Experiments in German Noun Chunking

Michael Schiehlen
Institute for Computational Linguistics, University of Stuttgart,
Azenbergstr. 12, 70174 Stuttgart
mike@adler.ims.uni-stuttgart.de

Abstract

The paper describes a method to process recursive
noun phrases with finite-state cascades. It is shown
that chunking of recursive noun phrases necessitates
a readjustment of the finite-state cascades approach.
In particular, the property of monotonicity must be
given up. Furthermore, the paper explores the influ-
ence of POS tags and online agreement checking on
the overall performance.

1 Introduction

Finite-state parsers (Abney, 1997) rank among the
fastest parsers to date. Such parsers facilitate the
linguistic processing of large amounts of text. Fur-
thermore, it has been shown that finite-state parsers
can be used to extract predicate-argument structure
at least for complement relations. Since arguments
are typically expressed by NPs or PPs, identifying
NPs and PPs is an important step in determining
predicate-argument structure. In German, gram-
matical roles are not encoded in relative string posi-
tions but rather in case and number information on
NPs and PPs. Thus, at least for German, identifi-
cation of case and number is a prerequisite for the
determination of predicate-argument structure, and
the computation of agreement features needs to be
explicitly addressed. Another characteristic of Ger-
man is its common! usage of center-embedding in
noun phrases. The combination of agreement check-
ing and center embedding makes sure that, in con-
trast to English, determination of (full) noun chunks
requires not one, but a cascade of finite-state au-
tomata. An iterative application of finite-state au-
tomata which all serve to match the same type of
chunks leads to certain problems, since tokens may
be mistakenly assigned to chunks at the lower levels
even if they should be inserted only at a higher level.
Explicit representation of ambiguities at the individ-
ual levels would jeopardize the complexity class.
The paper is organized as follows. Section 2 dis-
cusses a variety of definitions that have been pro-

n the test corpus used in the experiments (NEGRA, de-
scribed below), as much as 6.3% of all maximal noun phrases
show center-embedding.

posed for noun chunks in the literature. Section 3
describes the system used to parse full noun chunks
and discusses possible strategies. Section 4 presents
and discusses the results of the experiments made to
evaluate the different strategies and compares the
performance of the present system with those de-
scribed in the literature. Section 5 concludes.

2 Noun chunks

A noun chunk may be roughly defined as the kernel
of a noun phrase, which implies that a noun chunk
at least includes the head noun. But as often it is
the details that cause the problems. Abney (1991)
gives the following definition of chunks. A chunk
is a substring of the sentence, and it has syntactic
structure which comprises a connected subgraph of
the sentence’s parse tree. Every chunk is centered
around a major head. A major head is a content
word which does not appear between any function
word f and the content word selected by f. Thus,
in example (1a) proud does not qualify as a major
head while it does in example (1Db).

(1) a. the proud man

b. a man proud of his son

The root of a chunk is the highest node in the parse
tree which has the chunk’s major head as its seman-
tic head. Now we can formally define a chunk. A
chunk is a maximal string of words which consists
of the chunk’s major head and words that are dom-
inated by the chunk’s root but are not contained in
other chunks. Note that a word dominated by the
root is not automatically part of the chunk even if it
is not contained in other chunks. A case in point is
the preposition in in example (2) which is dominated
by the root of the house chunk and not included in
any other chunk. Inclusion of in in the chunk would
destroy its string property.

(2) [pp in [yp John’s] house] — in {John’s}
{house}

Abney’s definition goes so far. Some amendments
are in order.

Note e.g. that example (2) gives a counterexample
to the definition of major heads: The name John is
a major head although it comes between a function
word (in) and its complement (house). Thus, we
take it that nouns and names are major heads in all
contexts.

Often a determiner is missing (cf. example (3a))
or a head noun is elided (cf. example (3b)). If null
determiners and empty nouns are not assumed, the
pre-nominal adjectives (e.g. poor) will form chunks
of their own in this case. Thus, we take it that
the syntactic theory underlying Abney’s definition
comes with null determiners and empty categories.

(3) a. 0 poor people
b. the poor (§

A more serious problem is coordination. If major
heads are coordinated there is a single projection
which has multiple semantic heads. In particular,
the chunks corresponding to the coordinated content
words all have the same root. They either exclude
each other or collapse to a single chunk. The second
choice is obviously much preferable and yields the
chunk in example (4).

