Rapid Prototyping for Spoken Dialogue Systems

Matthias Denecke
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, 15213
denecke@cs.cmu.edu

Abstract

We implemented a spoken dialogue system ar-
chitecture for rapid prototyping. The features
that support rapid prototyping include a clear
separation of generic dialogue processing al-
gorithms from domain and language specific
knowledge sources. In an experiment, it could
be shown that six individuals could specify these
domain and language specific knowledge sources
within 8 to 12 hours to come up with a prototyp-
ical implementation of a spoken dialogue sys-
tem. To that end, no dialogue strategy had to
be specified. Rather, it was sufficient to provide
an ontology, a description of the services offered
by the system, parsing grammars, database con-
version rules and generation templates. Fur-
thermore, the experiment shows that it is possi-
ble to formulate dialogue strategies in a domain
and language independent manner; thus not re-
quiring a system designer to be knowledgeable
about dialogue processing.

1 Introduction

There are several approaches to reduce the ef-
fort to design and implement spoken dialogue
systems. One approach to development envi-
ronments consists of graphical editors for fi-
nite state automata (see for example (Cole,
1999)). Another approach to development envi-
ronments emphasizes reusability of the domain
model over graphical design interfaces. Here,
fine tuning of dialogue strategies require sepa-
rate fine-tuning in each module. In addition to
the modules, dialogue flow is specified by a fi-
nite state automata whose nodes consist of mod-
ules. A third approach consists in designing a
library of reusable dialogue strategies. Based
on the observation that the behavior of a dia-
logue manager should be predictable in similar
situations across several domains, (Araki et al.,
1999) propose a library of dialogue strategies to
be reused. (Kolzer, 1999) proposes a reusable

dialogue system architecture based on specifi-
cations of knowledge sources for the different
components.

In this paper, we describe the implementation
of a generic spoken dialogue system that can
be distinguished from the previous approaches
by several features. We emphasize the separa-
tion of task and language dependent knowledge
sources from generic dialogue processing algo-
rithms. Each dialogue system can be specified
by a set of knowledge sources, such as domain
model, task model, grammar rules, and so on.
The specifications are declarative rather than
procedural, leaving to the dialogue manager the
decision how to best interpret them in the con-
text of the dialogue.

We conducted an experiment to evaluate the
extent to which this approach generalizes to
new domains and new languages. It could be
shown that individuals could design a prototyp-
ical implementation of a spoken dialogue system
within 8 to 12 hours simply by providing the do-
main and language specific knowledge sources.
No alteration of dialogue strategies was neces-
sary.

2 The Architecture

We give a brief overview of the system architec-
ture. The architecture of the dialogue system
ARIADNE was designed specifically to support
rapid prototyping. To this end, an architecture
providing three levels of abstraction has been
devised. The lowest level, called Abstract Dia-
logue Engine, provides a set of domain and lan-
guage independent algorithms (e.g. to gener-
ate clarification questions) which make use of
language and/or domain dependent knowledge
sources. The intermediate layer, called Interac-
tion Pattern Layer, provides a set of so-called
interaction patterns which are domain and lan-
guage independent. Interaction patterns are in-
stantiated from the highest layer, called Dia-

logue Control Layer, to interact with the user
and obtain representations that are to be added
or removed from the discourse.

2.1 Abstract Dialogue Engine
2.1.1 Parsing

The output of the speech recognizer is parsed
using the semantic parser SOUP (Gavalda and
Waibel, 1998). The generated parse tree is con-
verted into a typed feature structure by means
of conversion rules with which the grammar
rules are annotated (Denecke, 2000b). As the
grammar rules and conversion specifications can
be checked for well-typedness at compile-time,
a non-welltyped or partially inconsistent feature
structure generated at run-time indicates a pos-
sible misrecognition or skipping of the robust
parser. In this case, the part causing the in-
consistency is discarded from the representation
(see below).

2.1.2 Discourse

The discourse history is represented in a tree
structure where each node represents an utter-
ance. The representation of an utterance con-
sists of the text as provided by the recognizer,
its semantic representation and the objects be-
ing referred to (if any). The formalism used to
represent semantics and descriptions of objects
is typed feature structures. Functionality pro-
vided by the ADE includes procedures to add
nodes to the tree, and to maintain reference to
the current node.

