size of 100,000 items, unigram mod-
els were the only computationally feasible choice,
yielding close to real-time performance. When us-
ing the bigram model, the recognizer needed to
spend several minutes processing each utterance to
achieve accuracy as high as it achieved with the uni-
gram model. Recognition with a bigram model was
unacceptably slow even when we pruned the model
by removing bigrams that provided little improve-
ment in perplexity (Stolcke, 1998). For this rea-
son, we explored a method to increase the predictive
power of the unigram model by adding collocations
to its vocabulary.

3 Collocations
A collocation is ”an expression of two or more
words that corresponds to some conventional way
of saying things” (Manning and Sch¨utze, 1999).
Sometimes, the notion of collocation is defined
in terms of syntax (by possible part-of-speech
patterns) or in terms of semantics (requiring
collocations to exhibit non-compositional mean-
ing) (Smadja, 1993). We adopt an empirical ap-
proach and consider any sequence of words that co-
occurs more often than chance a potential colloca-
tion.



3.1 The Likelihood Ratio
We adopted a method for collocation discovery
based on the likelihood ratio (Dunning, 1993). Sup-
pose we wish to test whether two words���� form
a collocation. Under the independence hypothe-
sis we assume that the probability of observing the
second word�� is independent of the first word:
� ������� � � ��������. The alternative is that
the two words form a collocation:� ������� �

� ��������. The likelihood ratio� is calculated by
dividing the likelihood of observing the data under
the hypothesis of independence,�����, by the like-
lihood of observing the data under the hypothesis
that the words form a collocation,�����:

� �
�����

�����

After counting how many times the word�� and
the sequence���� occur in training data, we de-
rive maximum likelihood estimates for� �������
and P��������, and compute the two likelihoods
using the binomial distribution (see (Manning and
Schütze, 1999) for details). If the likelihood ratio
is small, then�� explains the data much better than
��, and so the word sequence is likely to be a collo-
cation.

3.2 Discovering Longer Collocations
Two-word collocations can be discovered by carry-
ing out the calculations described above for all fre-
quent two-word sequences, ranking the sequences
according to their likelihood ratios, and selecting all
sequences with ratios below a threshold. Colloca-
tions are not limited to two words, however. We
have extended Dunning’s scheme to discover longer
collocations by performing the likelihood ratio tests
iteratively. The algorithm for this is shown below.

1. Count occurrences of sequences of tokens (ini-
tially, words) for lengths of up to� tokens.

2. For each sequence� � ��� 	 	 	 � �� of � to-
kens in the training data, let���� be the great-
est likelihood ratio found by considering all
possible ways to split the�-token sequence
into two contiguous parts.

3. Sort the�-token sequences� by ����, and
designate the
� sequences with the lowest
���� values as collocations.

4. Re-tokenize the data by treating each colloca-
tion as a single token.

5. Set� � �� �.

6. Repeat through� � �.

The constants
�, which represent the number
of desired collocations of length�, are chosen man-
ually. This algorithm solves two key problems in
discovering longer collocations. The first problem
concerns long word sequences that include shorter
collocations. For example, consider the sequence
New York flowers: this sequence does indeed occur
together more often than chance, but if we identify
New York as a collocation then includingNew York
flowers as an additional collocation provides little
additional benefit (as measured by the reduction in
per-query perplexity).

To solve this problem, step 2 in the collocation
discovery algorithm considers all� � � possible
ways to divide a potential collocation of length�
into two parts. For the case ofNew York flowers, this
means considering the combinationsNew York +
flowers andNew + York flowers. The likelihood ra-
tio used to decide whether the word sequence should
be considered a collocation is the maximum of the
ratios for all possible splits. Sinceflowers is close
to independent fromNew York, the potential collo-
cation is rejected.

The second problem concerns subsequences of
long collocations. For example, consider the col-
locationNew York City. New York is a collocation
in its own right, butYork City is not. To distinguish
between these two cases, we need to note thatYork
City occurs more often than chance, but usually as
part of the larger collocationNew York City, while
New York occurs more often than chance outside the
larger collocation as well.

The solution to this problem is to find larger col-
locations first, and to re-tokenize the data to treat
collocations as a single token (step 4 above). In this
way, afterNew York City is identified as a colloca-
tion, all instances of it are treated as a single token,
and do not contribute to the counts forNew York or
York City. SinceNew York occurs outside the larger
collocation, it is still correctly identified as a collo-
cation, butYork City drops out.

4 Implementing Voice Search

4.1 Training and Test Data

To create the various language models for the voice
search system, we used training data consisting of
19.8 million query occurrences, with 12.6 million
distinct queries. There were 54.9 million word
occurrences, and 3.4 million distinct words. The



evaluation data consisted of 2.5 million query oc-
currences, with 1.9 million distinct queries. It in-
cluded 7.1 million word occurrences, corresponding
to 750,000 distinct words.

We used a vocabulary of 100,000 items (depend-
ing on the model, the vocabulary included words
only, or words and collocations). The word with the
lowest frequency occurred 31 times.

