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Abstract

We present an algorithm, Nomen, for learning
generalized names in text. Examples of these
are names of diseases and infectious agents, such
as bacteria and viruses. These names exhibit
certain properties that make their identi�ca-
tion more complex than that of regular proper
names. Nomen uses a novel form of bootstrap-
ping to grow sets of textual instances and of
their contextual patterns. The algorithm makes
use of competing evidence to boost the learning
of several categories of names simultaneously.
We present results of the algorithm on a large
corpus. We also investigate the relative merits
of several evaluation strategies.

1 Introduction

This research grew out of the Integrated Feasi-
bility Experiment on Biological Infectious Out-
breaks (IFE-BIO), a project to build an Infor-
mation Extraction (IE) system for identifying
events related to outbreaks and epidemics of in-
fectious disease, (Grishman et al., 2002).
IE generally relies on knowledge bases of sev-

eral kinds, and the most fundamental of these is
the domain-speci�c lexicon|lexical items that
are not likely to be found in general-purpose
dictionaries. This particular scenario requires
a comprehensive list of disease names. Other
requisite classes of names include: biological
agents causing disease, such as viruses and bac-
teria; vectors|organisms or animals capable of
transmitting infection; and possibly names of
drugs, used in treatment.

1.1 Generalized Names

Names of these kinds, generalized names (GNs),
di�er from conventional proper names (PNs)
that have been studied extensively in the lit-
erature, e.g., as part of the traditional Named

Entity (NE) categorization task, which evolved
out of the MUC NE evaluation, (Wakao et al.,
1996; Bikel et al., 1997; Borthwick et al., 1998;
Collins and Singer, 1999). The three main-
stream NE kinds are location, person, and or-
ganization, and much research has centered on
these \classical" kinds of proper names.
On the other hand, the vast �eld of termi-

nology has traditionally dealt with identifying
single- and multi-word domain-speci�c expres-
sions, for various NLP tasks, and recent years
have seen a growing convergence between the
two �elds.
In fact, good identi�cation of names of both

kinds is essential for IE in general. In IFE-BIO,
for example, the text:

National Veterinary Services Director Dr.

Gideon Bruckner said no cases of mad cow

disease have been found in South Africa.

exhibits more than one problem of name identi-
�cation and classi�cation. We focus on general-
ized names, which pose numerous challenges.
The classi�cation process usually starts with

identi�cation, but the primary cue for a proper
name|capitalization (in English text)|is un-
available for generalized names. GNs are not al-
ways capitalized (\mad cow disease" or \tuber-
culosis") or may be partially capitalized (\Ebola
haemorrhagic fever", \E. coli"). GNs often have
multiple pre- and post-modi�ers|\(new) vari-
ant Creutzfeldt-Jacob disease," or may modify
the head of a noun group|\Bacillus anthracis
infection." Locating the boundaries of GNs is
much harder than for PNs.
The problem of ambiguity a�ects generalized

names, as it does proper names. E. coli can
refer to the organism or to the disease it causes;
encephalitis can mean a disease or a symptom.



1.2 Why Learning?

Why is it undesirable to rely on �xed, special-
ized, domain-speci�c lists or gazetteers?
1. Comprehensive lists are not easy to ob-

tain.
2. Lists are never complete, since new names

(locations, diseases) periodically enter into ex-
istence and literature.
3. A typical text contains all the information

that is necessary for a human to infer the cate-
gory. This makes discovering names in text an
interesting research problem in its own right.
The following section introduces the learning

algorithm; Section 3 compares our approach to
related prior work; Section 4 presents an evalu-
ation of results; we conclude with a discussion
of evaluation and current work, in Section 5.

2 Nomen: The Learning Algorithm

Nomen is based on a bootstrapping approach,
similar in essence to that employed in (Yangar-
ber et al., 2000).1 The algorithm is trained on
a large corpus of medical text, as described in
Section 4.

2.1 Pre-processing

A large text corpus is passed through a zoner,
a tokenizer/lemmatizer, and a part-of-speech
(POS) tagger. The zoner is a rule-based
program to extract textual content from the
mailing-list messages, i.e., stripping headers and
footers. The tokenizer produces lemmas for the
in
ected surface forms. The statistical POS tag-
ger is trained on the Wall Street Journal (pos-
sibly sub-optimal for texts about infectious dis-
ease). Unknown or foreign words are not lem-
matized and marked noun by the tagger.

