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Abstract

In software engineering a system requirements
document written in a natural language (NL)
needs to be translated into one of the formal
specification languages for system execution.
When this translation is to be automated, res-
olution of the ambiguity in the document and
explicit definition of implicit domain knowledge
are necessary. In our approach, Contextual Nat-
ural Language Processing is used to overcome
the ambiguity and the domain knowledge is ex-
pressed in DARPA Agent Markup Language
(DAML). The result is a formal representation
of the informal requirements in NL for proto-
typing and even for implementation.

1 Introduction

In software development still the natural lan-
guage (NL) has remained as the practical choice
for the domain experts to specify the system
even with existence of many formal specifica-
tion languages. This is due to the fact that for-
mal specification languages are hard to master
and inappropriate as a communication medium.
However the syntax and semantics of NL, even
with its flexibility and representation power, is
not formal enough to be directly used for veri-
fication, prototyping, or implementation of the
system. Therefore the requirements document
in NL is translated, usually manually, into a for-
mal specification. However, when the system is
very complicated, which is mostly the case when
one chooses to use formal specification, this con-
version is both non-trivial and error prone, if
not implausible. The major bottleneck of the
automation of this conversion results from the
inborn characteristic of ambiguity of NL and the
implicit domain knowledge.

To handle this ambiguity problem, some
have argued that the requirements document

has to be written in a particular way to
reduce ambiguity in the document (Wilson,
1999). Others have proposed controlled nat-
ural languages (e.g., Attempto Controlled En-
glish (ACE) (Fuchs and Schwitter, 1996)) which
limit the syntax and semantics of NL to avoid
the ambiguity problem. Another approach to
NL requirements analysis is to search each line
of the requirements document for specific words
and phrases for the purpose of quality analysis
(Wilson et al., 1996). A similar project (Gi-
rardi, 1996) focuses mainly on the automatic
indexing and reuse of the software components
in the requirement documents. However there
has been no attempt to automate the conversion
from requirements documentation into a formal
specification language for implementation.

In our research project, Contextual Natural
Language Processing (CNLP) is used to han-
dle the ambiguity problem in NL and DARPA
Agent Markup Language (DAML) (van Harme-
len et al., 2000) is used to deal with the im-
plicit domain knowledge to achieve the auto-
mated conversion from NL requirements doc-
umentation into a formal specification (in our
case VDM++ - an object-oriented extension of
the Vienna Development Method (Bjgrner and
Jones, 1978)).

First the requirements document is converted
into Extensible Markup Language (XML) (Bray
et al., 2000) format. Then a knowledge base
is built from the XML requirements document
using CNLP to parse the documentation and
to store the syntax, semantics, and pragmat-
ics information. In this phase, the ambiguity
is detected and resolved, if possible. Once the
knowledge base is constructed, its content can
be queried in NL. The information of the do-
main specific knowledge specified in DAML is
extracted. Next the knowledge base is con-
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verted, with the information of the domain
specific knowledge, into Two Level Grammar
(TLG) by removing the contextual dependency
in the knowledge base. TLG is used to build a
bridge between the informal knowledge base and
the formal VDM++ representation. Finally the
TLG code is translated into VDM++ by data
and function mappings. VDM++ has been our
choice as a target specification language for this
project because VDM++4 has many similarities
in structure to TLG and also has a good col-
lection of tools for analysis and code genera-
tion. Once VDM++ representation of the spec-
ification is acquired we can do prototyping of
the specification using the VDM++ interpreter.
Also we can convert this into a high level lan-
guage such as Java’™ or C++ or into a model
in the Unified Modeling Language (UML) (Qua-
trani, 2000) using the VDM++ Toolkit (IFAD,
2000). The entire system structure is shown in
Figure 1.

In the sections which follow, we will present
the following simple Automatic Teller Machine
(ATM) example to illustrate our approach and
describe the various system components.