(4) {the old men and women}

If we want to enforce the requirement that every
chunk contains no more than one major head, an
option is to exclude from chunks all conjunctions
and commas coordinating major heads. The con-
junction and in example (5) is such a case. If con-
junctions between major heads are excluded, Ab-
ney’s definition predicts two separate chunks in ex-
ample (5), one for men and one for women. The rest
of the paper adopts this second approach.

(5) {the old men} and {women}

The last problem is the definition of noun chunks.
Noun chunks are defined as those chunks whose
major head is a noun. Since prepositions are treated
as function words, the content word in a prepo-
sitional phrase is the noun. Thus, prepositional
phrases also count as noun chunks. Note that there
is also an independent reason in German to treat
prepositional phrases and nominal phrases simulta-
neously: Prepositions and definite articles can be
contracted, see e.g. im in example (7).

The literature on German noun chunking does not
agree on a single definition of noun chunks. Abney’s
definition of noun chunks is just one among many
and is followed mainly in finite-state approaches
(Abney, 1997) (Neumann et al., 1997). Henceforth,
noun chunks in Abney’s sense will be called base
noun chunks. A principal reason for discontent
with Abney’s definition is the fact that German rou-
tinely? allows NPs and PPs in prenominal adjective

2In the NEGRA treebank (340,000 tokens of newspaper
text) 28.2% of all adjective phrases contain an NP or PP.

phrases (cf. example (6)). Since this is an instance
of center embedding, the usual techniques of under-
specification in chunking cannot be applied.

(6) Die vom Bundesgerichtshof

the by the German Federal High Court

und den Wettbewerbshiitern

and the guards against unfair competition

als Verstofs gegen das Kartellverbot

as infringement of anti-cartel legislation

gegeifselte zentrale TV-Vermarktung

censured central television marketing

ist gidngige Praxis.

is common practice.
Central television marketing, censured by the
German Federal High Court and the guards
against unfair competition as an infringement
of anti-cartel legislation, is common practice.

Furthermore, base noun chunks may correspond
to ungrammatical constituents. So the base noun
chunk nachlassenden Kriéfte cannot be used on its
own, i.e. without an opening determiner.

(7) die {im Alter} {nachlassenden Kréfte}
the in the age diminishing strength
the strength diminishing in old age

Let us have a look at alternative ways to define
noun chunks. Schmid and Schulte im Walde (2000)
define a noun chunk as the part of a noun phrase
between determiner and (first) head noun. They go
on to give an explicit definition of the noun chunks
they consider: A noun chunk may be a combination
of a non-obligatory determiner, optional adjectives
or cardinals and the noun itself; a nominalized ad-
jective; a pronoun, a proper name, or a cardinal in-
dicating a year; a noun chunk refined by a proper
name (see example (8)). Coordinated noun phrases
and appositions are explicitly excluded.

(8) der Eroberer Christoph Kolumbus
the conqueror Christopher Columbus

Skut and Brants (1998a) (1998b) and Brants
(1999) give a negative definition of noun chunks:
A noun chunk is a NP or PP stripped of prenom-
inal adverbials and postnominal PPs and relative
clauses. Thus they implicitly allow coordinated NPs
and appositions, but also prenominal and postnomi-
nal genitives (9a), prenominal measure phrases (9b),
and conjunctions of prepositions, determiners, adjec-
tives, nouns.

(9) a. Marias Version der Geschichte

Mary’s version of the story

b. zwei Millionen Dollar Strafe
two millions dollar penalty
a penalty of two million dollars

Noun chunks in this sense will be called full noun
chunks. Note that coordination may lead to at-
tachment ambiguities which cannot be resolved in
the syntax (see example (10)).

(10) {?parts {?of Scotland and Northern Ireland}

Thus full noun chunks incorporate an aspect of syn-
tactically irresolvable ambiguity.

3 System Description
3.1 Finite-State Cascades

For the implementation of the noun chunker de-
scribed in this paper, Abney’s (1997) method of
finite-state cascades is adopted. In this approach
the parse tree is built deterministically from the leaf
nodes to root. The nodes in the parse tree are par-
titioned into a number of levels (see Figure 1 for an
example). At each level, a finite-state automaton
is applied which specializes in recognizing a certain
type of chunks (e.g. noun chunks or clause chunks).
Identified chunks are replaced by single tokens, and
the resulting input stream is presented to the next
finite-state automaton.