2.2 Unsupervised Learning

0. Seeds: The user provides several trusted
seeds of each category we intend to learn. E.g.,
we selected the 10 most common diseases as
seeds for the disease category; the same for lo-
cations and several other categories.2

1For a detailed comparison of the algorithms,
cf. (Yangarber, 2002).

2Frequency counts are computed from a large IE
database, of more than 10,000 records. The most com-
mon disease names: cholera, dengue, anthrax, BSE, ra-
bies, JE, Japanese encephalitis, in
uenza, Nipah virus,
FMD (for foot-and-mouth disease).

For each category, the set of accepted names,
AcceptName, is initialized with the seeds.
1. Tagging: For each accepted name in each

category C to be learned, Nomen tags the lem-
matized, POS-tagged training corpus, placing
left and right tags around each occurrence of
the name|e.g., <disease> and </disease>.
2. Pattern Generation: For each tag T

inserted in the corpus on Step 1, Nomen gener-
ates a literal pattern p using a context window
of width w around the tag, e.g.,

p = [ l�3 l�2 l�1 <T> l+1 l+2 l+3 ]

where l�i are the context of p|the lemmas of
the surrounding words.
Note, the tag of the pattern, Tag(p) = T , in-

dicates both a direction, either \left" or \right,"
Dir(p) 2 fleft; rightg, and a category, Cat(p).
E.g., if Tag(p) = </disease>, then Dir(p) =
right and Cat(p) = disease.
Then p is transformed replacing each element

in the w-window by its generalization; in the
current simple scheme, the only generalization
can be a wildcard. These patterns form the set
of potential patterns, �. Note that each pattern
matches on only one side of an instance, either
its beginning or its end.
3. Pattern Matching: Match every pat-

tern p 2 � against the entire training corpus.
In a place where the context of p matches, p
predicts where one boundary of a name in text
would occur. Let posa be the position of this
boundary. Then use a noun group (NG) regu-
lar expression3 to search for the other, partner
boundary, say, at position posb. For example,
suppose p matches in the text

the

 �z }| {
h
1
yellow feveri

2
vaccinei

3| {z }
�!

to villagers

at posa = 2 and Dir(p) = right; then posb = 1.
However, if posa = 1 and Dir(p) = left then
posb = 3. (Note, the search proceeds in the
opposite direction of Dir(p).) Next, we check
whether the NG between positions posa and
posb has already been accepted as a name in
some category; the result can be:

3Using heuristics, as in terminology discovery,
(Frantzi et al., 2000); we use a simple NG regular ex-
pression, [Adj* Noun+].



� positive: The NG has already been ac-
cepted as a name in the same category as
Cat(p);

� negative: The NG has already been ac-
cepted as a name in a di�erent category,
C 0 6= Cat(p);

� unknown: The NG has not yet been ac-
cepted as a name in any category.

The unknown case is where a new candidate of
the category Cat(p) may potentially be discov-
ered.
4. Pattern Acquisition: For each pat-

tern p 2 �, this gives us instance-based lists of
positive pos(p), negative neg(p) and unknown
unk(p) NGs. To compute Score(p), we �rst de-
�ne the corresponding type-based sets:

� pos�(p) = set of distinct names of category
Cat(p) from AcceptName that p matched.

� neg�(p) = set of distinct names of a wrong
category.

� unk�(p) = set of distinct NGs of unknown
type.

To score the patterns in �, we currently use
the accuracy and con�dence measures:

acc�(p) =
jpos�j

jpos�j+ jneg�j

conf�(p) =
jpos�j

jpos�j+ jneg�j+ junk�j

Patterns with accuracy below a precision
threshold acc�(p) < �prec, are removed from �.
The remaining patterns are ranked as follows.
The score is computed as:

Score(p) = conf�(p) � log jpos�(p)j (1)

Add the n{best patterns for each target cate-
gory to the set of accepted patterns, AcceptPat.
In the �rst term of the scoring function,

higher con�dence implies that we take less risk if
we acquire the pattern, since acquiring the pat-
tern a�ects the unknown population. The sec-
ond term favors patterns which select a greater
number of distinct names in AcceptName.
5. Application: Apply each pattern p 2

AcceptPat to the entire corpus.

