
Natural Language and Inference in a Computer Game

Malte Gabsdil and Alexander Koller and Kristina Striegnitz
Dept. of Computational Linguistics

Saarland University, Saarbr¨ucken, Germany
{gabsdil|koller|kris}@coli.uni-sb.de

Abstract
We present an engine for text adventures – computer
games with which the player interacts using natu-
ral language. The system employs current meth-
ods from computational linguistics and an efficient
inference system for description logic to make the
interaction more natural. The inference system is
especially useful in the linguistic modules dealing
with reference resolution and generation and we
show how we use it to rank different readings in
the case of referential and syntactic ambiguities. It
turns out that the player’s utterances are naturally
restricted in the game scenario, which simplifies the
language processing task.

1 Introduction
Text adventures are computer games with which
the player interacts via a natural language dialogue.
Texts describe the game world and how it evolves,
and the player can manipulate objects in this game
world by typing in commands; Fig. 1 shows a sam-
ple interaction. Text adventures were very popu-
lar and commercially successful in the eighties, but
have gone out of fashion since then – mostly be-
cause the parsers were rather limited and forced the
user into very restricted forms of interaction.

We describe an engine for text adventures that
attempts to overcome these limitations by using
current methods from computational linguistics for
processing the natural language input and output,
and a state-of-the-art inference system based on de-
scription logic (DL) to represent the dynamic state
of the game world and what the player knows about
it. The DL prover is used in all language-processing
modules except for parsing and surface realization,
and supports the inferences we need very well.

This shows in particular in the modules for the
resolution and generation of referring expressions.
By keeping track of the true state of the world
and the player’s knowledge in separate knowledge
bases, we can evaluate definite descriptions with re-
spect to what the player knows. In generation, such

inferences allow us to produce smaller while still
sufficiently informative references.

Another interesting aspect which we discuss in
this paper is the treatment of syntactic and referen-
tial ambiguities that come up in understanding input
sentences. Here, too, the player knowledge restricts
the way in which the input should be interpreted and
guides the resolution process. We use inferences
about the player knowledge to rule out inconsistent
analyses and pragmatic heuristics to possibly select
the preferred one.

Players of a text adventure are effectively situ-
ated in a game world and have to accomplish a
specific task, which severely restricts the utterances
they will naturally produce. For example, they will
typically only refer to objects they could “see” in
the simulated world. This simplifies the language
processing tasks tremendously. The scenario of the
game can be freely specified and tailored to different
applications and levels of complexity. Along with
the modularity of our implementation, this makes
our system an interesting testbed for evaluating
more sophisticated NLP modules, which also have
access to the inference infrastructure. The same rea-
son makes it useful as a teaching tool; in fact, our
implementation was created as an advanced project
for students.

Plan of the paper. We will start with an overview
over the architecture of our system in Section 2.
Section 3 will give a brief introduction to descrip-
tion logics, and then describes the knowledge bases
we use. We will discuss how they interact with the
linguistic modules in Section 4, which focuses on
the resolution and generation of referring expres-
sions. Section 5 deals with the resolution of am-
biguities in the player input. Finally, Section 6 con-
cludes and points to further research.

2 Architecture

The general architecture of the game engine, shown
in Fig. 2, consists of a number of language-
processing modules (drawn as ellipses), which in-

Observation Lounge
This is where the station staff and visitors come to relax. There are a lot of tables
and chairs here, a large observation window, and a plush carpet. In the corner you can
see an AstroCola dispenser. A tube leads up to the station’s main corridor.

> put my galakmid coin into the dispenser
Click.
The dispenser display now reads "Credit = 1.00".

> push diet astrocola button
You hear a rumbling noise in the dispenser, but nothing appears in the tray.

> kick dispenser
A can drops into the tray. Amazing! The oldest trick in the book, and it
actually worked.

Figure 1: An example interaction with a text adventure, taken from (Ledgard, 1999).