Ambiguities are dealt with in three ways: 1. Lex-
ical ambiguities are resolved by a POS tagger. 2.
Attachment ambiguities are kept underspecified as
far as possible. Modifiers in ambiguous positions are
inserted only at clause level. 3. All other ambigu-
ities are resolved using the longest-match criterion,
which predicts that chunks should be chosen so as
to be as long as possible. See Abney (1993) for a
defense of this heuristic.

3.2 Agreement Checking

German poses a particular challenge in that gram-
matical roles are not determined by syntactic posi-
tions but rather by case. Hence it is essential to com-
pute case as accurately as possible. Since case varies
with other agreement features like gender, number,
and adjective declination, full computation of agree-
ment ensures better results®>. The matter is com-
plicated by the fact that the agreement features of
most case-bearing elements (determiners, appositive
adjectives, nouns) are extremely ambiguous; only in
interaction these features put constraints on case se-
lection. There are several ways to integrate agree-
ment checking into finite-state parsing;:

1. The POS tags serving as input to the the
finite-state automaton are equipped with disjunctive
agreement information. The finite-state grammar is
updated so as to handle such POS tags. Care is
taken to exclude sequences of POS tags that lead to
agreement failures. The result of agreement check-
ing is expressed in the final states. An advantage
of this approach is that the finite-state techniques

3Schmid and Schulte im Walde (2000) only compute case
to keep the number of parameters down.

ensure that agreement is checked as soon as possi-
ble. Furthermore the resulting finite-state automata
can be composed and reversed at will. The main
drawback is an explosion of the transition table by
a factor in the order of magnitude of 500.

2. Another approach leaves the grammars and au-
tomata as they were and evaluates chunks for agree-
ment only in a post-processing step (Abney, 1997).
This method has the drawback that agreement fail-
ure has no immediate effect on the determination of
noun chunks. For the sentence of Figure 1, a finite-
state parser ignoring agreement and only using the
longest-match criterion would produce die Anfang
der Rechnungsperiode as noun chunk.

3. Finally it is possible to interleave agreement
checking and chunk recognition (Neumann et al.,
2000), taking into account agreement failures as soon
as possible. Often such a procedure is straight-
forward: Every preposition, determiner, adjective,
noun just contribute their agreement constraints.
There are, however, some problems if the agreement
constraints cannot be assigned on the basis of one
word alone, as is the case with circumpositions (in
(11) um-—willen takes genitive, although um only al-
lows accusative)

(11) um Gottes willen
for God’s sake

and words that are ambiguous between determin-
ers and pronouns (in the garden path sentence (12)
eines is genitive as a determiner, but nominative or
accusative as a pronoun).

(12) weil diese Erfahrung eines
because this experience a/one
Bauern klarmacht
farmer makes clear

because this experience makes clear one thing
to farmers

For building the finite-state parser, the second and
third approach were tested and compared (see Sec-
tion 4). Agreement features were implemented in bit
vectors to facilitate unification.

3.3 Parsing Full Noun Chunks

None of the German finite-state parsers discussed
in the literature (Abney, 1997) (Neumann et al.,
1997) attempts to treat full noun chunks. Indeed
there are major problems in using finite-state cas-
cades for full noun chunks. Figure 2 shows the level
of base noun chunks for the sentence in Figure 1.
Two noun chunks are recognized that do not show up
in the final analysis. Also in example (13), repeated
from (2), a noun chunk is recognized ({house}) with-
out appearing in the final analysis.

(13) in {John’s} {house}

In diesem Umfang hatten auch die Anfang der Rechnungsperiode vorgenommenen Preissteigerungen gelegen

In this range

had also the beginning of the account period implemented

pricerises lain

The price rises implemented at the beginning of the account period had lain in this range, too.

