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Abstract

Terminology Acquisition (TA) methods are vi-
able solutions for the knowledge bottleneck prob-
lem that confines knowledge-intensive informa-
tion access systems (such as Information Ex-
traction systems) to restricted application sce-
narios. TA can be seen as a way to inspect
large text collections for extracting concise do-
main knowledge. In this paper we argue that
major insights over the notion of term can be
obtained by investigating a more domain-based
term definition. We propose a decision tree
learning approach as an interesting model of
the human TA activity. An incremental model
is proposed to study the evolution of the term
definition during the TA process over a particu-
lar implicit domain model. The experimental
apparatus is based on robust text processing
tools that support a large scale investigation.
The good results suggest that the proposed au-
tomatic TA model can support the development
of conceptual domain dictionaries as required by
knowledge-based information systems.

1 Introduction

Terminology Acquisition (TA) methods are a vi-
able solution for the knowledge bottleneck that
confines knowledge-intensive information access
systems (such as Information Extraction sys-
tems) to restricted application scenarios. TA
is the study of methods to extract concise do-
main knowledge representation (i.e. termino-
logical dictionaries or terminology knowledge
bases, TKBs) by inspecting large text collec-
tions. These corpora embody domain knowl-
edge in the most natural and effective ways.
The major limitation for any TA process is the
difficulty in capturing, in computational terms,
the complex notion of the underlying corner-
stone, i.e. the term.

Most automatic TA methods start from the
definition of what a term is and use it against a
domain corpus (Jacquemin, 1997). This latter
represents source information for any decision
about lexical items (i.e. legal terms of the do-
main) that do (or do not) meet the given defi-
nition. In this sense, the corpus expresses, im-
plicitly, all the information needed for semantic
characterization of the underlying domain: it is
thus an implicit domain model (IDM)

In automatic TA, there is a general consensus
in assuming a term as a surface representation
of a key domain concept (Jacquemin, 1997).
Since this definition is open to different ”op-
erational” interpretations, it has led to the de-
sign of different corpus-driven TA architectures.
An 7operational” model is obtained by specify-
ing the prototypes of admissible surface forms
and a notion of relevance of a candidate form
able to capture the importance of the under-
lying concept for the target domain. The pro-
totypes for the surface forms are usually speci-
fied via NP grammars in agreement with valid
natural language interpretations. Generally the
morpho-syntactic level is used where term pro-
totypes may be specified for instance as Adj
Noun or Noun Noun constraints able to select re-
spectively surface forms as joint venture or infor-
mation access. The notion of relevance for the
domain relies generally on probabilistic proper-
ties. In (Daille, 1994), the simple frequency f(s)
of surface forms in the corpus is suggested as the
most effective measure. Frequency f seems to
reproduce the terminologist judgement better
than other more complex statistical measures.
However, as admittedly mentioned in (Daille,
1994), frequency alone is still far from being a
perfect ”termhood” function.

In this paper we propose to consider further
information embedded in the underlying im-



plicit domain model (IDM). When terminolog-
ical dictionaries are manually built, terminolo-
gists start from a general notion of term and
apply it to the specific domain. As long as
they look at the target collections their intu-
itive perception of the underlying domain im-
proves. In fact, they tune their starting hypoth-
esis along with their exposition to texts. In this
process, the I DM usually consists of a domain
collection together with an explicit pre-existing
domain terminology, Ty. Two kinds of infor-
mation, often neglected by other computational
approaches, are here available: (1) usage of al-
ready accepted terms (terms in Tp) are embod-
ied by the corpus and (2) negative evidences, de-
rived through negative decisions, i.e. rejections.
Frequent occurrences, but non-terminological,
expressions increase the terminologists’ percep-
tion of what a non-term is.

Typical uses of accepted (and refused) can-
didates refine incrementally an inner definition
of terms. This, in a computational perspective,
should be expressed via an intentional term def-
inition. This is the purpose of the method de-
scribed in this paper. Several observable prop-
erties can be derived from the collections (i.e. in
the contexts of terms and non-terms). A predic-
tive (intensional) model, able to correctly sepa-
rate terms from non-terms, should be developed
on the most relevant (i.e. distinctive) of such
properties. In the following, two text fragments
appear:

Example 1 .

a) The vorticity equation governs the evolution
of vorticity in a geophysical fluid. This is an equa-
tion used in large-scale geophysical fluid dynam-
ics.

b) The generalized airfoil equation governs the
pressure across an airfoil oscillating in a wind tun-
nel.