Content
Determination

Model
Discourse

Reference
Resolution

Reference
Generation

RealizationParsing

Actions

A-Box: User Knowledge

T-Box

A-Box: World Model

Figure 2: The architecture.

terface with knowledge bases and a discourse model
(drawn as rectangles). There are two separate
knowledge bases, which share a set of common def-
initions: One represents the true state of the world
in a world model, the other keeps track of what the
player knows about the world. Solid arrows indi-
cate the general flow of information, dashed arrows
indicate access to the knowledge bases.

The user’s input is first parsed using an efficient
parser for dependency grammar (Duchier and De-
busmann, 2001). Next, referring expressions are re-
solved to individuals in the game world. The result
is a ground term or a sequence of ground terms that
indicates the action(s) the user wants to take. The
Actions module looks up these actions in a database
(where they are specified in a STRIPS-like format),
checks whether the action’s preconditions are met in
the world, and, if yes, updates the world state with
the effects of the action.

The action can also specify effects on the user’s
knowledge. This information is further enriched
by the Content Determination module; for example,
this module computes detailed descriptions of ob-
jects the player wants to look at. The Reference
Generation module translates the internal names
of individuals into descriptions that can be verbal-
ized. In the last step, an efficient realization mod-
ule (Koller and Striegnitz, 2002) builds the output
sentences according to a TAG grammar. The player
knowledge is updated after Reference Generation
when the content of the game’s response, including
the new information carried e.g. by indefinite NPs,
is fully established.

If an error occurs at any stage, e.g. because a pre-
condition of the action fails, an error message spec-
ifying the reasons for the failure is generated by
using the normal generation track (Content Deter-
mination, Reference Generation, Realization) of the
game.

The system is implemented in the programming
language Mozart (Mozart Consortium, 1999) and
provides an interface to the DL reasoning system
RACER (Haarslev and M¨oller, 2001), which is used
for mainting and accessing the knowledge bases.

3 The World Model

Now we will look at the way that the state of the
world is represented in the game, which will be
important in the language processing modules de-
scribed in Sections 4 and 5. We will first give a short
overview of description logic (DL) and the theorem
prover we use and then discuss some aspects of the
world model in more detail.

3.1 Description Logic

Description logic (DL) is a family of logics in the
tradition of knowledge representation formalisms
such as KL-ONE (Woods and Schmolze, 1992). DL
is a fragment of first-order logic which only allows
unary and binary predicates (concepts and roles)
and only very restricted quantification. A knowl-
edge base consists of aT-Box, which contains ax-
ioms relating the concepts and roles, and one or
moreA-Boxes, which state that individuals belong
to certain concepts, or are related by certain roles.

Theorem provers for description logics support
a range of different reasoning tasks. Among the
most common areconsistency checking,subsump-
tion checking, andinstance and relation check-
ing. Consistency checks decide whether a combina-
tion of T-Box and A-Box can be satisfied by some
model, subsumption is to decide of two concepts
whether all individuals that belong to one concept
must necessarily belong to another, and instance and
relation checking test whether an individual belongs
to a certain concept and whether a certain relation
holds between a pair of individuals, respectively. In
addition to these basic reasoning tasks, description
logic systems usually also provide someretrieval
functionality which e.g. allows to compute all con-
cepts that a given individual belongs to or all indi-
viduals that belong to a given concept.

There is a wide range of different description log-
ics today which add different extensions to a com-
mon core. Of course, the more expressive these ex-
tensions become, the more complex the reasoning
problems are. “Traditional” DL systems have con-
centrated on very weak logics with simple reasoning
tasks. In the last few years, however, new systems
such as FaCT (Horrocks et al., 1999) and RACER
(Haarslev and M¨oller, 2001) have shown that it is
possible to achieve surprisingly good average-case
performance for very expressive (but still decidable)
logics. In this paper, we employ the RACER sys-
tem, mainly because it allows for A-Box inferences.

3.2 The World Model

The T-Box we use in the game specifies the con-
cepts and roles in the world and defines some useful
complex concepts, e.g. the concept of all objects the
player can see. This T-Box is shared by two differ-
ent A-Boxes representing the state of the world and
what the player knows about it respectively.

The player A-Box will typically be a sub-part of
the game A-Box because the player will not have

explored the world completely and will therefore
not have encountered all individuals or know about
all of their properties. Sometimes, however, it may
also be useful to deliberately hide effects of an ac-
tion from the user, e.g. if pushing a button has an
effect in a room that the player cannot see. In this
case, the player A-Box can contain information that
is inconsistent with the world A-Box.