2.1.3 Dialogue Goal Descriptions

For each service offered by the back end appli-
cation, there is a dialogue goal description that
describes what kind of information is necessary
to invoke that service. This is similar to a form
in form-filling dialogue systems (Papineni et al.,
1999). In addition, the dialogue goal descrip-
tions also contain a list of references to services
to be invoked once the goal is reached.

2.1.4 Semantic Representations

The ADE provides several algorithms to op-
erate on typed feature structures. These in-
clude the selection of feature paths whose values
disambiguate most efficiently on average a set
of feature structures (for details see (Denecke
and Waibel, 1997)), algorithms that determine
which of the services offered by the system are
compatible with what has been said (see section
3.1.4), and so forth.

2.1.5 Generation

Finally, the ADE provides the possibility to se-
lect and instantiate templates for natural lan-
guage generation (see section 3.1.7).

2.2 Interaction Pattern Layer
2.2.1 Classification of Dialogue State

As noted in (Seneff and Polifroni, 2000), the ex-
plicit representation of dialogue state (indicat-
ing information on missing slot fillers) is cum-
bersome. In addition, it is impossible to formu-
late task independent dialogue strategies based
on such a representation. For this reason, we
chose to represent dialogue state by a set of fea-
tures that describe the progress of the ongoing
dialogue based on the information available in
the discourse. Currently, we are using the fol-
lowing six features.

CURRENTQUALITY. This variable represents
the quality of the representation of the current
utterance. The value of this variable depends on
the confidence measure of the speech recognizer,
whether the semantic representation is consis-
tent and whether the robust semantic parser
skipped parts of the utterance.

OVERALLQUALITY. The value of this variable
is a cumulation of the value of CURRENTQUAL-
ITY to detect deteriorating dialogue.

CURRENTSPEECHACT. This variable indicates
the speech act of the current utterance, drawn
from a speech act repertoire of 12 domain inde-
pendent speech acts.

REFERENCE. This variable indicates if database
access needs to take place to resolve reference of
representations of noun phrases in the discourse.
If so, the variable also indicates if enough in-
formation is available to actually perform that
database request.

REFERRINGEXPRESSIONS. The value of this
variable indicates if referring expressions could
be resolved. If so, it indicates if the reference
is unique or not. If reference (through database
access) could not be resolved because no object
in the database satisfied the constraints given
by the user, the variable also indicates if a close
match of similar objects is possible.

INTENTION. Finally, this variable indicates how
many dialogue goal descriptions are compatible

with the information in the discourse, and, if
there is only one compatible if all necessary in-
formation to invoke the associated services has
been acquired.

2.2.2 Interaction Patterns

Interaction patterns are sequences of utterances
designed to obtain information to be added to
or to be removed from the discourse. There are
four types of interaction patterns.

1. The QUESTION interaction pattern seeks
to obtain information from the user to be
added to the discourse. An example is
"Would you like a,b or c?".

2. The UNDO interaction pattern causes to
remove information from the discourse.
This interaction pattern can be triggered
through user utterances such as "Undo" or
"No, not a.".

3. The CORRECTION interaction pattern
both adds and removes information from
the discourse. Examples are "I said a
not b" (for a user initiated example) or "I
do not know a b but I do know a ¢
or d b. Which one would you like?
for cooperative system initiated example.

4. The STATE interaction pattern does not
add to nor remove information from the
discourse but has influence on the dialogue
flow. This interaction pattern can be trig-
gered through user utterances such as "I
don’t know", "Repeat" or "Help".

Please note that interaction patterns can be
instantiated in various shapes. The concrete
shape of the interaction pattern is determined
as the dialogue develops and depends on the
abstract classification of dialogue state. For
example, the dialogues "Would you like a,b
or c?" "a." and "Would you like a,b or
c?" "a." "Please say again." "a." "Did
you say a? Please say ’yes’ or ’no’."
"Yes." are two instantiations of the same
interaction pattern. It is the responsibility of
an instantiation of an interaction pattern to
guarantee that the information it is asked to
obtain is reliable. If this is not possible, the
instantiation of the interaction pattern may
fail.