Both expressions vorticity equation and general-
ized airfoil equation are here terminological with
respect to a scientific domain. The syntagmatic
structure of the sentences is similar. The ex-
pressions are both subjects of the verb govern
and this is often true of technical definitions for
physical laws. Such grammatical facts may be
usefully adopted as selective criteria as they es-
tablish a domain specific notion of similarity.
These decision rules should be embodied into

the domain-specific intensional term definition
(itd) that we aim to capture.

We then argue that major advances in ter-
minology acquisition can be obtained by adopt-
ing the intensional term definitions as a concise
operational notion. For this reason we settled
a learning model within a cycle of TA acquisi-
tion. The resulting learning model is assumed
to derive an itd as a decision tree representing
the terminologist activity in an explicit and hi-
erarchical way. The induction can be incremen-
tally applied to the TA cycle and the psycholog-
ical plausibility (as an heurism) of the resulting
model can be studied.

In Section 2, the itd learning model is defined.
The related feature space, introduced in Sec.
3, is based on the implicit domain model (i.e.
the corpus plus a seeding terminological dictio-
nary). It supports the application of machine
learning algorithms such as (Quinlan, 1993).
The natural language processing tools, respon-
sible for mapping the textual material into the
feature representations (Basili et al., 2000), are
then described in Section 3.2. The results are
analysed in Section 4. First, a discussion of
the induced models is presented (Section 4.1).
Then, performance in the TA task is measured
over benchmarking data (Section 4.2).

2 Decision Tree Learning of itds

The decision tree formalism is an interesting
way for representing the heurisms used by
the terminologists in assessing ”termhood” of
the incoming candidates as it represents the
decision rules in a hierarchical fashion. As
any categorisation method, a decision tree is
a function that, given an object represented
by a set of properties (i.e. attribute-value
pairs), outputs a category chosen from a pre-
determined set. This latter is the classification
decision over the input object. If € is the space
where properties are represented and © the set
of the target decisions, the decision tree DT is
then a function:

DT:Q—© (1)

In this formalism, the decision strategy is repre-
sented by a tree where each internal node corre-
sponds to a test on a given property, i.e. the test
on the value of a given attribute. The categori-
sation is achieved when a leaf node is reached,



i.e. all the tests in the path are passed.

Given its nature, a decision tree imposes a
hierarchy on the attributes. In fact, the more
discriminating is an attribute with respect to
the target competing concepts (decisions), the
higher it should be modelled in the hierarchy
since the decision can be taken more straight-
forwardly. Therefore, the inspection of an al-
ready built decision tree provides insights on
which feature has been considered more impor-
tant in the description of the target concepts.
Applied to the problem of term definition, the
decision tree should represent the internal hi-
erarchy of choices that terminologists perform
when observing the properties of a given term
candidate. The classification decision they have
to take is whether or not the candidate is a term,
i.e. whether or not it is an instance of the con-
cept of term.

Since in our model we assume that terminolo-
gists use as a source of discriminating hints the
term contextual information, in a decision tree
this information should be described. A sample
decision tree based on such a kind of contex-
tual information is depicted in Fig. 2. Here

V_Sog-essere
’7 >000772
V_Sog-essere NP_PP-contratto
r >0.153846 1 <=0.153846 . r >0.002398 1 <=0.002398 .

V_Obj-fare TERM TERM V_PP-fare

<=0.00772

Figure 2: A sample decision tree.

four properties are considered. The property
of the candidate of being: (1) subject of the
verb to be (V_Subj-essere); (2) object of the
verb to make (V_Obj-fare); (3) prepositional
modifier of the verb to make (V_PP-fare); and
(4) prepositional modifier of the noun con-
tract (NP_PP-contratto). What is stated in
the tree is that if the analysed candidate is
”enough” correlated with the verb to be in a
subject relation (i.e. the ”correlation score” is
between 0.00772 and 0.153846) it can be rea-
sonable considered a term, otherwise the corre-
lation with other features has to be evaluated.
The noticeable information in the tree is that,
in this particular term definition, the contextual
relation with the verb to be has been considered
as the more discriminating hint. In order to be

a useful decision maker, the tree should repre-
sent the important properties of the notion of
the term as well as the notion of non-term in
the given environment, i.e. in the particular
implicit domain model.