A fragment of the A-Box describing the state of
the world is shown in Fig. 3; Fig. 4 gives a graphical
representation. The T-Box specifies that the world
is partitioned into three parts: rooms, objects, and
players. The individual ‘myself’ is the only instance
that we ever define of the concept ‘player’. Indi-
viduals are connected to their locations (i.e. rooms,
container objects, or players) via the ‘has-location’
role; the A-Box also specifies what kind of object
an individual is (e.g. ‘apple’) and what properties it
has (‘red’). The T-Box then contains axioms such
as ‘apple� object’, ‘red� colour’, etc., which es-
tablish a taxonomy among concepts.

These definitions allow us to add axioms to the
T-Box which define more complex concepts. One
is the concept ‘here’, which contains the room in
which the player currently is – that is, every indi-
vidual which can be reached over a ‘has-location’
role from a player object.

here .= ∃has-location−1.player

In this definition, ‘has-location−1’ is the inverse role
of the role ‘has-location’, i.e. it linksa and b iff
‘has-location’ linksb anda. Inverse roles are one of
the constructions available in more expressive de-
scription logics. The quantification builds a more
complex concept from a concept and a role:∃R.C
is the concept containing all individuals which are
linked via anR role to some individual inC. In the
example in Fig. 3, ‘here’ denotes the singleton set
{kitchen}.

Another useful concept is ‘accessible’, which
contains all individuals which the player can ma-
nipulate.

accessible .= ∀has-location.here�
∀has-location.(accessible� open)

All objects in the same room as the player are
accessible; if such an object is an open container,
its contents are also accessible. The T-Box con-
tains axioms that express that some concepts (e.g.
‘table’, ‘bowl’, and ‘player’) contain only ‘open’

room(kitchen) player(myself)
table(t1) apple(a1)
apple(a2) worm(w1)
red(a1) green(a2)
bowl(b1) bowl(b2)
has-location(t1, kitchen) has-location(b1, t1)
has-location(b2, kitchen) has-location(a1, b2)
has-location(a2, kitchen) has-detail(a2,w1)
has-location(myself, kitchen) . . .

Figure 3: A fragment of a world A-Box.

objects. This permits access to the player’s inven-
tory. In the simple scenario above, ‘accessible’ de-
notes the set{myself, t1, a1, a2, b1, b2}. Finally,
we can define the concept ‘visible’ in a similar way
as ‘accessible’. The definition is a bit more com-
plex, including more individuals, and is intended to
denote all individuals that the player can “see” from
his position in the game world.1

4 Referring Expressions

The interaction between the game and the player re-
volves around performing actions on objects in the
game world and the effects that these actions have
on the objects. This means that the resolution and
generation of referring expressions, which identify
those objects to the user, are central tasks in our ap-
plication.

Our implementation illustrates how useful the
availability of an inference system as provided by
RACER to access the world model is, once such an
infrastructure is available. The inference engine is
complemented by a simple discourse model, which
keeps track of available referents.

4.1 The Discourse Model

Our discourse model (DM) is based on Strube’s
(1998) salience list approach, due to its simplic-
ity. The DM is a data structure that stores an or-
dered list of the most salient discourse entities ac-
cording to their “information status” and text po-
sition and provides methods for retrieving and in-
serting elements. Following Strube,hearer-old dis-
course entities (which include definites) are ranked

1Remember that “seeing” in our application does not in-
volve any graphical representations. The player acquires
knowledges about the world only through the textual output
generated by the game engine. This allows us to simplify the
DL modeling of the world because we don’t have to specify
all (e.g. spatial) relations that would implicitly be present in a
picture.

Figure 4: Example Scenario

higher in the DM (i.e. are more available for refer-
ence) thanhearer-new discourse entities (including
indefinites). Within these categories, elements are
sorted according to their position in the currently
processed sentence. For example, the ranking of
discourse entities for the sentencetake a banana,
the red apple, and the green apple would look as
follows:

[red apple ≺ green apple]old ≺ [banana]new

The DM is built incrementally and updated af-
ter each input sentence. Updating removes all dis-
course entities from the DM which are not realized
in the current utterance. That is, there is an assump-
tion that referents mentioned in the previous utter-
ance are much more salient than older ones.