Bank keeps list of accounts. It verifies ID and
PIN giving the balance and updates the balance
with ID. An account has three data fields; ID,
PIN, and balance. ID and PIN are integers and
balance is a real number. ATM has 3 service
types; withdraw, deposit, and balance check.
For each service first it verifies ID and PIN
from the bank giving the balance. The machine
withdraws an amount with ID and PIN giving the

balance in the following sequence. If the
amount is less than or equal to the balance
then it decreases the balance by the amount.
And then it updates the balance in the bank
with ID. ATM deposits an amount with ID and
PIN giving the balance in the following order.
It increases the balance by amount and then
updates the balance in the bank with ID. ATM
checks the balance with ID and PIN giving

the balance.

2 Construction of Knowledge Base
from Requirements

The raw information of the requirements doc-
ument in natural language is not proper to be
used directly because of the ambiguity and im-
plicit semantics in the document. Therefore an
explicit and declarative representation (knowl-
edge base) is needed to represent, maintain,
and manipulate knowledge about a system do-
main (Lakemeyer and Nebel, 1994). Not only
does the knowledge base have to be expressive
enough to capture all the critical information
but also it has to be precise enough to clarify the
meaning of each knowledge entity (sentence).
In addition, the knowledge base has to reflect
the structure of TLG into which the knowledge
base is translated later. The knowledge base
isn’t a simple list of sentences in the require-
ments document. The linguistic information of
each sentence such as lexical, syntactic, seman-
tic, and most importantly discourse level infor-
mation has to be stored with proper systematic
structure.

To accomplish this, first each sentence in
the requirements document is read by the sys-
tem and tokenized into words. At the syn-
tactical level, the part of speech (e.g. noun,
verb, adjective) of each word is determined by
bottom-up parsing, whereas the part of sen-
tence (e.g. subject and object) of each word
is determined by top-down parsing (Jurafsky
and Martin, 2000). Separating the parsing pro-
cess into these two different sub-processes makes
the algorithm simpler because the latter pro-
cess is very context-sensitive about the features
like verb form and sub-categorization whereas
the former one is context-sensitive about per-
son and number features (Gazdar et al., 1985).
By using the predetermined part of speech for
each word from the part-of-speech parsing, the
number of the rules for the context free gram-
mar of the part-of-sentence parsing is reduced



substantially. The corpora of statistically or-
dered parts of speech (frequently used ones be-
ing listed first) of about 85000 words from Moby
Part-of-Speech II (Grady, 1994) are used to re-
solve the syntactic ambiguity in this phase. In
other words, when there is more than one valid
parsing tree for a sentence, this corpora is used
to break the tie. Elliptical compound phrases,
comparative phrases, compound nouns, and rel-
ative phrases are handled in this phase as well.
A part of the result of this process for the ATM
example is shown as follows.

Bank keeps list of accounts

Part of speech : bank(noun) keeps(verb)
accounts_list(noun)

Part of sentence : ( subject verb object )

It verifies ID and PIN giving the balance and
updates the balance with ID

Part of speech : it(pronoun) verifies(verb) ID
and PIN(noun) giving(verb) the(article)
balance(noun)

Part of sentence : ( subject verb object
helping: ( verb adjective object ) )

Part of speech : it(pronoun) updates(verb)
the (article) balance(noun) with(preposition)
ID(noun)

Part of sentence : ( subject verb adjective
object adverb preposition_object )

Also the anaphoric references (pronouns) in
a sentence are identified according to the cur-
rent context history. A pronoun can represent
a word, sentence, or even context. This is done
according to the recency constraints (the recent
word has a higher priority than less recent ones)
and the discourse focus (the co-referred word
has a higher priority than words that aren’t)
(Brennan et al., 1987) (Grosz et al., 1983). For
a pronoun in a sub-sentence, first the nouns in
the main sentence are checked. Also the pre-
vious subjects, objects, and objects for prepo-
sitions are checked in that order because there
is stronger tendency for a pronoun to refer to
the previous subject in a requirements docu-
ment compared with other types of textual doc-
uments.

It is worthwhile to mention that the require-
ments documents are easier to process than
other types of textual documents in the sense
that usually requirements documents have well
defined structures with less ambiguities and in-
frequent use of pronouns.

