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Abstract

In this paper, we present a parser based on a stochas-
tic structured language model (SLM) with a 
exible
history reference mechanism. An SLM is an alterna-
tive to an n-gram model as a language model for a
speech recognizer. The advantage of an SLM against
an n-gram model is the ability to return the struc-
ture of a given sentence. Thus SLMs are expected
to play an important part in spoken language under-
standing systems. The current SLMs refer to a �xed
part of the history for prediction just like an n-gram
model. We introduce a 
exible history reference
mechanism called an ACT (arboreal context tree;
an extension of the context tree to tree-shaped his-
tories) and describe a parser based on an SLM with
ACTs. In the experiment, we built an SLM-based
parser with a �xed history and one with ACTs, and
compared their parsing accuracies. The accuracy of
our parser was 92.8%, which was higher than that
for the parser with the �xed history (89.8%). This
result shows that the 
exible history reference mech-
anism improves the parsing ability of an SLM, which
has great importance for language understanding.

1 Introduction

Currently, the state-of-the-art speech recognizers
can take dictation with satisfactory accuracy. Al-
though continuing attempts for improvements in
predictive power are needed in the language mod-
eling area for speech recognizers, another research
topic, understanding of the dictation results, is com-
ing into focus. Structured language models (SLMs)
(Chelba and Jelinek, 1998; Charniak, 2001; Mori et
al., 2001) were proposed for these purposes. Their
predictive powers are reported to be slightly higher
than an orthodox word tri-gram model if the SLMs
are interpolated with a word tri-gram model. In
contrast with word n-gram models, SLMs use the
syntactic structure (a partial parse tree) covering
the preceding words at each step of word predic-
tion. The syntactic structure also grows in parallel
with the word prediction. Thus after the predic-
tion of the last word of a sentence, SLMs are able to
give syntactic structures covering all the words of an

input sentence (parse trees) with associated proba-
bilities. Though the impact on the predictive power
is not major, this ability, which is indispensable to
spoken language understanding, is a clear advantage
of SLMs over word n-gram models. With an SLM
as a language model, a speech recognizer is able to
directly output a recognition result with its syntac-
tic structure after being given a sequence of acoustic
signals.
The early SLMs refer to only a limited and

�xed part of the histories for each step of word
and structure prediction in order to avoid a data-
sparseness problem. For example, in an English
model (Chelba and Jelinek, 2000) the next word is
predicted from the two right-most exposed heads.
Also in a Japanese model (Mori et al., 2000) the
next word is predicted from 1) all exposed heads
depending on the next word and 2) the words de-
pending on those exposed heads. One of the natural
improvements in predictive power for an SLM can
be achieved by adding some 
exibility to the history
reference mechanism. For a linear history, which is
referred to by using word n-gram models, we can
use a context tree (Ron et al., 1996) as a 
exible
history reference mechanism. In an n-gram model
with a context tree, the length of each n-gram is in-
creased selectively according to an estimate of the
resulting improvement in predictive quality. Thus,
in general, an n-gram model with a context tree has
more predictive power in a smaller model.
In SLMs, the history is not a simple word se-

quence but a sequence of partial parse trees. For
a tree-shaped context, there is also a 
exible history
reference mechanism called an arboreal context tree
(ACT) (Mori et al., 2001).1 Similar to a context
tree, an SLM with ACTs selects, depending on the
context, the region of the tree-shaped history to be
referred to for the next word prediction and the next
structure prediction. Mori et al. (2001) report that
an SLM with ACTs has more predictive power than
an SLM with a �xed history reference mechanism.
Therefore, if a parser based on an SLM with ACTs
outperforms an SLM without ACTs, an SLM with

1 In the original paper, it was called an arbori-context tree.



ACTs is a promising language model as the next re-
search milestone for spoken language understanding
systems.
In this paper, �rst we describe an SLM with ACTs

for a Japanese dependency grammar. Next, we
present our stochastic parser based on the SLM. Fi-
nally, we report two experimental results: a compar-
ison with an SLM without ACTs and another com-
parison with a state-of-the-art Japanese dependency
parser. The parameters of our parser were estimated
from 9,108 syntactically annotated sentences from a
�nancial newspaper. We then tested the parser on
1,011 sentences from the same newspaper. The ac-
curacy of the dependency relationships reported by
our parser was 92.8%, higher than the accuracy of
the parser based on an SLM without ACTs (89.8%).
This proved experimentally that an ACT improves
a parser based on an SLM.