4.2 Resolving Referring Expressions
The task of the resolution module is to map def-
inite and indefinite noun phrases and pronouns to
individuals in the world. This task is simplified in
the adventure setting by the fact that the commu-
nication is situated in a sense: Players will typi-
cally only refer to objects which they can “see” in
the virtual environment, as modeled by the concept
‘visible’ above. Furthermore, they should not re-
fer to objects they haven’t seen yet. Hence, we
perform all RACER queries in this section on the
player knowledge A-Box, avoiding unintended am-
biguities when the player’s expression would e.g.
not refer uniquely with respect to the true state of
the world.

The resolution of adefinite description means to
find a unique entity which, according to the player’s
knowledge, is visible and matches the description.
To compute such an entity, we construct a DL con-
cept expression corresponding to the description
and then send a query to RACER asking for all in-
stances of this concept. In the case ofthe apple,
for instance, we would retrieve all instances of the

concept
apple� visible

from the player A-Box. The query concept forthe
apple with the worm would be

apple� (∃has-detail.worm) � visible.

If this yields only one entity ({a2} for the apple with
the worm for the A-Box in Fig. 3), the reference
has been unambiguous and we are done. It may,
however, also be the case that more than one entity
is returned; e.g. the query forthe apple would return
the set{a1,a2}. We will show in the next section
how we deal with this kind of ambiguity. We reject
input sentences with an error message indicating a
failed reference if we cannot resolve an expression
at all, i.e. when no object in the player knowledge
matches the description.

We resolveindefinite NPs, such asan apple, by
querying the player knowledge in the same way as
described above for definites. Unlike in the definite
case, however, we do not require unique reference.
Instead, we assume that the player did not have a
particular object in mind and arbitrarily choose one
of the possible referents. The reply of the game will
automatically inform the player which one was cho-
sen, as a unique definite reference will be generated
(see below).

Pronouns are simply resolved to the most salient
entity in the DM that matches their agreement con-
straints. The restrictions our grammar imposes
on the player input (no embeddings, no reflexive
pronouns) allow us to analyze sentences including
intra-sentential anaphora liketake the apple and eat
it. The incremental construction of the DM ensures
that by the time we encounter the pronounit, the
apple has already been processed and can serve as a
possible antecedent.

4.3 Generating Referring Expressions
The converse task occurs when we generate the
feedback to show to the player: It is necessary to
construct descriptions of individuals in the game
world that enable the player to identify these.

This task is quite simple for objects which are
new to the player. In this case, we generate an indef-
inite NP containing the type and (if it has one) color
of the object, as inthe bowl contains a red apple.
We use RACER’s retrieval functionality to extract
this information from the knowledge base.

To refer to an object that the player already has
encountered, we try to construct a definite descrip-

tion that, given the player knowledge, uniquely
identifies this object. For this purpose we use a vari-
ant of Dale and Reiter’s (1995) incremental algo-
rithm, extended to deal with relations between ob-
jects (Dale and Haddock, 1991). The properties of
the target referent are looked at in some predefined
order (e.g. first its type, then its color, its location,
parts it may have,. . .). A property is added to the
description if at least one other object (a distrac-
tor) is excluded from it because it doesn’t share this
property. This is done until the description uniquely
identifies the target referent.

The algorithm uses RACER’s reasoning and re-
trieval functionality to access the relevant informa-
tion about the context, which included e.g. comput-
ing the properties of the target referent and find-
ing the distracting instances. Assuming we want to
refer to entity a1 in the A-Box in Fig. 3 e.g., we
first have to retrieve all concepts and roles of a1
from the player A-Box. This gives us{apple(a1),
red(a1), has-location(a1,b1)}. As we have to have at
least one property specifying the type of a1, we use
RACER’s subsumption checks to extract all those
properties that match this requirement; in this case,
‘apple’. Then we retrieve all instances of the con-
cept ‘apple’ to determine the set of distractors which
is {a1, a2}. Hence, ‘apple’ alone is not enough to
uniquely identify a1. So, we consider the apple’s
color. Again using subsumption checks, we filter
the colors from the properties of a1 (i.e. ‘red’) and
then retrieve all instances belonging to the concept
apple� red to check whether and how the set of dis-
tractors gets reduced by adding this property. This
concept has only one member in the example, so we
generate the expressionthe red apple.