Standard and effective tools for the induc-
tion of decision trees are available (Quinlan,
1993). In particular, this latter method is
able to infer regularities over feature space with
continuous-valued attributes. This is necessary
in the model we propose since we want to study
the regular correlations of terms and non-terms
with the other words in the domain contexts.
It is worth noticing that the applicability of the
tree learning method is possible due to the in-
clusion of the non-term concept in the model of
TA postulated in this work.

The model of the overall process includes the
following steps: (a) Generation of a global fea-
ture vector for knowledge item (i.e. a term or a
non-term); (b) Induction of the target inten-
sional definition as a decision tree that divides
incoming candidates into terms and non-terms.

To better understand the terminologists’ be-
haviour, the above process can be also modelled
as an incremental approach. Newly accepted (or
rejected) candidates allow a dynamic revision of
the corresponding decision tree structure: a new
learning process can be activated over the newly
assessed instances.

3 Making use of Implicit Domain
Models in TA

The induction of concise domain-oriented term
definition needs a suitable representation of the
observations. This representation should be
derivable from the implicit domain model. A
suitable observation model should include all
those selective properties characterizing the no-
tion of term and non-term.

The aim here is to understand if and how reg-
ularities in the behaviour of terms in the corpus
are used by terminologists as selective features
for the final decision. Syntax will be used (in
line with other works like (Grefenstette, 1993)
or (Basili et al., 2001)) as linguistic level able to
characterize the similarity among contexts.

In the next Sections the formal definitions
of the feature vectors representing positive and
negative instances are presented.



3.1 Sampling the Implicit Domain

Model

When collecting evidences of a given term ¢
across a domain corpus we need to determine
whether or not different contexts are indica-
tors of its syntactical behaviour. A first pos-
sibility is to collect only contexts where a valid
surface form for ¢ appears. However, in many
cases terms are referred in an elliptic fashion.
In the example 1.a), the second occurrence of
the word equation is an elliptic occurrence of
vorticity equation. As a consequence the context
This is an equation used in large-scale geophysi-
cal fluid dynamics. describes the contextual be-
haviour of the vorticity equation term as well.
Many simple terms (i.e. one-word terms) are
elliptic references to complex terms (i.e. multi-
word terms). Generally, the term grammatical
head (e.g. equation in vorticity equation) is used
in elliptic references.

The syntactic, hereafter exogenous, be-
haviour of a term is driven by its semantics.
The head h(t) of a term ¢ is usually its seman-
tic carrier. This assumption is widely used in
other term structuring approaches (cf. (Morin,
1999)). h(t) is thus a good canonical candidate
of t. Its occurrences in the corpus are represen-
tative of direct or elliptic occurrences of t. This
is a computationally attractive approximation
for estimating frequency. Moreover, as terms
are expected to have unique interpretations in
a coherent domain, terms ¢ and ¢ such that
h(t) = h(t') will be considered equivalent with
respect to their exogenous information. Accord-
ingly, terms vorticity equation and generalized
airfoil equation are equivalent with respect to the
head equation.

The contribution of all contexts where a given
head h(t) appears forms an equivalence class,
C(t), in the corpus. A single (collective) repre-
sentation, v(t), for ¢ can be thus derived from
all ¢ € C(t). This seemingly applies to ”non-
terms”. In the next section, the definition for
vectors v(t) , i.e. feature vectors populating the
sample space, is given.

3.2 Syntactic feature spaces

The induction of a model for terms (or non
terms) requires a suitable knowledge represen-
tation formalism in which the global feature vec-
tors for each term equivalence class can be de-

rived by their local contexts represented as lo-
cal feature vectors. The global feature vectors
should represent the exogenous behaviour of an
entire term equivalence class. A model pre-
serving the syntactic information together with
the local lexicalisations is then proposed. In
such a ”syntactic lexicalised” model (A), the
lexical item that governs the observed gram-
matical relation is stored in a local vector to-
gether with its grammatical type. For exam-
ple, given the context " The equation of mechan-
ics governs the conservation of energy.” of equa-
tion, we can capture equation as the subject of
the verb to-govern. In the syntactic lexicalised
space A the different lexicalised information
(Syntactic_Type, governing lemma) will be
considered as independent features. For exam-
ple F*=(V-Subj, to-govern) for t=equation or
F,é\:(NP—PP,conservation) for the t=energy
can be derived from Ex. 1.