Once the references of pronouns are deter-
mined, each sentence is stored into the proper
context in the knowledge base. This involves
the syntactic, semantic, and most importantly
discourse level information. This part of the
project is the most challenging part because if a
sentence is located in a long context, the mean-
ing of the sentence can totally change than what
is originally intended. A contextual knowledge
base is formalized as a tree-like data structure
not only to store each sentence in its right con-
text but also to make a smooth conversion from
the knowledge base to TLG. Meta-level context
(context for context) determines where to put
each sentence in the tree according to the dis-
course level information.

The current context is created or switched dy-
namically according to the discourse level infor-
mation (sections, subsections, and paragraphs)
and semantics information in related sentences.
For instance, in the ATM example the phrase
“in the following sequence” indicates that the
following sentences are likely to stay within the
current context. Therefore a sub-context to
hold the following sentences has to be created
under the current context. Each context keeps
a list of keywords. For a sentence to belong to
a certain context, at least one significant word
in the sentence has to be an element of the key-
words list of the context. This is similar to the
frame problem (McCarthy and Hayes, 1987) in
the sense that given a current situation (con-
text) and a new action (sentence) a new situa-
tion (context) is to be identified. Contradictions
are resolved by not allowing two contradictory
sentences under the same context.

The contextual structure of the knowledge
base is shown in Figure 2. The black ovals indi-
cate the contexts that hold the data type infor-
mation whereas the gray ovals indicate the con-
texts that contain the functional information.
Note how the meaning of the sentence “It in-
creases the balance by amount” can be clarified
further by referring to its outer contexts. There-
fore we can tell from Figure 2 that this decre-
ment operation is a part of the deposit service
and this service in turn belongs to ATM.

In our research, a lexical database, WordNet
(Miller, 1990), is used in several places. To
resolve anaphoric references (by distinguishing
living things from others to resolve the pronouns
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he and she), categories of nouns (event, at-
tribute, act, object, location, etc.) and verbs
(motion, possession, stative, etc.) are used. For
example, in the sentence “a dog eats a cookie
and it likes it” the word ‘dog’ is a noun in an-
imal category, the word ‘cookie’ is a noun in
food category, and the word ‘eats’ is a verb in
consumption category. Therefore the first ‘it’
refers to ‘dog’ which consumes the second ‘it’
which refers to ‘cookie’. Also hypernym infor-
mation for nouns and verbs from WordNet are
used for keywords checking in the context con-
struction. As an example the word ‘computers’
is closer to the word ‘machines’ than the word
‘banks’ in the sentence “computers are used in
banks and the machines are efficient.” Another
place where hypernym information for nouns
from WordNet are used is the non-class words
filtering in the TLG translation which will be
discussed further shortly.

Also the content of the knowledge base can be
queried by the user in natural language. The
following dialogue between the system and a
user shows some example queries about ATM.

User : What does the bank keep?
System : Bank keeps list of accounts.
User : How does the ATM deposit the amount?
System : ATM deposits amount with ID and PIN
giving balance in following order,
ATM increases balance by Amount,
then ATM updates balance in bank with ID

Because the requirements are stored in a struc-
tural format according to the context, the rele-
vant other information is also retrieved as shown
in the answer for the second query.

In summary, a contextual knowledge repre-
sentation is constructed from a requirements
document capturing not only syntactic and se-
mantic information but also structured con-
textual information. Along with this process,
linguistic ambiguity is detected and resolved
in parsing and construction of the contextual
knowledge base.

3 Domain Specific Knowledge in
DAML

A requirements document usually contains spe-
cific information about how the system should
work whereas the domain knowledge describes
the relationship between components and other
constraints which are usually presumed in re-
quirements documents or too implicit to be ex-
tracted easily from the original documents. For
example, the requirements says “the user inputs
the 4 digit PIN number by pressing the but-
tons.” And the fact that the set of the buttons
is a component of the ATM machine is implicitly
assumed and therefore not explicitly mentioned
in the requirements documents. So this kind of
information is needed to be specified as the do-
main specific knowledge. The units of measure-
ments, who passes what to whom, which syn-
onyms of a word are used, what each acronym
stands for, etc., are some of the examples of the
domain specific knowledge that can supplement
the requirements documents.