2.3 Dialogue Control Layer

The Dialogue Control Layer instantiates inter-
action patterns depending on the abstract clas-
sification of dialogue state. The functionality

of the dialogue control layer is given by a con-
straint logic program. It is again domain and
language independent. The dialogue control
layer requests the instantiation of interaction
patterns and is responsible for updating and
maintaining dialogue state.

3 The Experiment

In order to demonstrate the ability of this ar-
chitecture to support rapid prototyping, an ex-
periment was designed in which the participants
were to built their own dialogue system in a do-
main and a language of their choice.

It should be stressed that it was not the goal
of the experiment to build stable robust dia-
logue systems. Rather, the dialogue systems
should be used for data collection and as a basis
for iterative improvement.

3.1 Execution of the Experiment

The design process was split into seven steps,
described in more detail below. In each step, the
participants were expected to generate specifi-
cations responsible for one aspect of the result-
ing dialogue system. The participants received
a description of the goals of that step, in ad-
dition to documentation how to specify the de-
sired properties. The participants were free to
choose the domain of their application, and were
free to choose between the target languages En-
glish and German. A specification of a working
small-scale dialogue application was provided to
complement the documentation.

3.1.1 Step 1: Back End Application

In this step, the participants are supposed to
create a JAVA class that implements the func-
tionality of their application. To do that,
tools are provided that automatically generate
a skeleton class implementation.

3.1.2 Step 2: Databases

In the second step, participants are expected to
create databases that store descriptions of ob-
jects in the domain. The result of this step is an
actual SQL database created with MS ACCESS.
For example, the directory application contains
a database with one table storing information
on the employees.!

!Please note that while the given example is rather
simple, the dialogue manager supports databases with
multiple tables and joins. For more information, see (De-
necke, 2000a).

desc obj_employee inherits object {

string : FirstName;
string : LastName;
string : Title;

string : DepartmentName;
string : EmailName;
string : HomePhone;
string : WorkPhone;
string : Officelocation;

+;

Figure 1: Part of the ontology.

3.1.3 Step 3: Ontology

The goal of the third step is to provide an
ontology containing all the concepts necessary
to represent the semantics of utterances. To
facilitate things, a set of concepts (such as
object, action, state and property) is provided
in a generic ontology and can be reused. The
ontology is internally represented as a type hi-
erarchy for typed feature structures (Carpenter,
1992). Part of the ontology of the directory ap-
plication is given in figure 1.

3.1.4 Step 4: Dialogue Goals

Dialogue goals establish a link between informa-
tion in the discourse and the services that the
back end application should invoke once the di-
alogue goal is reached. For each service imple-
mented in step 1, the participants need to spec-
ify the amount of information that is necessary
for the service to be invoked. The dialogue goal
for the call forwarding service is given below.
Please note that the service only requires the
phone number to be present. Consequently, this
is the only information that the feature struc-
ture of the dialogue goal requires to be present.
The dialogue system, however, will ask for first
or last names (as opposed to the phone num-
ber). This means there is no direct link between
the information that is necessary to invoke the
service and the clarification questions that are
asked.

3.1.5 Step 5: Database Conversion
Rules

Database conversion rules map the names of ta-
bles and fields given in the database (step 2)
onto semantic representations of typed feature
structures. In addition to the conversion infor-
mation, it is possible to specify database guards.
Database guards are lower bounds on informa-
tion that need to be satisfied before a database
takes place. This is to ensure that for example
at least the first name or the last name of the

goal call {
description:
[act_call
EMPLOYEE [obj_employee
WorkPhone [string]
]
]
min:
1
max:
1
binding:
callforward : [EMPLOYEE|WorkPhone] ;

};

Figure 2: The dialogue goal establishing the link
between information in the discourse and invo-
cation of the call forward service

dbtable Employees obj_employee {

dbfield First_Name = [FirstName];
dbfield Last_Name = [LastName];
dbfield Work_Phone = [WorkPhone] ;
dbfield Office_Location = [Location];

};

Figure 3: Database conversion rules for the di-
rectory application.

person to be called is known before a database
request takes place so as to avoid that the entire
database is copied into the discourse represen-
tations. The conversion rules for the directory
application are given in figure 3.