The noun groups in the set unk�(p) are the
candidates for being added to the category
Cat(p). Let 	 be the list of candidate types:

	 =
[

p 2AcceptPat

unk�(p)

6. Candidate Acquisition: Compute a
score for each candidate type t 2 	, based on

� how many di�erent patterns in AcceptPat
match an instance of type t,

� how reliable these patterns are.

To rank a candidate type t 2 	 consider the set
of patterns in AcceptPat which match on some
instance of t; let's call this set Mt. If jMtj < 2,
the candidate is discarded.4 Otherwise, com-
pute Rank(t) based on the quality of Mt:

Rank(t) = 1�
Y
p2Mt

�
1� conf�(p)

�
(2)

This formula combines evidence by favoring
candidates matched by a greater number of pat-
terns; on the other hand, the term conf�(p) as-
signs more credit to the more reliable patterns.
For each target category, add the m best-

scoring candidate types to the set AcceptName.
7. Repeat: from Step 1, until no more

names can be learned.

3 Prior Work

The Nomen algorithm builds on some ideas
in previous research. Initially, NE classi�-
cation centered on supervised methods, sta-
tistically learning from tagged corpora, using
Bayesian learning, ME, etc., (Wakao et al.,
1996; Bikel et al., 1997; Borthwick et al.,
1998). (Cucerzan and Yarowsky., 1999) present
an unsupervised algorithms for learning proper
names. AutoSlog-TS, (Rilo� and Jones, 1999),
learns \concepts" (general NPs) for �lling slots
in events, which in principle can include gen-
eralized names. The algorithm does not use
competing evidence. It uses syntactic heuristics
which mark whole noun phrases as candidate in-
stances, whereas Nomen also attempts to learn
names that appear as modi�ers within a NP.

4Note, this means that the algorithm is unlikely to
learn a candidate which occurs only once in the corpus.
It can happen if the unique occurrence is 
anked by ac-
cepted patterns on both sides.



In the area of NE learning, (LP)2, (Ciravegna,
2001), is a recent high-performance, supervised
algorithm that learns contextual surface-based
rules separately for the left and the right side
of an instance in text. Separating the two sides
allows the learner to accept weaker rules, and
several correction phases compensate in cases
of insuÆcient evidence by removing uncertain
items, and preventing them from polluting the
set of good seeds.

Research in automatic terminology acquisi-
tion initially focused more on the problem of
identi�cation and statistical methods for this
task, e.g., (Justeson and Katz, 1995), the C-
Value/NC-Value method, (Frantzi et al., 2000).
Separately, the problem of classi�cation or clus-
tering is addressed in, e.g., (Ushioda, 1996)

(Strzalkowski and Wang, 1996) presents an
algorithm for learning \universal concepts,"
which in principle includes both PNs and
generic NPs|a step toward our notion of gen-
eralized names. The \spotter" proceeds itera-
tively from a handful of seeds and learns names
in a single category.

DL-CoTrain, (Collins and Singer, 1999),
learns capitalized proper name NEs from a syn-
tactically analyzed corpus. This allows the rules
to use deeper, longer-range dependencies, which
are diÆcult to express with surface-level infor-
mation alone. However, a potential problem
with using this approach for our task is that
the Penn-Treebank-based parser does not assign
structure to noun groups, so it is unclear that it
could discover generalized names, as these often
occur within a noun group, e.g., \the 4 yellow
fever cases." Our approach does not have this
limitation.

The salient features of Nomen: it learns

� generalized names, with no reliance on cap-
italization cues, as would be possible in the
case of proper names (in English).

� from an un-annotated corpus, bootstrap-
ping from a few manually-selected seeds

� rules for left and right contexts indepen-
dently (as (LP)2 to boost coverage).

� several categories simultaneously, and uses
additional categories for negative evidence
to reduce overgeneration.