The above features can be obtained by shal-
low parsing of the corpus sentences. Notice
that syntactic ambiguity in parsing may affect
the above observations and frequency counts.
Highly ambiguous (but frequent) phenomena
(e.g. prepositional phrase attachments) may in-
crease the values for irrelevant features. On the
contrary, the pruning of all ambiguous relations
may result in too poor evidences. In our ap-
proach we use the notion of plausibility of a
grammatical relation within an eXtended De-
pendency Graph (X DG) representation scheme
(see (Basili et al., 2000)). Ambiguous relations
r in a dependency graph are given a score pl(r)
inversely proportional to the number of conflict-
ing syntactic interpretations. The plausibility
pl(r) ranges in the (0, 1] interval: pl(r) = 1 if
r is unambiguous for the parser, and pl(r) < 1
otherwise.

VP_PP::: 0,5

VP_Subj:: 1

VP_Obj:::1

[The bread-and-butter equation] [governs] [the conservation] [of energy] [.

Figure 3: A sample XDG

Grammatical relations, local to the source
sentence s, are thus a set I(s) of triples (¢, F, p)
where p is the plausibility local to s of the rela-
tion between the term ¢ and the feature F. The
excerpt in Ex. 1.a) generates the XDG in figure



3, where
the relations (energy,NP-PP-conservation,0.5)
and (energy,VP-PP-govern,0.5) are ambiguous.
The i-th component (representing the feature
F;) of the local feature vector for ¢ thus obtained
as ﬁf(ta 3) = z}(t,Fi,p)EI(s)p-

Once local vectors 7(t,s) are available for
sentence s, the global feature vectors in the two
spaces are obtained as follows:

vty = Y T(,s) (2)

seC(t)

where C(t) include the corpus contexts (i.e. the
equivalency class) of ¢.

The values a feature vector assigns to fea-
tures F; emphasize the strength of association
between the ¢ and F;. Cumulative plausibility
here replaces frequency counts to better model
ambiguity in observations. Notice that, for the
same F;, the estimated frequency Z(t7 Fyp)eC(t) P
produces the same ranking as mutual informa-
tion MI(t, F;). Feature vectors v™(t) are fi-
nally normalized to obtain 9*(¢). These normal-
ized vectors ©(t) are input to the decision tree
learner. For sake of comparison, a frequency-
based learner has been obtained (feature space
®) by defining 9®(t) = (rf(t)) where rf(t) is
the relative frequency of ¢ in the corpus. Such
discrete space will simulate the behaviour of a
quantitative model based on simple frequency.

The above spaces, i.e. the syntactic lexi-
calised and the frequency-based spaces, can be
called here "pure”. As better results can be
obtained if different information is integrated
(as also suggested in (Basili et al., 2001)): con-
textual information can be used in cooperation
with the term frequency. An other space has
been thus defined via juxtaposition of the un-
derlying pure vectors, v®(t), and *(t): the re-
sulting space ® x A merges frequency and syn-
tactic lexicalised information.

4 Experimental investigation

The aim of the investigation is twofold. Firstly,
to establish that a domain-oriented term defini-
tion better models the terminologists’ choices.
Secondly, to analyse the upgrading of the model
of the terminologists’ term definition during the
analysis. The two different lines of investigation
have been carried out over a well-established
implicit domain model. For what concerns the

reported performances, a statistical validation
has been obtained by n-fold cross validation.
The source domain consists of a corpus of about
250,000 words on the Italian Civil laws, and of
a corresponding thesaurus of 600 term equiva-
lence classes built by a team of expert terminol-
ogists. The corpus has been processed by the
CHAOS parser (Basili et al., 2000) producing
about 3,000 different term equivalency classes.
We assumed that the only valid term instances
are those coded in the thesaurus. We have thus
about 1/4 valid structures among the corpus-
derived candidates.

4.1 DT as itds

For the analysis of the intensional term defini-
tion, an incremental approach has been carried
out (cf. Sec. 2). The seeding of the process (i.e.
the pre-existing terminology of the initial im-
plicit domain model) has been obtained collect-
ing a 80% of the 600-term thesaurus as training
info and the rest as test. Moreover, the termi-
nologists incremental work has been simulated
by training over increasing bags of non-terms.
The learning process has been fed with an in-
creasing number of non-terminology subsets (up
to 20) and a decision tree has been derived for
each subset. By adding the negative evidence
(i.e. refused entries) as training examples we
simulate the activity of the terminologists.

By inspecting the obtained trees we study the
increasing awareness about the domain along
with the term judgment. As expected, the
trends described below are shared by the dif-
ferent trees derived via iterations in the n-fold
cross validation.