5 Ambiguity Resolution

The other aspect of the game engine which we want
to highlight here is how we deal with referential
and syntactic ambiguity. We handle the former by
a combination of inference and discourse informa-
tion, and the latter by taking psycholinguistically
motivated preferences into account.

5.1 Resolving Referential Ambiguities

When the techniques for reference resolution de-
scribed in the previous section are not able to map
a definite description to a single entity in the player
knowledge, the resolution module returns a set of
possible referents. We then try to narrow this set
down in two steps.

First, we filter out individuals which are com-
pletely unsalient according to the discourse model.
In our (simplified) model, these are all individuals
that haven’t been mentioned in the previous sen-
tence. This heuristic permits the game to deal with
the following dialogue, as the red but not the green
apple is still accessible in the final turn, and is there-
fore chosen as the patient of the ‘eat’ action.

Game: . . . red apple. . . green apple.
Player: Take the red apple.
Game: You have the red apple.
Player: Eatthe apple.
Game: You eat the red apple.

If this narrows down the possible referents to just
one, we are done. Otherwise – i.e. if several or none
of the referents were mentioned in the previous sen-
tence –, we check whether the player’s knowledge
rules out some of them. The rationale is that an in-
telligent player would not try to perform an action
on an object on which she knows it cannot be per-
formed.

Assume, by way of example, that the player
knows about the worm in the green apple. This
violates a precondition of the ‘eat’ action for ap-
ples. Thus if both apples were equally salient, we
would readeat the apple aseat the red apple. We
can test if a combination of referents for the various
referring expressions of a sentence violates precon-
ditions by first instantiating the appropriate action
with these referents. Then we independently add
each instantiated precondition to fresh copies of the
player knowledge A-Box and test them for consis-
tency. If one of the A-Boxes becomes inconsistent,
we conclude that the player knows this precondition
would fail, and conclude that this is not the intended
combination of referents.

If neither of these heuristics manages to pick out
a unique entity, we consider the definite description
to be truly ambiguous and return an error message
to the user, indicating the ambiguity.

5.2 Resolving Syntactic Ambiguities
Another class of ambiguities which we consider are
syntactic ambiguities, especially of PP attachment.
We try to resolve them, too, by taking referential
information into account.

In the simplest case, the referring expressions in
some of the syntactic readings have no possible ref-
erent in the player A-Box at all. If this happens, we
filter these readings out and only continue with the
others (Schuler, 2001). For example, the sentence

unlock the toolbox with the key is ambiguous. In a
scenario where there is a toolbox and a key, but the
key is not attached to the toolbox, resolution fails for
one of the analyses and thereby resolves the syntac-
tic ambiguity.

If more than one syntactic reading survives this
first test, we perform the same computations as
above to filter out possible referents which are either
unsalient or violate the player’s knowledge. Some-
times, only one syntactic reading will have a refer-
ent in this narrower sense; in this case, we are done.

Otherwise, i.e. if more than one syntactic reading
has referents, we remove those readings which are
referentially ambiguous. Consider once more the
example scenario depicted in Fig. 4. The sentence
put the apple in the bowl on the table has two differ-
ent syntactic analyses: In the first,the bowl on the
table is the target of the put action whereas in the
second,in the bowl modifiesthe apple. Now, note
that in the first reading, we will get two possible ref-
erents forthe apple, whereas in the second reading
the apple in the bowl is unique. In cases like this we
pick out the reading which only includes unique ref-
erences (reading 2 in the present example). This ap-
proach assumes that the players are cooperative and
try to refer unambiguously. It is furthermore similar
to what people seem to do. Psycholinguistic eye-
tracking studies (Chambers et al., 2000) indicate
that people prefer interpretations with unambiguous
references: subjects who are faced with scenarios
similar to Fig. 4 and hear the sentenceput the ap-
ple in the bowl on the table do not look at the bowl
on the table at all but only at the apple in the bowl
(which is unique) and the table.