2 Structured Language Model based
on Dependency

The most popular language model for a speech rec-
ognizer is a word n-gram model, in which each word
is predicted from the last (n�1) words. This model
works so well that the current recognizer can take
dictation with an almost satisfactory accuracy. Now
the research focus in the language model area is un-
derstanding the dictation results. In this situation, a
structured language model (SLM) was proposed by
Chelba and Jelinek (1998). In this section, we de-
scribe the dependency grammar version of an SLM.

2.1 Structured Language Model

The basic idea of an SLM is that each word would
be better predicted from the words that may have
a dependency relationship with the word to be pre-
dicted than from the proceeding (n�1) words. Thus
the probability P of a sentencew = w1w2 � � �wn and
its parse tree T is given as follows:

P (T ) =
nY

i=1

P (wijti�1)P (tijwi; ti�1); (1)

where ti is the i-th partial parse tree sequence. The
partial parse tree depicted at the top of Figure 1
shows the status before the 9th word is predicted.
From this status, for example, �rst the 9th word w9

is predicted from the 8th partial parse tree sequence
t8 = t8;3t8;2t8;1, and then the 9th partial parse tree
sequence t9 is predicted from the 9th word w9 and
the 8th partial parse tree sequence t8 to get ready
for the 10th word prediction. The problem here
is how to classify the conditional parts of the two
conditional probabilities in Equation (1) in order to
predict the next word and the next structure with-
out encountering a data-sparseness problem. In an
English model (Chelba and Jelinek, 2000) the next

P (t8)

w2 w4 w6w1 w3 w7w5 w8

t8,3 t8,1t8,2

?

�P (w9jt8)

w2 w4 w6w1 w3 w7w5 w8 w9

t8,3 t8,1t8,2
?

�P (t9jw9; t8)

w2 w4 w6w1 w3 w7w5 w8 w9

t9,2 t9,1

= P (t9); where t9 = t8;3 � ht8;2t8;1iw9

Figure 1: Word prediction from a partial parse

word is predicted from the two right-most exposed
heads (for example w6 and w8 in Figure 1) as follows:

P (wijti�1) � P (wijroot(ti�1;2); root(ti�1;1));

where root(t) is a function returning the root la-
bel word of the tree t. A similar approximation is
adapted to the probability function for structure pre-
diction. In a Japanese model (Mori et al., 2000) the
next word is predicted from 1) all exposed heads
depending on the next word and 2) the words de-
pending on those exposed heads.

It is clear, however, that in some cases some child
nodes of the tree ti�1;2 or ti�1;1 are useful for the
next word prediction and in other cases even the
consideration of an exposed head (root of the tree
ti�1;1 or ti�1;2) su�ers from a data-sparseness prob-
lem because of the limitation of the learning corpus
size. Therefore a more 
exible mechanism for history
classi�cation should improve the predictive power of
the SLM.

2.2 SLM for Dependency Grammar

Since in a dependency grammar of Japanese, every
dependency relationship is in a unique direction as
shown in Figure 1 and since no two dependency re-
lationships cross each other, the structure prediction
model only has to predict the number of trees. Thus,
the second conditional probability in the right hand
side of Equation (1) is rewritten as P (lijwi; ti�1),
where li is the length (number of elements) of the
tree sequence ti. Our SLM for the Japanese depen-
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Figure 2: A history tree.

dency grammar is de�ned as follows:

P (T ) =
nY

i=1

P (wijti�1)P (lijwi; ti�1): (2)

According to a psycholinguistic report on lan-
guage structure (Yngve, 1960), there is an upper
limit on li, the number of words whose modi�cands
have not appeared yet. We set the upper limit to 9,
the maximum number of slots in human short-term
memory (Miller, 1956). With this limitation, our
SLM becomes a hidden Markov model.