In Fig. 4 and in Fig. 5, we report an ex-
cerpt of the decision trees derived, respectively,
over the A and ® x A spaces. The reported
3 trees reflect different stages as they are built
over increasing numbers of negative examples:
lex-1-3 to lex-1-20 refer to 3/20 and 20/20
among the 2400 available negative examples. As
the upper levels of the trees are shown, the fig-
ures show the most general rules. The trend (see
Fig. 4) is that general features (e.g. being part
of a predicative structures, i.e. V_Obj-essere)
are initially retained as decision rules. How-
ever they lose importance as soon as more neg-
ative information is available. General predic-
tion rules based on general verbs such as essere
(to be), avere (to have), etc. are substituted



Iteration: <lex—1-3>

V_Obj-essere <= 0.166667 : TERM
V_0Obj essere > 0.166667 :

| V_Obj-fare <= 0.05 : NON-TERM
|  V_Obj-fare > 0.05 : TERM
Tteration: <lex 1 4>

V_Obj-essere > 0.185185 : NON-TERM

V_Obj—essere <= 0.185185 :
| V Sog-avere > 0.00281691 :
V_Sog avere <= 0.00281691 :
| V_Sog-dovere > 0.00262467 :
V_Sog-dovere <= 0.00262467 :

TERM

|
| TERM
|
|
|

|
| | NP_pPP-effetto > 0.00673758 : TERM
| | NP PP-effetto <= 0.00673758 : ———— >
Iteration: <lex—1-20>
V PP-intervenire > 0 : TERM
V_PP intervenire <= 0 :
| NP_PP-estinzione <= 0 :
NP_PP-nomina <= 0 :
| V_PP-escludere <= 0.00136612 : ————- >
V pP-escludere > 0.00136612 :
| NP_PP cosa > 0.00250356 : NON TERM

|
|
| | NP_PP-cosa <= 0.00250356 :
| | NP_PP-venditore > 0.0048077 : NON-TERM
| | NP_PP-venditore <= 0.0048077 :
| | V PP-riconoscere <= 0.00333333 : TERM
| | V_PP riconoscere > 0.00333333 : NON TERM
NP_PP-nomina > 0 :

| NP_PP-affittuario > 0 : NON-TERM

| NP_PP-affittuario <= 0 :

| | NP PP-scadenza <= 0.00735295 : TERM

| | NP_PP scadenza > 0.00735295 : NON TERM
P_PP-estinzione > 0 :

NP_PP-persona <= 0.0277778 : TERM

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| NP_PP-persona > 0.0277778 : NON-TERM

|
|
|
|
|
|
|
|
|
|
|
|
|
|
N
|
|

Figure 4: Domain-oriented definition evolution in
the A space

by more domain specific cues. Domain specific
rules as the ones based on intervenire (to inter-
vene), nomina (nomination), estinzione (liqui-
dation), etc. tend to appear higher in the hierar-
chy, i.e. they gain importance. Moreover, since
the categorization capability of the trees aug-
ments (i.e. the error rate decreases from 40%
to 14,25%), the induced (domain-specific) DT
seems better modelling the terminologist judge-
ment. Fig. 5 reports DTs based also on fre-
quency. We can observe here a similar adap-
tation process. In fact, the general rules fully
based on frequency (e.g. freq-lex-3-2) are re-
placed by more specific ones that do not depend
only on frequency: on the contrary syntagmatic
lexicalised decision rules emerge at the upper
levels (e.g. freq-lex-3-20).

We observed the emergence of very specific
rules (patterns) at the lower levels of the hierar-

chy as, for example, the following excerpt of tree
(re-written in an IF... THEN...ELSE... fashion):

1. IF plausible(atto-NP_PP-X) THEN
1.1. IF plausible(apporre-V_0bj-X) THEN TERM
1.2. ELSE IF plausible(autorizzare-V_0bj-X)
THEN TERM ELSE NON TERM
ELSE

Iteration: <freg_ lex-3-2>

Freq > 0.0348566 :
Freq <= 0.0348566 :
| Freq <= 0.0174283
| Freq > 0.0174283 :

TERM

: NON-TERM
TERM

Iteration: <freq lex—3-4>

Freg <= 0.0348566 :

| Freq <= 0.0174283 :
| Freq > 0.0174283 :

| | V_PP-essere <= 0.0820313

| | V_PP-essere > 0.0820313 :
Freq > 0.0348566 :

| NP_PP-trasferimento > 0 :

NP_PP-trasferimento <= 0 :
| NP_PP-creditore > 0.00128699 :

| NP_PP-creditore <= 0.00128699 :

| | NP_PP-responsabilita > 0.00543479 :

| | NP_PP-responsabilita <= 0.00543479 :