4.2 Constructing the Language Model

The procedure for constructing the language model
was as follows:

1. Obtain queries by extracting a sample from
Google’s query logs.

2. Filter out non-English queries by discarding
queries that were made from abroad, requested
result sets in foreign languages, etc.

3. Use Google’s spelling correction mechanism
to correct misspelled queries.

4. Create lists of collocations as described in Sec-
tion 3 above.

5. Create the vocabulary consisting of the most
frequent words and collocations.

6. Use a dictionary and an automatic text-to-
phonemes tool to obtain phonetic transcrip-
tions for the vocabulary, applying a separate
algorithm to special terms (such as acronyms,
numerals, URLs, and filenames).

7. Estimate n-gram probabilities to create the lan-
guage model.

4.3 System Architecture

Figure 1 presents an overview of the voice search
system. The left-hand side of the diagram repre-
sents the off-line steps of creating the statistical lan-
guage model. The language model is used with a
commercially available speech recognition engine,
which supplies the acoustic models and the decoder.

The right-hand side of the diagram represents the
run-time flow of a voice query. The speech recog-
nition engine returns a list of the n-best recognition
hypotheses. A disjunctive query is derived from this
n-best list, and the query is issued to the Google
search engine.

5 Coverage and Perplexity Results

We evaluated the coverage and perplexity of differ-
ent language models. In our experiments, we varied
the language models along two dimensions:

Spelling Correction
Filtering and

Discovery
Collocation

Modeling
Pronunciation

Construction
Vocabulary

Query Logs

Language Model
Statistical

Acoustic Models

Hypothesis List
N−Best

Voice Query

Construction
Query

Google Search

Results
Voice Search

Speech Recognition Engine

Figure 1: Voice Search Architecture

Context. We evaluated unigram, bigram, and tri-
gram language models to see the effect of taking
more context into account.

Collocations. We evaluated language models
whose vocabulary included only the 100,000 most
frequent words, as well as models whose vocabu-
lary included the most frequent words and collo-
cations. Specifically, we ran the algorithm in Sec-
tion 3.2 to obtain 5000 three-word collocations, and
then 20,000 two-token collocations (which could
contain two, four, or six words). To obtain the fi-
nal vocabulary of 100,000 words and collocations,
we tokenized the training corpus using a vocabulary
with all 25,000 collocations, and then selected the
100,000 most frequent tokens. Most of the colloca-
tions were included in the final vocabulary.



5.1 Query Coverage
We say that a vocabulary covers a query when all
words (and collocations, if applicable) in the query
are in the vocabulary. Table 1 summarizes the cov-
erage of different-sized vocabularies composed of
words, words + collocations, or entire queries.

Words Collocations Queries
25k 62.2% 50.0% 12.4%
50k 72.2% 65.2% 15.3%
75k 76.7% 72.8% 17.1%

100k 79.2% 76.9% 18.4%
200k 83.9% 83.2% 21.5%
300k 85.9% 85.5% 23.2%
400k 87.1% 86.8% 24.3%
500k 87.9% 87.7% 25.2%

Table 1: Percent of Query Occurrences Covered

At a vocabulary size of 100,000 items, there is
only a difference of 2.7% between an all-word vo-
cabulary, and a vocabulary that includes words and
collocations. Thus, using collocations does not re-
sult in a large loss of coverage.

5.2 Perplexity Results
We compared the perplexity of different models
with a 100,000 item vocabulary in two ways: by
measuring the per-token perplexity, and by measur-
ing the per-query perplexity. Per-token perplexity
measures how well the language model is able to
predict the next word (or collocation), while per-
query perplexity measures the contribution of the
language model to recognizing the entire query.
To avoid complications related to out-of-vocabulary
words, we computed perplexity only on queries cov-
ered by the vocabulary (79.2% of the test queries for
the all-word vocabulary, and 76.9% for words plus
collocations). The results are shown in Table 2.

Model Per-token Per-query
Word unigram 1614 �	� � ����

Word bigram 409 �	� � ����

Word trigram 340 		
 � ���

Collocation unigram 2019 �	� � ����

Collocation bigram 763 �	� � ���

Collocation trigram 696 �	� � ���

Table 2: Language Model Perplexity

These results show that there is a large decrease

in perplexity from the unigram model to the bigram
model, but there is a much smaller decrease in per-
plexity in moving to a trigram model. Furthermore,
the per-token perplexity of the unigram model with
collocations is about 25% higher than that of the
word-based unigram model. This shows that the
distribution of the word plus collocation vocabulary
is more random than the distribution of words alone.
The bigram and trigram models exhibit the same ef-
fect.

5.3 Per-Query Perplexity
Per-query perplexity shows the gains from includ-
ing collocations in the vocabulary. Using collo-
cations means that the average number of tokens
(words or collocations) per query decreases, which
leads to less uncertainty per query, making recogni-
tion of entire queries significantly easier. For the un-
igram model, collocations lead to a reduction of per-
query perplexity by a factor of 14. We can see that
the per-query perplexity of the unigram model with
collocations is about halfway between the word-
based unigram and bigram models. In other words,
collocations seem to give us about half the effect of
word bigrams.