4 Results

The algorithm was developed using a corpus
drawn from the ProMed mailing list. ProMed is
a global forum where medical professionals post
information regarding outbreaks of infectious
disease (using at times informal language).
Our full training corpus contains 100,000 sen-

tences from 5,100 ProMed articles, from the be-
ginning of 1999 to mid-2001. A subset of that,
used for development, contains 26,000 sentences
from 1,400 documents (3.2Mb) from January to
July 1999.
Our evaluation strategy di�ers from those in

some of the prior work. We discuss the compet-
ing evaluation strategies in detail in Section 5.2.
To measure performance, we constructed sev-

eral reference lists as follows. First, a manual
list of disease names was hand-compiled from
multiple sources.5 The manual list consists of
2,492 disease names.
The recall list is automatically derived from

the manual list by searching the training cor-
pus for disease names that surface more than
once.6 The recall list for the 26,000-sentence
corpus contains 322 disease names, including
some aliases and common acronyms.
The precision list is constructed as the union

of the manual list with an automatically gener-
ated list of acronyms (made by collecting �rst
letters of all multi-token names in the manual
list). We applied the same procedure to gener-
ate recall and precision lists for locations.
Then, we judge the recall of Nomen against

the recall lists, and precision against the preci-
sion lists. The list sizes are shown in Table 1.
We focus on two categories, diseases and lo-

cations, while learning several categories simul-

5Using a disease IE database (Grishman et al., 2002),
the Gideon disease database, and Web search. The list
includes some common acronyms, like HIV and FMD.

6This is justi�ed because the current algorithm is un-
likely to discover a name that occurs only once.

Reference List Disease Location
Manual 2492 1785
Recall (26K corpus) 322 641
Recall (100K corpus) 616 1134
Precision 3588 2404

Table 1: Reference Lists
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Figure 1: Names: Recall vs. Precision

taneously.7 We introduce a category for symp-
toms, discussed in the next section.
We also introduce a negative category for

learning terms belonging to none of the classes.
As seeds, we use the 10 most frequent NGs
in the corpus, excluding disease and location
names, and generic words for diseases or loca-
tions (\virus," \outbreak," \area").8

The parameters in these experiments are:
number of seeds = 10 per category; pattern ac-
curacy threshold �prec = 0:80; n = m = 5 for
the number of retained patterns and candidates.
The learning curves in Figure 1 show how re-

call and precision for diseases and locations vary
across the iterations. The bold curves show the
result for diseases and locations on the devel-
opment corpus (26K); e.g., by the end, 70% of
diseases (from the recall list of 322 items) were
learned, at 50% precision|half of the learned
names were not on the precision list. On the
100K corpus (with 641 diseases on the recall
list) the precision was only slightly lower.
The precision measures, however, are under-

stated. Because it is not possible to get a full list
for measuring precision, we �nd that Nomen is
penalized for �nding correct answers. This is a
general problem of type-based evaluation.
To quantify this e�ect, we manually examined

the disease names learned by Nomen on the de-
velopment corpus and re-introduced those that

7Locations seeds: United States, Malaysia, Australia,
Belgium, China, Europe, Taiwan, Hong Kong, Singa-
pore, France.

8The negative seeds were: case, health, day, people,
year, patient, death, number, report, farm.
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Figure 2: E�ect of Understated Precision

were incorrectly marked as errors, into the pre-
cision list only. The updated graph is shown in
Figure 2; at 70% recall the true precision is 65%.
Note that precision is similarly understated for
all type-based curves in this paper.
Among the re-introduced names there were

99 new diseases which were missed in the man-
ual compilation of reference lists.9 This is an
encouraging result, since this is ultimately how
Nomen is intended to be used: for discovering
new, previously unknown names.

5 Discussion

5.1 Competing Categories

Figure 3 demonstrates the usefulness of com-
petition among target categories. All curves
show the performance of Nomen on the dis-
ease category, when the algorithm is seeded
only with diseases (the curve labeled Dis), when
seeded with diseases and locations (Dis+Loc),
and with symptoms, and the \other" category.
The curves Dis and Dis+Loc are very similar.
However, when more categories are added, pre-
cision and recall increase dramatically.
When only one category is being learned,

acc(p) = 1:0 for all patterns p. The lack of
an e�ective accuracy measure causes us to ac-
quire unselective disease name patterns that of-
ten also match non-diseases (e.g., \... X has
been con�rmed"). This hurts precision.

9Examples of new diseases: rinderpest, konzo,
Mediterranean spotted fever, coconut cadang-cadang,
swamp fever, lathyrism, PRRS (for \porcine reproduc-
tive and respiratory syndrome"); locations: Kinta, Ulu
Piah, Melilla, Anstohihy, etc.
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Recall also su�ers, (a) because some patterns
that are more selective (but have lower con�-
dence or coverage) are neglected, and (b) be-
cause non-diseases contaminate the seed set and
generate useless patterns.