Figure 1: Levels in a Syntax Tree

In diesem Umfang hatten auch die Anfang der Rechnungsperiode vorgenommenen Preissteigerungen gelegen

Figure 2: Level of Base Noun Chunks

Two ways to cope with the dilemma come to mind.
1. Either the idea of getting by with finite-state
techniques is given up, and a pushdown automaton
is employed. There is, however, no general algo-
rithm to render pushdown automata deterministic
and minimal. Thus, some effort has to go into iden-
tifying disambiguation factors for the decision when
to start and end an embedded noun chunk.
2. The other approach introduces non-monotonicity
into the cascade of finite-state automata in the sense
that base noun chunks recognized at one level are
discarded at another. To implement this idea, base
noun chunk are classified as to whether they cover
material that could form the start, a middle part,
or the end of a full noun chunk. (E.g., a base noun
chunk without determiner and preposition might be
the end of a full noun chunk.) A special finite-state
automaton is built which puts together base noun
phrases and other material to full noun phrases.
(E.g., a full noun chunk might consist of a prepo-
sition (in in example (13)), a genitive noun chunk
({John’s}), and a base noun chunk classified as po-
tential end of a full noun chunk ({house}).) If
the automaton finds a match, the relevant base
noun chunks (e.g. house in the example discussed)
are broken up into their components. Now the
noun chunk recognizer is again applied. If the full
noun chunk is morphologically well-formed, it is rec-
ognized in this step. Otherwise the chunker re-
assembles the original base noun chunks.

Chunking approaches that are not based on finite-
state technology have no problems with full noun

chunks. Skut and Brants (1998a) (1998b) use a POS
tagger to infer bracketed full noun chunks, while
Schmid and Schulte im Walde (2000) make use of
a stochastic context-free parser. Brants (1999) also
employs a cascade (of Markov Models). He circum-
vents the problems mentioned by allowing ambigu-
ous layers and thus effectively availing himself of a
chart. The approach of Kermes and Evert (2002) is
rule-based, works in cascades and explicitly repre-
sents ambiguities at intermediate levels.

4 Experiments

In order to find grounds to empirically choose be-
tween strategies and to compare the performance of
the present system with other chunkers described in
the literature, several experiments were performed.
The gold standard was extracted from the NE-
GRA treebank, a collection of syntactically anno-
tated German newspaper articles (Skut et al., 1997).
The current version of this tree bank provides syn-
tactic analyses for 321,000 tokens. Skut and Brants
(1998a) and Brants (1999) evaluated their chunkers
on the same corpus, which contained less data at
that time (210,000 tokens in 1998 and 300,000 in
1999). From this corpus 100,974 base noun chunks
and 78,942 full noun chunks were extracted. Only
19.9% of the full noun chunks are recursive, 6.3% are
center embedding structures. Noun chunks were ex-
tracted using a quite sophisticated Perl script; they
were not checked for correctness by hand, however.
The internal structure of full noun chunks was not
taken into account. Agreement information is not

given in the tree bank and it was not attempted to
extract it e.g. via evaluation of grammatical roles.

As a baseline the machine-learning approach of
Ramshaw and Marcus (1995) was used which does
not require any manual effort in grammar writing.
In this approach a tagger is used to divide the tokens
into three classes: I inside a noun chunk; 0 outside
a noun chunk; B beginning of a new noun chunk if
previous token was inside a noun chunk. Ramshaw
and Marcus (1995) used the Brill tagger, while in
the experiments described here the tree tagger of
Schmid (1994) was employed which was at hand. On
the training and test data of Ramshaw and Marcus
(1995) (sections 15-18 of the Wall Street Journal
for training, section 20 for testing), the tree tagger
reaches a precision value of 90.7% and a recall of
91.2%. Ramshaw and Marcus (1995) get 91.8% pre-
cision and 92.3% recall with the Brill tagger. Thus,
the tree tagger performs a bit worse, presumably
because it only takes into account the current word
and POS tag and the two POS tags to the left. The
Brill tagger additionally inspects the two words to
the left and the two words and POS tags to the right.
The baseline values reported below were determined
using 10-fold cross validation.

The finite-state grammar recognizing noun chunks
was written so as to match noun chunks in a left-to-
right parse. The same grammar can be automati-
cally reversed and then used in a right-to-left parse.
Note that the longest-match criterion may lead to
different results if the automaton reads the string
from right to left (cf. example (14)).