3.1.6 Step 6: Parsing Grammars

Semantic parsing grammars are used to convert
the output of the speech recognizer into typed
feature structures representing the meaning of
the utterance. Grammar rules are separated
in four categories: (i) lexical rules of the form
A — wy ... wy, (ii) lexical database rules of the
form A —< databasename >< tablename ><
fieldname > to automatically import strings
from a database, (iii) structural rules of the
form A — Bj...B,, and (iv) derived rules
where generic rules that do not contain domain
specific semantic information can be reused in
order to speed up grammar development (see
(Denecke, 2000b) for more information on de-
rived rules). Nonterminal symbols of the gram-
mar consist of vectors of partially ordered sym-
bols (for example (obj _person, N, sg) represents
a nonterminal symbol that would expand to
constituents describing a person), where the
first element is a concept of the ontology, and
the second to last elements provide syntactic

information. These nonterminal symbols can
be considered as simple non-reentrant feature
structures of depth one. Grammar rules are an-
notated with conversion information that allows
to generate typed feature structures automati-
cally from the rule specifications (see figure 4).

3.1.7 Step 7: Generation Templates

Generation templates establish a link between
the dialogue state (recall that the dialogue state
is given by the abstract classification of dialogue
state, the discourse and the stack) and a speech
act on one hand and a partially specified utter-
ance and information on the expected answer
of the user on the other. The constraints re-
strict the abstract dialogue state and the in-
formation in the discourse that allow a proper
instantiation of the associated template. Fig-
ure 5 illustrates the use of constraints. There
are three variables used in the templates. The
variable $sem refers to the semantic represen-
tation of the last utterance, $objs refers to the
representations of the objects retrieved from the
database. $db refers to a database given by the
name following the variable.

Both clarification questions shown in figure 5
seek to get the first name of a person. The first
template can only be applied after a database
request has taken place (otherwise $objs would
be undefined), the first name of the retrieved
employees is ambiguous and the last name is
unige. The generated question then enumerates
the known names using the .first, .middle
and .last functors (returning the first, the sec-
ond to previous to last, and last elements of the
representations, respectively.) Possible options
are passed on to the speech recognizer using the
options keyword. In addition, ”always active”
commands are also allowed. The location key-
word indicates semantic information on the ex-
pected answer, namely where to place it in the
discourse and under which nonterminal symbol
it should be parsed. If, on the other hand, the
first name of the person to be called has not
yet been mentioned by the user, then the sys-
tem should prompt the user for it. The possible
options for the speech recognizer are generated
based on the filler of the field FirstName in the
table Employees of the database DirectoryDB.

4 Results

4.1 Applications

There were altogether a set of six application
implemented four of which use English and the

remaining two use German. The applications
implemented were the following: (i) a beer pur-
chase system (English), (ii) a telephone direc-
tory service (English), (iii) a ticket purchase sys-
tem (English), (iv) a roulette system (German),
(v) a cd player (English) and (vi) a video rental
system (German),

4.2 Temporal Effort

In each step, the participants were given the
instructions detailing what to do in this step.
They were allowed to ask questions at any time,
and to consult the example specification at any
time. The effort it took the participants to come
up with the specifications are given in table 1.

4.3 Size of specifications

Table 2 shows the size of the specifications that
were created in the experiment.

4.4 Other Observations

Almost all of the designed systems exhibit a
lack of coverage in the natural language resource
area. In other words, not all sentences the sys-
tems should understand could be parsed, and
there was not an appropriate template for all
of the dialogue states. The first problem is a
direct consequence from the decision not to do
any data collection ahead of time. To the con-
trary, the idea behind the presented approach
is to generate a rudimentary system in a short
time and to use this system for data collection
rather than a wizard of oz setup. This is par-
ticularly beneficial in the light of the short de-
velopment time of 8 to 12 hours and the fact
that the data collection can then be done semi-
automatically, not requiring the presence of a
human wizard. The second problem is due to
the fact that the template constraints do not
cover the entire state space. Future work ad-
dresses the question how to detect lack of tem-
plate coverage automatically by examining the
template constraints and determining the sub-
set of the state space that is covered.