In our research the domain knowledge of a
system is specified in DAML which is a frame-
based language with an expressive semantics
to facilitate the concept of the Semantic Web
(Decker et al., 2000).

The following examples show the use of
DAML as domain knowledge for the ATM
example. The ‘disjointUnionOf’ notation in
DAML can be used to list the subcomponents
of a component. Three data fields of an account
are shown as follow.

<daml:Class rdf:ID="Account">
<daml:disjointUnionOf
rdf :parseType="daml:collection">
<daml:Class rdf:ID="ID"/>
<daml:Class rdf:ID="PIN"/>
<daml:Class rdf:ID="Balance"/>
</daml:disjointUnion0f>
</daml:Class>

where rdf stands for Resource Description
Framework on which DAML and XML are built.



The ‘sameClassAs’ definition in DAML can
be used to indicate that the word ‘Machine’
used in the ATM requirement is a synonym
of the word ‘ATM’ and that the word ‘ATM’
stands for “Automatic Teller Machine”.

<daml:Class rdf:ID="Automatic_Teller_Machine'>
<daml :sameClassAs rdf:ID="Machine"/>

<daml :sameClassAs rdf:ID="ATM"/>
</daml:Class>

Using ‘ObjectProperty’ notation in DAML,
the fact that Balance is passed from Bank to
ATM can be expressed as follows :

<daml:0bjectProperty rdf:ID="passBalance">
<rdfs:domain rdf:ID="Bank"/>
<rdfs:range rdf:ID="ATM"/>
</daml:0bjectProperty>

The data type or the measurement unit of a
component can be expressed using ‘Datatype-
Property’ notation in DAML as shown below
for the type of Amount.

<daml :DatatypeProperty rdf:ID="Amount">
<rdfs:range rdf:resource="http://www.w3.org/
2000/10/XMLSchema#float"/>

</daml :DatatypeProperty>

</daml:Class>

In summary the precise formal semantics of
DAML provides a very useful way to specify
the domain specific knowledge explicitly. This
knowledge is used as supplementary information
for the conversion from knowledge base to TLG.

4 Conversion from Knowledge Base
to TLG

Two-Level Grammar (TLG) may be used to
achieve translation from an informal NL specifi-
cation into a formal specification. Even though
TLG has NL-like syntax its notation is formal
enough to allow formal specifications to be con-
structed using the notation. It is able not only
to capture the abstraction of the requirements
but also to preserve the detailed information for
implementation. The term “two level” comes
from the fact that a set of domains may be de-
fined using context-free grammar, which may
then be used as arguments in predicate func-
tions defined using another grammar.

The combination of these two levels of
grammar produces Turing equivalence (Sintzoff,

1967) and so TLG may be used to model any
type of software specification. The basic func-
tional/logic programming model of TLG is ex-
tended to include object-oriented programming
features suitable for modern software specifica-
tion (Bryant, 2000).

The syntax of the object-oriented TLG is:

class Class_Name.
Data_Name{,Data_Name}::Data_Type{,Data_Type}.
Rule_Name:Rule_Body{,Rule_Body}.

end class [Class_Name].

where the term that is enclosed in the curly
brackets is optional and can be repeated many
times, as in Extended Backus-Naur Form
(EBNF). The data types of TLG are fairly
standard, including both scalar and structured
types, as well as types defined by other class
definitions. The rules are expressed in NL with
the data types used as variables.

The conversion from the knowledge base to
TLG flows very nicely because the knowledge
base is built with the structure taking this trans-
lation into consideration. The root of each con-
text tree of the knowledge base becomes a class.
And then the body of each class is built up with
the sentence information in the sub-contexts of
the root. The knowledge base of the ATM ex-
ample in Figure 2 would be translated into the
following TLG specification.

class Bank.
Accounts_List ::
ID :: Integer.
PIN :: Integer.
Balance :: Float.

AccountList.

verify ID and PIN giving Balance.
update Balance with ID.
end class.

class Account.
ID :: Integer.
PIN :: Integer.

Balance :: Float.
end class.
class ATM.
Balance :: Float.
Amount :: Float.