3 Arboreal Context Tree

A variable memory length Markov model (Ron et
al., 1996), a natural extension of the n-gram model,
is a 
exible mechanism for a linear context (word
sequence) which selects, depending on the context,
the length of the history to be referred to for the
next word prediction. This model is represented by
a su�x tree, called a context tree, whose nodes are
labeled with a su�x of the context. In this model,
the length of each n-gram is increased selectively ac-
cording to an estimate of the resulting improvement
in predictive quality.
In SLMs, the history is not a simple word se-

quence but a sequence of partial parse trees. For
a tree-shaped context, there is also a 
exible history
reference mechanism called an arboreal context tree
(ACT) (Mori et al., 2001) which selects, depending
on the context, the region of the tree-shaped history
to be referred to for the next word prediction and
for the next structure prediction. In this section, we
explain ACTs and their application to SLMs.

3.1 Data Structure

As we mentioned above, in SLMs the history is a
sequence of partial parse trees. This can be regarded
as a single tree, called a history tree, by adding a
virtual root node having these partial trees under it.
For example, Figure 2 shows the history tree for the

a

b

zb

b b

b
b

b

vr

vr vr vr

vr vr vr

vr vr vr

a

a a

b z

z

a
a

b

p(x | )bz ? a

Figure 3: An arboreal context tree (ACT).

9th word prediction based on the status depicted at
the top of Figure 1. An arboreal context tree is a
data structure for 
exible history tree classi�cation.
Each node of an ACT is labeled with a subtree of
the history tree. The label of the root is a null tree
and if a node has child nodes, their labels are the
series of trees made by expanding a leaf of the tree
labeling the parent node. For example, each child
node of the root in Figure 3 is labeled with a tree
produced by adding the right-most child to the label
of the root. Each node of an ACT has a probability
distribution P (xjt), where x is an symbol and t is the
label of the node. For example, let hak � � � a2a1ia0
represent a tree consisting of the root labeled with
a0 and k child nodes labeled with ak; � � � ; a2, and a1,
so the right-most node at the bottom of the ACT in
Figure 3 has a probability distribution of the symbol
x under the condition that the history matches the
partial parse trees hhz?iaihbi, where \?" matches
with an arbitrary symbol. Putting it in another way,
the next word is predicted from the history having b
as the head of the right-most partial parse tree, a as
the head of the second right-most partial parse tree,
and z as the second right-most child of the second
right-most partial parse tree. For example, in Figure
2 the subtree consisting of w4, w6, and w8 is referred
to for the prediction of the 9th word w9 in Figure
1 under the following set of conditions: a = w6,
b = w8, and z = w4.

3.2 An SLM with ACTs

An ACT is applied to a classi�cation of the condition
parts of both of the two conditional probabilities in



Equation (2). Thus, an SLM with ACTs is:

P (T ) =

nY

i=1

P (wijACTw(hti�1i))

�P (lijACTs(hti�1wii)); (3)

where ACTw is an ACT for word prediction and
ACTs is an ACT for structure prediction. Note that
this is a generalization of the prediction from the two
right-most exposed heads (w6 and w8) in the English
model (Chelba and Jelinek, 2000). In general, SLMs
with ACTs includes SLMs with �xed history refer-
ence mechanisms as special cases.

4 Parser

In this section, we explain our parser based on the
SLM with ACTs we described in Sections 2 and 3.

4.1 Stochastic Parser Based on an SLM

A syntactic analyzer, based on a stochastic language
model, calculates the parse tree with the highest
probability T̂ for a given sequence of words w ac-
cording to

T̂ = argmax
T

P (T jw)

= argmax
T

P (T jw)P (w)

= argmax
T

P (wjT )P (T ) (��� Bayes' formula)

= argmax
T

P (T ) (��� P (wjT ) = 1);

where the concatenation of the words in the syntac-
tic tree T is equal to w. P (T ) is an SLM. In our
parser, P (T ) is the probability of a parse tree T de-
�ned by the SLM based on the dependency with the
ACTs (see Equation (3)).

4.2 Solution Search Algorithm

As shown in Equation (3), our parser is based on a
hidden Markov model. It follows that the Viterbi
algorithm is applicable to search for the best solu-
tion. The Viterbi algorithm is capable of �nding the
best solution in O(n) time, where n is the number
of input words.
The parser repeats state transitions, reading

words of the input sentence from beginning to end.
So that the structure of the input sentence will be
a single parse tree, the number of trees in the �nal
state tn must be 1 (ln = 1). Among the �nal pos-
sible states that satisfy this constraint, the parser
selects the state with the highest probability. Since
our language model uses only a limited part of a
partial parse tree to distinguish among states, the
�nal state does not contain enough information to
construct the parse tree. The parser can, however,
calculate the parse tree from the sequence of states,

Table 1: Corpus.