The conducted experiment was limited to En-
glish and German languages; however, it should
be possible in principle to extend the described
approach to other languages as well. In order for
the dialogue algorithms to work, the following
requirements need to be fulfilled: (i) the mean-
ing of an input needs to be able to be repre-
sented in the chosen formalism (typed feature
structures), and (ii) two inputs with different
syntactic structure but same meaning need to
be represented in equivalent feature structures.

public <action:VP:_> = <act_lookup:V:_> <obj_employee:NP:_>* { EMPLOYEE obj_employee };

<act_lookup:V:_> 1mclass = ’look’ ’up’ :

’find’;

Figure 4: A structural and a lexical grammar rule with conversion rule specifications.

enumgst {

state: (determined = lookup),

path: (ambiguous = $objs@[EMPLOYEE |FirstName]),

path: (unique
text:

= $objs@[EMPLOYEE |LastName]) ->
"There are $objs.num employees with the last name $sem@[EMPLOYEE|LastName]

called $objs.first@[EMPLOYEE|FirstName], $objs.middle@[EMPLOYEE |FirstName]
and $objs.last@[EMPLOYEE|FirstName]. What is the first name of the person

you would like to lookup?"
options: "$objs@[EMPLOYEE|FirstName]"
commands: ’undo’ ’repeat’ ’start over’

location: [EMPLOYEE] <obj_employee:NP:_>

s
infogst {
state: (determined = lookup),
path: (undefined =
text:
options:

$sem@[EMPLOYEE |FirstName]) ->
"What is the first name of the person you would like to lookup?"
"$db.DirectoryDB.Employees.FirstName "

commands: ’undo’ ’repeat’ ’start over’ ’i dont know it’

location: [EMPLOYEE] <obj_employee:NP:_>

Figure 5: Templates. The syntax has been slightly simplified for expository reasons.

These requirements (and the chosen representa-
tions) are not too different from those employed
in interlingua-based machine translation which
has been proven to work reliably across a mul-
titude of languages, including Asian languages.

4.5 Example Dialogue

In order for this example dialogue to be pro-
cessed, the grammar specified by the participant
is written out to a file. The grammar file is then
fed into a script which generates sentences out
of the grammar, and treats the resulting sen-
tences as data for standard language model gen-
eration. The resulting language model is then
used for speech recognition. This process is au-
tomatic and does not provide any manual inter-
vention provided that the lexicon used contains
phonetic transcriptions for each of the words in
the grammar.

User: Call Lori.

System: There are two Bobs called My-
ers and Miller. What is the last
name of the person would you
like to call?

User: I said Lori not Michael.

System I am calling Lori Baker. Please
wait.

In this dialogue, the dialogue system initiates
a question interaction pattern to disambiguate

the referents of the (misunderstood) noun
phrase Lori. The initiation of that interaction
pattern is triggered by generic constraints in
the dialogue control layer. The user initiates a
correction interaction pattern which terminates
successfully and triggers a reevaluation of the
classification of dialogue state. Since in this
case the referent is unique and the constraints
of the intended dialogue goal are fulfilled, the
first interaction pattern is succesfully termi-
nated and control is passed on to the back-end
application to place the call. It should be noted
that the designer of this application did not
have to specify how the discourse should be
updated or how the repair should be processed.
This is handled by the interaction patterns.

User: Call Lori Miller.

System: I do not know a person called
Lori Miller, but T do know Lori
Baker and Michael Miller. What
is the last name of the person you
would like to call?

User: Baker.
System I am calling Lori Baker. Please
wait.