(Collins and Singer, 1999) also makes use of
competing categories (person, organization, and
location), which cover 96% of all the instances it
set out to classify. In our case, the sought cat-
egories, (diseases and locations), do not cover
the bulk of potential candidates for generalized
names|word sequences matching [ADJ* N+].
Introducing the \negative" category helps us
cover more of the potential candidates. This in
turn boosts the utility of the accuracy measure.

Additional competing categories may help to
prevent a category from \creeping" into an over-
lapping concept. E.g., we had mentioned that
the disease and symptom classes may overlap.
When the target categories include diseases but
not symptoms, Nomen learns some names that
can function as either. This leads to learning of
some patterns which tend to occur with symp-
toms only, resulting in precision errors. Figure 3
shows the improvement in precision from adding
the symptom category.

On the other hand, there may be disadvan-
tages to splitting categories too �nely. For ex-
ample, one problem is metonymy among classes
of generalized names. It appears to be distinct
from the problem of ambiguity in PNs, e.g.,
when \Washington" may refer to a person, or a
location. In the case of PNs, there are usually
clues in the context to a�ord disambiguation.
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Figure 4: Token-based, MUC-style Evaluation

In the case of GNs, rather, the nature of ambi-
guity may be related to regular metonymy. For
example, names of agents regularly function as
the name of the disease they cause: \E. coli."
Therefore, in learning agents and diseases sepa-
rately, the algorithm will naturally confound the
two classes, which will inhibit learning. In these
experiments, we learn them as a single class.
It may then be more appropriate to apply an-

other procedure to separate the classes based on
a measure of prevalence of co-occurrence with
the respectively characteristic contexts.

5.2 Evaluation

The results in the preceding �gures are not di-
rectly commensurate with those in the men-
tioned literature, e.g., (Strzalkowski and Wang,
1996; Collins and Singer, 1999). This relates to
the token-type dichotomy.
The evaluation in the prior work is token-

based, where the learner gets credit|recall
points|for identifying an instance correctly, for
every time it occurs in the corpus. In our type-
based evaluation, it gets credit only once per
name, no matter how many times it occurs.
We also conducted an instance-based evalua-

tion, more compatible with the mentioned prior
work. We manually tagged all diseases and lo-
cations in a 500-sentence test sub-corpus. Using
the output from the runs in Figure 1 we mea-
sured recall and precision using the standard
MUC NE scoring scheme, shown in Figure 4.10

10The sharp dip in the \diseases (100K)" curve is
due to several generic terms that were learned early on;
generics were not tagged in the test corpus.



Iteration Type-Based Instance-Based
0 0.03 0.35
20 0.18 0.68
40 0.31 0.85
60 0.42 0.85
300 0.69 0.86

Table 2: Evaluation of Disease Recall

Table 2 contrasts type-based and instance-
based recall across the iterations. The instance-
based evaluation can hardly distinguish between
an algorithm that learns 31% of the types vs.
one that learns 69% of the types. The algorithm
keeps learning lots of new, infrequent types until
iteration 340, but the instance-based evaluation
does not demonstrate this.

5.3 Current Work

Nomen can be improved in several respects.
The current regular-expression NG pattern is

very simplistic. In its present form, it does not
allow \foot and mouth disease" to be learned,
nor \legionnaires' disease"; this introduces in-
accuracy, since parts of these names are learned
and contaminate the pool.
The current pattern generalization scheme

could be expanded. (LP)2 generalizes on sur-
face form, case, and semantic information. We
could use, e.g., parts of speech from the tagger,
as a level of generalization between lemmas and
wildcards. A complementary approach would
be to use a NP chunker, to capture longer-
distance relations, in the heads and prepositions
of adjacent phrases. ((Collins and Singer, 1999)
achieves this e�ect by full parsing.)
We are exploring acquisition of more types of

generalized names|agents and vectors, as well
as people and organizations. What is the e�ect
of learning possibly related classes simultane-
ously, what happens to the items in their inter-
section, and to what extent they inhibit learn-
ing, remains a practical question.
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