ID :: Integer.
PIN :: Integer.

withdraw Amount with ID and PIN
giving Balance:
verify ID and PIN from Bank giving Balance,



if Amount <= Balance then
Balance := Balance - Amount,
update Balance in Bank with ID
endif.

deposit Amount with ID and PIN

giving Balance:

verify ID and PIN from Bank giving Balance,
Balance := Balance + Amount,

update Balance in Bank with ID.

check balance with ID and PIN

giving Balance:

verify ID and PIN from Bank giving Balance.
end class.

Observe that the sentence that increases or
decreases the balance is mapped into the TLG
assign statement. NL has a fairly large size
vocabulary whereas TLG uses specific words
for the language-defined operations. Therefore
there is a many-to-one mapping between a NL
expression and a specific TLG operation just
like the assign operation example. Therefore
this mapping function has to be defined before
the translation takes place. As seen in the above
TLG specification of ATM, TLG has flexibility
with its NL-like syntax as well as formality with
its strong typing and formal semantics.

Also not all the nouns can be candidates as
class names. A word that is perceptive, cogni-
tive, or stative (e.g. notation, fact) is likely to
be in the non-class type whereas a word that
represents artifact or substance (e.g. airplane,
basket) is the class type. We use the hypernyms
in WordNet to decide which type a noun belongs
to and to filter out the non-class type words.
Some of the sentences in the requirements doc-
uments are just commentarial and normally the
subjects of these sentences can be categorized
as the non-class type.

Once we have translated the knowledge base
into TLG and then the TLG specification into
a VDM++ specification (for more details on
this translation we refer the readers to (Bryant
and Lee, 2002)) we can convert this into a high
level language such as Java’™ or C++, using
the code generator that the VDM Toolkit”™
provides. Not only is this code quite efficient,
but it may be executed, thereby allowing a
proxy execution of the requirements. This al-
lows for a rapid prototyping of the original re-
quirements so that these may be refined further
in future iterations. Namely the logical inconsis-

Account ATM
(from Generated classes) (from Generated classes)
%< <instance variable>> ID : int
%< <instance variable>> PIN : int *<<operation>> deposit()
%< <instance variable>> Balance : real| | *<<operation>> withdraw()

*<<operation>> checkBalance()
-Accounts_List -CBank
0..n {ordered}
Bank

(from Generated classes)

%< <operation>> update()
*<<operation> > verify()

Figure 3: UML for ATM.

tencies, contradictions, and ambiguities hidden
in the informal description can be discovered
in the formal representation using the VDM++
Toolkit. Another advantage of this approach is
that the VDM++ Toolkit also provides for a
translation into a model in the Unified Model-
ing Language (UML) using a link with Rational
Rose’™ (Figure 3).

5 Summary and Conclusion

This research project is developed as an ap-
plication of formal specification and linguis-
tic techniques to automate the conversion from
a requirements document written in NL to a
formal specification language. The knowledge
base is built up from a NL requirements doc-
ument in order to capture the contextual in-
formation from the document while handling
the ambiguity problem and to optimize the pro-
cess of its translation into a TLG specifica-
tion. Domain specific knowledge is represented
in DAML to supplement this automation by
specifying implicit domain knowledge explicitly.
Well structured and formalized data representa-
tions especially for the context are used to make
smooth translations from NL requirements into
the knowledge base and then from the knowl-
edge base into a TLG specification. Due to its
NL-like syntax and flexibility without losing its
formalism, TLG is chosen to fill the gap between
the different level of formalisms of NL and for-
mal specification language.

The system can currently handle the pre-
sented example completely, as described. We
are performing additional evaluations of the
system for other requirements documents,
including some requirements documents de-



scribing actual U. S. Army systems. It is
expected that the technology we are developing
will be applicable to these requirements docu-
ments as well. If successful, this will provide
a very useful tool to assist software engineers
in moving from the requirements document to
the formal specification. Our future work is
to continue developing the system to improve
system usability and robustness with respect
to its coverage of requirements documents.
When finalized, it is expected that by using
the formalized context in CNLP and TLG as
a bridge between the requirements document
and a formal specification language, we can
achieve an executable NL specification for a
rapid prototyping of requirements, as well as
development of a final implementation.
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