Similarly, the per-query perplexity of the bigram
model with collocations is very close to the perplex-
ity of the word-based trigram model. Furthermore,
moving from a collocation bigram model to a collo-
cation trigram model only yields a small additional
per-query perplexity decrease.

6 Recall Evaluation
We also evaluated the recall of the voice search sys-
tem using audio recordings that we collected for
this purpose. Since only unigram models yielded
close to real-time performance for the speech rec-
ognizer, we limited our attention to comparing un-
igram models with a vocabulary size of 100,000
items consisting of either words, or words and collo-
cations. With these unigram models, the recognizer
took only 1-2 seconds to process each query.

6.1 Data Collection
We collected voice query data using a prototype of
the voice search system connected to the phone net-
work. In total, 18 speakers made 809 voice queries.
The collected raw samples exhibited a variety of
problems, such as low volume, loud breath sounds,
clicks, distortions, dropouts, initial cut-off, static,
hiccups, and other noises. We set aside all samples
with insurmountable problems and speakers with



very strong accents. This left 581 good samples.
These good samples include a variety of speakers,
various brands of cell phones as well as desktop
phones, and different cell phone carriers. The av-
erage length of the utterances was 2.1 words.

6.2 Recall Results

We used the 581 good audio samples from the data
collection to evaluate recognition recall, for which
we adopted a strict definition: disregarding singu-
lar/plural variations of nouns, did the recognizer re-
turn the exact transcription of the audio sample as
one of the top� (1, 5, 10) hypotheses? Note that
this recall metric incorporates coverage as well as
accuracy: if a query contains a word not in the vo-
cabulary, the recognizer cannot possibly recognize
it correctly. The results are shown in Table 3.

Recall Words only Words + Collocations
@1 27.5% 43.4%
@5 42.3% 56.8%
@10 45.8% 60.4%

Table 3: Recall Results on 581 Queries

These results show that adding collocations to the
recognition vocabulary leads to a recall improve-
ment of 14-16 percentage points.

7 Conclusion

We have shown that a commercial speech recogni-
tion engine, using a unigram language model over
words and collocations, can return the correct tran-
scription of a spoken search query among its top
10 hypotheses about 60% of the time. Because we
were not able to use a bigram model without sacri-
ficing real-time performance, including collocations
in the language model was crucial for attaining this
level of recall.

Still, there is a lot of room for improvement in the
recall rate. One idea is to rescore the recognizer’s
top hypotheses with a bigram or trigram language
model in a postprocessing step. However, there are
many cases where the correct transcription is not
among the recognizer’s top 100 hypotheses. An-
other approach would be to adapt the acoustic and
language models to individual users, but such per-
sonalization would require a different system archi-
tecture. We might also improve our language mod-
els by training on documents as well as queries (Fu-
jii, 2001).

The language models described in this paper were
trained from typed queries, but queries made by
voice in different settings might have quite different
characteristics. For example, our data consisted of
keyword queries, but voice search users might pre-
fer to ask questions or make other types ofnatural
language queries (which would actually be easier
to model and recognize). The voice search system
is currently available atlabs.google.com; the
data from this demonstration system could lead to
improved language models in the future.

References
T. Dunning. 1993. Accurate methods for the statis-

tics of surprise and coincidence.Computational
Linguistics, 19(1):61–74.

J. Fiscus, W. M. Fisher, A. Martin, M. Przybocki,
and D. S. Pallett. 2000. 2000 NIST evaluation of
conversational speech recognition over the tele-
phone. InProceedings of the 2000 Speech Tran-
scription Workshop.

A. Fujii. 2001. Speech-driven text retrieval: Us-
ing target IR collections for statistical language
model adaptation in speech recognition. InSI-
GIR ’01 Workshop on IR Techniques for Speech
Applications, New Orleans, LA.

F. Jelinek. 1997.Statistical Methods for Speech
Recognition. MIT Press, Cambridge, MA.

S. Katz. 1987. Estimation of probabilities from
sparse data for the language model compo-
nent of a speech recognizer.IEEE Transactions
on Acoustics, Speech, and Signal Processing,
35(3):400–401.

R. Lau. 1998. Subword Lexical Modelling for
Speech Recognition. Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge, MA.

C. Manning and H. Sch¨utze. 1999. Foundations
of Statistical Natural Language Processing. MIT
Press, Cambridge, MA.

K. Ng. 2000. Subword-based Approaches for Spo-
ken Document Retrieval. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge,
MA.

F. Smadja. 1993. Retrieving collocations from text:
Xtract. Computational Linguistics, 19(1):143–
177.

A. Stolcke. 1998. Entropy-based pruning of back-
off language models. InProceedings of the
DARPA Broadcast News Transcription and Un-
derstanding Workshop, pages 270–274, Lans-
downe, VA.


	Table of Content
	Topics
	Authors