#sentences #words #chars
learning 9,108 260,054 400,318
test 1,011 28,825 44,667

Table 2: Word-based parsing accuracy.

language model parsing accuracy
SLM with ACTs 92.8% (24,867/26,803)

SLM with �xed history 89.8% (24,060/26,803)
baseline� 79.4% (21,278/26,803)
* Each word depends on the next one.

or from the combination of the word sequence and
the sequence of li, the number of words whose modi-
�cands have not appeared yet. Therefore our parser
records these values at each prediction step. After
the most probable last state has been selected, the
parser constructs the parse tree by reading these se-
quences from beginning to end.

5 Evaluation

We developed an SLM with a constant history ref-
erence (Mori et al., 2000) and one with ACTs as
explained in Section 3, and then implemented SLM-
based parsers using the solution search algorithm
presented in Section 4. In this section, we report
the results of the parsing experiments and discuss
them.

5.1 Conditions on the Experiments

The corpus used in our experiments consisted of ar-
ticles extracted from a �nancial newspaper (Nihon
Keizai Shinbun). Each sentence in the articles is seg-
mented into words and each word is annotated with
a part-of-speech (POS) and the word it depends on.
There are 16 basic POSs in this corpus. Table 1
shows the corpus size. The corpus was divided into
ten parts, and the parameters of the model were es-
timated from nine of them (learning) and the model
was tested on the remaining one (test).
In parameter estimation and parsing, the SLM

with ACTs distinguishes lexicons of function words
(4 POSs) and ignores lexicons of content words (12
POSs) in order to avoid the data-sparseness prob-
lem. As a result, the alphabet of the SLM with
ACTs consists of 192 function words, 4 symbols for
unknown function words, and 12 symbols for content
words. The SLM of the constant history reference
selects words to be lexicalized referring to the ac-
curacy of a withheld corpus (a small portion of the
learning corpus).
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Figure 4: Relation between corpus size and parsing
accuracy.

5.2 Evaluation

One of the major criteria for a dependency parser is
the accuracy of its output dependency relationships.
For this criterion, the input of a parser is a sequence
of words, each annotated with a POS. The accuracy
is the ratio of correct dependencies (matches in the
corpus) to the number of the words in the input:

accuracy

=
#words depending on the correct word

#words
:

The last word and the second-to-last word of a sen-
tence are excluded, because there is no ambiguity.
The last word has no word to depend on and the
second-to-last word always depends on the last word.
Table 2 shows the accuracies of the SLM with

ACTs, the SLM of the constant history reference,
and a baseline in which each word depends on the
next one. This result shows that the variable his-
tory reference mechanism based on ACTs reduces
30% of the errors of the SLM of a constant history
reference. This proves experimentally that ACTs
improve an SLM for use as a spoken language un-
derstanding engine.
We calculated the parsing accuracy of the models

whose parameters were estimated from 1/4, 1/16,
and 1/64 of the learning corpus and plotted them in
Figure 4. The gradient of the accuracy curve at the
point of the maximum learning corpus size is still im-
portant. It suggests that an accuracy of 95% should
be achieved by annotating about 30,000 sentences.
Similar to most of the parsers for many languages,

our parser is based on words. However, most other
parsers for Japanese are based on a unique phrasal
unit called a bunsetsu, a concatenation of one or
more content words followed by some grammatical

w4 w6w1 w3 w7w5 w9w8

1b 3b2b b4b

w2

Figure 5: Conversion from word dependencies to
bunsetsu dependencies.