Here, the system initiates a Navigation interac-
tion pattern to resolve a close match of referents
of a noun phrase. Again the conditions under
which the system needs to instantiate that

Application || Step 3 | Step4 | Step5 | Step 6 | Step7 | Sum ||
Beer Purchase System 30 min 15 min 40 min 10 min 70 min 165 min
Directory Service 60 min 20 min 60 min 20 min 60 min 220 min
Ticket Purchase System 15 min 5 min 10 min 60 min 60 min 150 min
Roulette 30 min 30 min 30 min 30 min 45 min 165 min
CD-Player 190 min 130 min 130 min 10 min 60 min 520 min
Video Rental System 75 min 30 min 120 min 40 min 120 min 385 min

Table 1: Temporal effort for each of the steps (does not include reading of documentation)

Application Ontology Goals Grammar rules Databases Templates File Length
Concepts/Features lexical/structural Tables / Fields Quest. / Statem. Lines of code
Beer Purchase system 57/7 (193/24) 2 (7) 256/200 456
Directory Service 4/9 (88/26) 2 (7) 77/39 1/8 4/2 163
Ticket Purchase System 5/5 (89/22) 3 (8) 11/50 1/ 3 4/4 236
Roulette 12/12 (96/29) 4 (9) 129/65 1/3 9/4 349
CD-Player 26/12 (108/29) 6 (11) 106/66 1/4 7/0 308
Video Rental system 9/5 (93/22) 1 (6) 236/72 2/5 4/1 330

Table 2: Size of the knowledge sources. Shown are the sizes of the created knowledge sources.
If knowledge sources are reused, the total size (including the reused knowledge sources) is shown
in brackets. The Beer Purchase System was the only system that reused two existing dialogue

packages instead of only one.

interaction pattern are generic; the system
designer did not have to specify them.

5 Conclusion

We described an experiment in which six indi-
vidual designed prototypical dialogue systems
using the ARIADNE dialogue system. All cre-
ated systems could successfully process dia-
logues and instantiate all interaction patterns.
It could be shown that the chosen system design
allows a successful separation of the specifica-
tion of dialogue strategies and domain and lan-
guage dependent resources. This implies that
system designers do not need to be knowledge-
able about dialogue processing in order to de-
sign a dialogue system. The problems that did
occur with the created systems are mainly due
to lack of grammar coverage or failure to provide
a generation template for a specific dialogue
state (for example, to provide templates that
ask for the first name but not the last name).
Further research will determine how the lack of
template specification can be determined auto-
matically.

References

M. Araki, K. Komatani, T. Hirata, and
S. Doshita. 1999. A Dialogue Library for
Task-Oriented Spoken Dialogue Systems. In
Workshop on Knowledge and Reasoning in
Practical Dialogue Systems.

B. Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge Tracts in Theo-
retical Computer Science, Cambridge Univer-
sity Press.

R. Cole. 1999. Tools for Research and Edu-
cation in Speech Science. In Proceedings of
the International Conference of Phonetic Sci-
ences, San Francisco, USA.

M. Denecke and A.H. Waibel. 1997. Di-
alogue Strategies Guiding Users to their
Communicative Goals. In Proceedings of
FEurospeech, Rhodos, Greece. Available at
http://www.is.cs.cmu.edu.

M. Denecke. 2000a. An Integrated De-
velopment Environment for Spoken Dia-
logue Systems. In Workshop on Toolsets
in NLP, Coling, Saarbricken. Available at
http://www.is.cs.cmu.edu.

M. Denecke. 2000b. Object-oriented techniques
in Grammar and Ontology Specification. In
Proceedings of the MSC 2000 Workshop, Ky-
oto. Available at http://www.is.cs.cmu.edu.

M. Gavalda and A. Waibel. 1998. Growing
semantic grammars. In Proceedings of the
COLING/ACL, Montreal, Canada.

A. Kolzer. 1999. Universal Dialogue Specifica-
tion for Conversational Systems. In Work-
shop on Knowledge and Reasoning in Prac-
tical Dialogue Systems.

K.A. Papineni, S. Roukos, and R.T. Ward.
1999. Free-Flow Dialogue Management Using
Forms. In Proceedings of EUROSPEECH 99,
Budapest, Hungary.

S. Seneff and J. Polifroni. 2000. Dialogue Man-
agement in the Mercury Flight Reservation
System. In ANLP Conversational Systems
Workshop.

	Table of Content
	Topics
	Authors