NON-TERM

: NON-TERM
TERM

TERM
TERM

Iteration: <freq lex—-3-20>

NP_PP-estinzione <= 0 :

NP_PP-deliberazione <= 0.00485437 :

| V_PP-effettuare <= 0.000685865 :
| NP_PP-trascrizione <= 0.000614251 :
| NP_PP-trascrizione > 0.000614251 :
| | Freq <= 0.278853 : NON-TERM
| | Freq > 0.278853 :
V_PP-effettuare > 0.000685865 :
| V_PP-operare <= 0.00243307 : TERM

V_PP-operare > 0.00243307 : NON-TERM

|
|
| |
| |
| |
| |
| |
| |

| | |

| NP_PP-deliberazione > 0.00485437 :
| | NP_PP-data <= 0.015641 : TERM
| | NP_PP-data > 0.015641 : NON-TERM
NP_PP-estinzione > 0 :

| NP_PP-persona <= 0.0277778 : TERM

| NP_PP-persona > 0.0277778 : NON-TERM

Figure 5: Domain-oriented definition evolution in
the & x A space

where plausible(atto-Rel-X) expresses the
contraints that the candidate X must be observ-
able (frequently) as a modifier of type Rel with
the word atto (i.e. legal act). In this case, the
rule applies to heads like notaio (notary) since
structures like atto di notaio (the act of notary)
and autorizzare il notaio (to authorize a notary)
are frequent: they are thus accepted as terms
(as for rules 1. and 1.2). On the contrary, an
head like ricevimento (the reception) is refused.
In fact, although atto di ricevimento (the act of
reception) is frequent in the corpus, there are no
frequent structures for contraints 1.1 and 1.2
(e.g. * apporre un ricevimento (to pose a recep-
tion and * autorizzare un ricevimento (to autho-
rize a reception). Criteria like the above ones
effectively capture the terminologist behaviour
in a computationally attractive form.

4.2 Performance Evaluation

A general analysis of the average error rate e
(i.e. the percentage of misclassified items with
respect to the terminological database avail-



P x A
13,88

Feature Space P A
Error Rate (%) | 16,99 14,25

Table 1: Final error rate on the ®, A and ® x A.

able) has been also carried out. In each 5-fold
cross-validation, the system considers an 80% of
the corpus candidates as training items (divided
evenly between positive terms in the thesaurus
and negative items, i.e. nominals that are NOT
in the thesaurus). The test is then run over
the 20% remaining candidates and error rates
are then reported as mean values. The syn-
tactic lexicalised A space reaches superior per-
formances with respect to the pure frequency
(®). All the two learning processes make simi-
lar use of negative information. Moreover, the
one depending more tightly on the domain evi-
dence (A) outperforms a more domain indepen-
dent notion of relevance (i.e. frequency). The
exogenous grammatical information is very ef-
fective (i.e.+18% wrt ®). This confirms the ini-
tial assumption: stable relations between par-
ticular lexicals in the domain (captured, in this
case, with syntactic lexicalised feature model)
produce better models for the inner perception
of terms hold by the terminologists. Further-
more, the syntactic lexicalised model represents
specific "shallow” semantic properties of terms
as induced from the corpus. Combining differ-
ent sources always outperforms ”pure” systems:
performances obtained in the ® x A are superior
to the one obtained on the ”pure” A.

5 Conclusion

In this paper, a terminology acquisition model
based on the decision tree learning has been pre-
sented. The proposed approach makes use of
contextual evidence observable for known terms
as well as information about non terminolog-
ical expressions. A lexico-syntactic represen-
tation of such information is used on a large
scale within a robust text processing frame-
work (Basili et al., 2000). Moreover, a de-
cision tree machine learning algorithm (Quin-
lan, 1993) is applied for the empirical investiga-
tion. First, experiments aimed to simulate the
development of an explicit domain-dependent
model of termhood have been carried out. Re-
sults show that decision trees embed system-
atic information and emphasize correctly typi-

cal domain effects. Performance evaluation con-
firms the effectiveness of the overall approach
either on a pure application of lexico-syntactic
criteria as well as by combining it with more
frequency oriented rules. An improvement of
about 18% against the previously reported suc-
cessfully methods has been obtained.

The method depicted above represents an
original approach to automatic TA. Since it
seems better to approximate the terminologist
behaviour, it will play a relevant role in our
future research on the induction of ontological
knowledge from texts.
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