Table 3: Bunsetsu-based parsing accuracy.

language model parsing accuracy
SLM with ACTs 87.8% (674/768)
JUMAN+KNP 85.3% (655/768)

baseline� 62.4% (479/768)
* Each bunsetsu depends on the next one.

function words. In order to compare our parser with
one of the state-of-the-art parsers, we calculated the
bunsetsu-based accuracies of our model and KNP
(Kurohashi and Nagao, 1994) on the �rst 100 sen-
tences of the test corpus. First the sentences were
segmented into words by JUMAN (Kurohashi et al.,
1994) and the output word sequences are parsed by
KNP. Next, the word-based dependencies output by
our parser were changed into bunsetsu as used by
KNP, where the bunsetsu which is depended upon
by a bunsetsu is de�ned as the bunsetsu containing
the word depended upon by the last word of the
source bunsetsu (see Figure 5). Table 3 shows the
bunsetsu-based accuracies of our model and KNP. In
accuracy, our parser outperformed KNP, but the dif-
ference was not statistically signi�cant. In addition,
there were di�erences in the experimental environ-
ment:

� The test corpus size was limited.

� The POS system for the KNP input is detailed,
so it has much more information than our SLM-
based parser.

� KNP in this experiment was not equipped with
commercial dictionaries.

As we mentioned above, our current model does
not attempt to use lexical information about con-
tent words because of the data-sparseness problem.
If we select the content words to be lexicalized by
referring to the accuracy of the withheld corpus, the
accuracy increases slightly to 92.9%. This means,
however, our method is not able to e�ciently use
lexical information about the content words at this
stage. Some model re�nement should be explored
for further improvements.



6 Related Work

Historically, the structures of natural languages have
been described by a CFG and most parsers (Fujisaki
et al., 1989; Pereira and Schabes, 1992; Charniak,
1997) are based on it. An SLM for English (Chelba
and Jelinek, 2000), proposed as a language model for
speech recognition, is also based on a CFG. On the
other hand, an SLM for Japanese (Mori et al., 2000)
is based on a Markov model by introducing a limit on
language structures caused by our human memory
limitations (Yngve, 1960; Miller, 1956). We intro-
duced the same limitation into our language model
and our parser is also based on a Markov model.
In the last decade, the importance of the lexi-

con has come into focus in the area of stochastic
parsers. Nowadays, many state-of-the-art parsers
are based on lexicalized models (Charniak, 1997;
Collins, 1997). In these papers, they reported sig-
ni�cant improvement in parsing accuracy by lexi-
calization. Our model is also lexicalized, the lexi-
calization is limited to grammatical function words
because of the sparseness of data at the step of next
word prediction. The greatest di�erence between
our parser and many state-of-the-art parsers is that
our parser is based on a generative language model,
which works as a language model of a speech recog-
nizer. Therefore, a speech recognizer equipped with
our parser as its language model should be useful
for a spoken language understanding system. The
greatest advantage of our model over other struc-
tured language models is the ablity to refer to a vari-
able part of the structured history by using ACTs.
There have been several attempts at Japanese

parsers (Kurohashi and Nagao, 1994; Haruno et al.,
1998; Fujio and Matsumoto, 1998; Kudo and Mat-
sumoto, 2000). These Japanese parsers have all been
based on a unique phrasal unit called a bunsetsu, a
concatenation of one or more content words followed
by some grammatical function words. Unlike these
parsers, our model describes dependencies between
words. Thus our parser can more easily be extended
to other languages. In addition, since almost all
pasers in other languages than Japanese output re-
lationships between words, the output of our parser
can be used by post-parser language processing sys-
tems proposed for many other languages (such as a
word-level structural alignment of sentences in dif-
ferent languages).

7 Conclusion

In this paper we have described a structured lan-
guage model (SLM) based on a dependency gram-
mar. An SLM treats a sentence as a word sequence
and predicts each word from beginning to end. The
history at each step of prediction is a sequence of
partial parse trees covering the preceding words.
The problem is how to classify the tree-shaped histo-

ries to predict each word and structure while avoid-
ing data-sparseness problems. As an answer, we pro-
pose to apply arboreal context trees (ACTs) to an
SLM. An ACT is an extension of a context tree to
a tree-shaped history. We built a parser based on
an SLM with ACTs, whose parameters were esti-
mated from 9,108 syntactically annotated sentences
from a �nancial newspaper. We then tested the
parser on 1,011 sentences from the same newspa-
per. The accuracy of the dependency relationships
of the parser was 92.8%, higher than the accuracy of
a parser based on an SLM without ACTs (89.8%).
This proved experimentally that ACTs improve a
parser based on an SLM.
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