(14) der 14 Jahre alte Junge
the 14 years old boy
the 14-year-old boy
— {der 14} {Jahre} {alte Junge}
+ {der} {14 Jahre} {alte Junge}

Since in German heads (e.g. verbs and adjectives)
usually follow their complements, it is imaginable
that parsing right-to-left leads to improvements even
if a right-to-left parse is psychologically implausi-
ble. To test this hypothesis, the performance of the
finite-state parser in a right-to-left traversal was de-
termined in the experiments as well.

As discussed in section 3.2, it might also improve
performance to check agreement during recognition.
Thus in a separate battery of tests, the performance
gain involved in checking agreement online was mea-
sured.

4.1 Quality of POS Tagging

Many approaches to noun chunking rely on a POS
tagger to disambiguate lexical ambiguities (e.g. Ab-
ney’s finite-state cascades, Ramshaw and Marcus’s
tagging approach, and machine learning approaches
in general (Tjong Kim Sang et al., 2000)). Only a
small number of approaches (Brants, 1999) (Schmid

and Schulte im Walde, 2000) determines lexical cate-
gories and chunks in one go. Presumably the overall
performance depends on the quality of the tagging
results used. Four grades of quality can be distin-
guished.

1. The POS tags used are “ideal”, i.e. supplied by
the tree bank. In this case, tagging accuracy is
100%.

2. The POS tags are determined by a tagger,
which is trained on the tree bank, so it has an
ideal lexicon.

3. The POS tags are determined by a tagger, but
the tagger is trained on some independent cor-
pus.

4. Disjunctions of POS tags are used. The noun
chunker selects the tags on its own. In a finite-
state approach, the longest-match criterion con-
trols this selection.

After training on the NEGRA tree bank, the tree
tagger determined 98.77% of all POS tags correctly.
Without training, it only reached an accuracy of
94.73% on the NEGRA tree bank?*, mostly due to
unknown proper names. In the tables given below,
option 1 (ideal tags) is abbreviated by POS-I, op-
tion 2 (tags with ideal lexicon) by POS-L, option 3
(tags by a POS tagger) is written as POS-T, and
option 4 (tags determined by chunker) as POS-C.

4.2 Base Noun Chunks

First the results obtained for the base noun chunk-
ing task will be discussed (see Figure 3).

The same method ((Ramshaw and Marcus, 1995)
with the tree-tagger) achieves better results for Ger-
man (94.5% precision and 92.9% recall) than for En-
glish® (90.7% precision and 91.2% recall). Obviously
the base noun chunking task is easier in German. A
reason may be that German nouns are on average
less ambiguous than their English counterparts: On
average a potential noun has 1.02 readings in Ger-
man (in the NEGRA tree bank) but 1.20 readings
in English (in the WSJ sections).

The modes of POS tagging performed as pre-
dicted: The tree-bank tags came out best, but were
followed closely by the tags of the tagger trained
on the tree bank. Third were the tags determined
without lexical information. The performance of the
fourth strategy (the chunker selects the tags accord-
ing to the longest-match criterion) was disappointing
and even below the baseline. The moral is that at
least for finite-state parsers, using a POS tagger to
filter out lexical readings beforehand is a good idea.

The direction of processing (left to right — or
right to left <) did not make much difference.

4Kermes and Evert (2002) report a similar figure (94.82%).
5The experiment done on the Wall Street Journal used the
POS tags of the treebank.

baseline FS — FS « FS+agrm — | FS+agrm «

prec recall | prec recall | prec recall | prec recall | prec recall

POS-I | 94.55 92.99 | 99.06 98.99 | 99.05 99.01 | 99.16 99.16 | 99.19 99.22
POS-L | 90.65 91.61 | 98.33 97.58 | 98.31 97.59 | 98.43 97.81 | 98.46 97.88
POS-T | 91.30 89.48 | 95.35 93.66 | 95.33 93.67 | 95.39 93.88 | 95.45 93.96
POS-C 90.67 86.42 | 88.93 86.21 | 90.54 88.91 | 88.96 87.05

Figure 3: Results for Base Noun Chunking

baseline FS —» FS « FS+agrm — | FS+agrm «+

prec recall | prec recall | prec recall | prec recall | prec recall

POS-I | 88.63 &87.50 | 97.36 90.16 | 97.41 90.06 | 97.66 91.44 | 97.65 94.06
POS-L | 86.05 84.73 | 96.37 88.42 | 96.39 88.32 | 96.57 89.76 | 96.61 92.40
POS-T | 86.00 84.88 | 90.83 83.61 | 90.87 83.53 | 91.00 &84.79 | 91.11 &7.10

Figure 4: Results for Full Noun Chunking

Checking agreement produced a small improvement.
In checking agreement for base noun chunks, adjec-
tive declination was neglected (see example (7)).

4.3 Full Noun Chunks

Figure 4 shows the results for the full noun chunk
task. As can be seen in the baseline results, the task
is much more demanding, in part because it involves
a degree of forced guessing (see example (10)).

For the full noun chunk task, more results have
been published. Skut and Brants (1998b) report a
precision value of 89.0% on ideal POS tags. They
used our baseline technique and got similar results.
Skut and Brants (1998a), who use a maximum en-
tropy model, reach 93.4% precision and 94.1% recall
on ideal POS tags. Brants (1999) uses a cascade of
Markov models, but he gives no results for the task
examined here (determining the outer boundaries of
a full noun chunk). Schmid and Schulte im Walde
(2000) report results of up to 93.29% precision and
92.19% recall. They also give figures for the task
of additionally identifying case and category. How-
ever, their parser has access to information like case
constraints of governing verbs and lexicalized proba-
bility distributions for grammatical relations, which
it uses to determine a unique case. The system de-
scribed here lacks such information and thus outputs
a disjunction of case and number values. Kermes
and Evert (2002) also evaluated the performance of
their system using the NEGRA treebank, but got
considerably worse results (84.74% precision, 82.36%
recall) for unclear reasons.

While the precision values in Figure 4 approxi-
mately stay the same for all configurations, a certain
tendency can be seen in the recall values: Recall
improves with agreement checking and even more
with right-to-left traversal. The most frequent er-
rors made without but not with agreement checking
are the following:

e genitives after prepositions (see example (13), re-
peated here as (15)): The recognizer finds a noun
chunk which is morphologically impossible.

(15) {in John’s} {house}

e conjunction attachment, see example (16): Some-
times agreement excludes a wide attachment which
is favoured by the longest-match criterion.

(16) {das Leben {von
the life of

und Zirkusleuten}
and circus people

Schauspielern}
actors

e adjoining noun phrases: In the example presented
(17) adjective declination is used to determine the
chunk boundary.

(17) {diese beiden} {&hnliche
these two similar

Erfolge}
successes

There are, however, some errors that only occur if
agreement is checked. The set-up of the system only
allows for NP coordination but not N’ coordination.
In some cases adjective declination distinguishes N’
from NP with null determiner (nachlassenden Kréfte
versus nachlassende Krifte in example (18), cf. (7)).
These cases are lost only if agreement checking is
switched on.

(18) die [Verletzungen und nachlassenden Kréfte|n

the injuries and diminishing strength

The gain in recall observed when parsing right-to-
left is mainly due to a heuristic that could only be
incorporated into the right-to-left chunker: In case of
conjunction attachment, shortest match is preferred.
An illustration can be seen in example (19).

(19) — I saw {a man with a telescope in the garden
and in the house}.
+ I saw a man with a telescope {in the garden
and in the house}.

5 Conclusion

The paper has presented a method to recognize and
morphologically interpret noun chunks. A distinc-
tion has been made between base noun chunks (non-
recursive) and full noun chunks (potentially recur-
sive). Two chunkers have been constructed, one rec-
ognizes base noun chunks, the other identifies full
noun chunks. On a SUN Ultra-250, the base noun
chunker can process 12,500 words/second, while the
full noun chunker achieves 5,200 words/second. In
contrast to other full noun chunkers proposed in the
literature (Brants, 1999) (Schmid and Schulte im
Walde, 2000), the chunker described here is com-
pletely deterministic and does not rely on an ex-
plicit representation of ambiguities (like a chart).
In the experiments, it has been shown that the
labour of writing a grammar, which is needed in
the finite-state approach, indeed leads to improve-
ments in performance. It has further been shown
that the longest-match criterion is a bad substitute
for a POS tagger and that a POS tagger is useful as
a preprocessing tool for finite-state parsers. Online
agreement checking improves performance, more so
for the full noun chunking task than for base noun
chunking. The direction of processing (left-to-right
or right-to-left) did not lead to clear distinction, al-
though right-to-left performed consistently better if
combined with agreement checking.

The best treatment of coordination (and apposi-
tion for that matter) is still an open question. Since
coordination attachment depends on factors that are
not accessible to a parser, it should be underspeci-
fied like pre- or post-nominal modifiers. There is,
however, a major difference between coordination
attachment and modifier attachment in that coor-
dination constrains agreement. Thus the choice of
attachment point for coordination may have conse-
quences for the selection of grammatical roles and
hence for the predicate-argument structure even if
it is reduced to head-complement-relations.

The noun chunker described in the paper is in-
tended to be used as a submodule of a finite-state
parser for German newspaper text. It is planned to
convert the output of this parser into underspecified
semantic representations on which simple inferences
can be drawn as needed e.g. for tasks like Informa-
tion Extraction.

References

Steven Abney. 1991. Parsing by Chunks. In
Robert C. Berwick, Steven P. Abney, and Carol
Tenny, editors, Principle-based Parsing: computa-
tion and psycholinguistics, pages 257-278. Kluwer
Academic Publishers, Dordrecht, Holland.

Steven Abney. 1993. Reliability. In Abstracts,
Deutsche Gesellschaft fiir Sprachwissenschaft.

Steven Abney. 1997. Partial Parsing via Finite-
State Cascades. Journal of Natural Language En-
gineering, 2(4):337-344.

Thorsten Brants. 1999. Cascaded Markov Models.
In Proceedings of the 9th Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics (EACL’99), Bergen, Norway.

Hannah Kermes and Stefan Evert. 2002. YAC — A
Recursive Chunker for Unrestricted German Text.
In Proceedings of LREC, pages 1805-1812.

Giinter Neumann, Rolf Backofen, Judith Baur,
Markus Becker, and Christian Braun. 1997. An
Information Extraction Core System for Real
World German Text Processing. In Proceedings of
the 5th International Conference of Applied Nat-
ural Language Processing (ANLP’97), pages 208—
215, Washington, DC.

Giinter Neumann, Christian Braun, and Jakub
Piskorski. 2000. A Divide-and-Conquer Strategy
for Shallow Parsing of German Free Text. In Pro-
ceedings of the 6th International Conference of
Applied Natural Language Processing (ANLP’00),
pages 239246, Seattle, WA.

Lance A. Ramshaw and Mitchell P. Marcus.
1995. Text Chunking Using Transformation-
Based Learning. In Proceedings of the 3rd ACL
Workshop on Very Large Corpora.

Helmut Schmid and Sabine Schulte im Walde. 2000.
Robust German Noun Chunking With a Proba-
bilistic Context-Free Grammar. In Proceedings of
the 18th International Conference on Computa-
tional Linguistics (COLING ’00), August.

Helmut Schmid. 1994. Probabilistic Part-Of-Speech
Tagging Using Decision Trees. Technical report,
Institut fiir maschinelle Sprachverarbeitung, Uni-
versitit Stuttgart, Germany.

Wojciech Skut and Thorsten Brants. 1998a. A
Maximum-Entropy Partial Parser for Unrestricted
Text. In Proceedings of the 6th Workshop on Very
Large Corpora, Montréal, Québec.

Wojciech Skut and Thorsten Brants. 1998b. Chunk
Tagger - Statistical Recognition of Noun Phrases.
In Proceedings of the ESSLLI-98 Workshop on Au-
tomated Acquisition of Syntax and Parsing, Saar-
briicken.

Wojciech Skut, Brigitte Krenn, Thorsten Brants,
and Hans Uszkoreit. 1997. An Annotation
Scheme for Free Word Order Languages. In Pro-
ceedings of the ANLP-97, Washington, DC.

Erik F. Tjong Kim Sang, Walter Daelemans, Hervé
Déjean, Rob Koeling, Yuval Krymolowski, Vasin
Punyakanok, and Dan Roth. 2000. System Com-
bination to Base Noun Phrase Identification.
In Proceedings of the 18th International Con-
ference on Computational Linguistics (COLING
’00), Saarbriicken, Germany.

	Table of Content
	Topics
	Authors