At this point, there can still be more than one syn-
tactic reading left; if so, all of these will have unam-
biguous, unique referents. In such a case we cannot
decide which syntactic reading the player meant,
and ask the player to give the game a less ambiguous
command.

6 Conclusion and Outlook

We have described an engine for text adventures
which uses techniques from computational linguis-
tics to make the interaction with the game more nat-
ural. The input is analyzed using a dependency
parser and a simple reference resolution module,
and the output is produced by a small generation
system. Information about the world and about
the player’s knowledge is represented in descrip-
tion logic knowledge bases, and accessed through

a state-of-the-art inference system. Most modules
use the inference component; to illustrate its useful-
ness, we have looked more closely at the resolution
and generation of referring expressions, and at the
resolution of referential and syntactic ambiguities.

Preliminary experiments indicate that the perfor-
mance of our game engine is good enough for flu-
ent gameplay. The constraint based dependency
parser we use for parsing and generation achieves
very good average case runtimes on the grammars
and inputs we use. More interestingly, the infer-
ence system also performs very well. With the cur-
rent knowledge bases, reasoning on the world model
and user knowledge takes 546ms per turn on aver-
age (with a mean of 39 queries per turn). How well
this performance scales to bigger game worlds re-
mains to be seen. One lesson we take from this is
that the recent progress in optimizing inference en-
gines for expressive description logics is beginning
to make them useful for applications.

All the language-processing modules in our sys-
tem are rather simplistic. We can get away with this
because the utterances that players seem to want to
produce in this setting are restricted, e.g. to objects
in the same simulated “location” as the player. (The
precise extent of this, of course, remains to be eval-
uated.) The result is a system which exceeds tradi-
tional text adventures by far in the flexibility offered
to the user.

Unlike the input, the output that our game gen-
erates is far away from the quality of the com-
mercial text adventures of the eighties, which pro-
duced canned texts, sometimes written by profes-
sional book authors. A possible solution could be to
combine the full generation with a template based
approach, to which the TAG-based generation ap-
proach we take lends itself well. Another problem is
the generation of error messages asking the user to
resolve an ambiguous input. The game should ide-
ally generate and present the player with a choice
of possible (unambiguous) readings. So, the gen-
eration strategy would have to be augmented with
some kind of monitoring, such as the one proposed
by Neumann and van Noord (1994). Finally, we
want to come up with a way of synchronizing the
grammars for parsing and generation, in order to en-
sure that expressions used by the game can always
be used by the player as well.

The system is designed in a way that should make
it reasonably easy to replace our simple modules
by more sophisticated ones. We will shortly make

our adventure engine available over the web, and
want to invite colleagues and students to test their
own language processing modules within our sys-
tem. Generally, we believe that the prototype can
serve as a starting point for an almost unlimited
range of extensions.

References
C.G. Chambers, M.K. Tanenhaus, and J.S. Magnu-

son. 2000. Does real-world knowledge modulate
referential effects on PP-attachment? Evidence
from eye movements in spoken language compre-
hension. In14th CUNY Conference on Human
Sentence Processing.

R. Dale and N. Haddock. 1991. Generating re-
ferring expressions involving relations. InEACL
’91.

R. Dale and E. Reiter. 1995. Computational inter-
pretations of the gricean maxims in the genera-
tion of referring expressions.Cognitive Science,
18.

D. Duchier and R. Debusmann. 2001. Topological
dependency trees: A constraint-based account of
linear precedence. InACL ’01.

V. Haarslev and R. M¨oller. 2001. RACER System
Description. InIJCAR ’01.

I. Horrocks, U. Sattler, and S. Tobies. 1999. Practi-
cal reasoning for expressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov,
editors,LPAR’99.

A. Koller and K. Striegnitz. 2002. Generation as
dependency parsing. InACL ’02.

D. Ledgard. 1999. Space Station. Text adventure,
modelled after a sample transcript of Infocom’s
Planetfall game. http://members.tripod.
com/˜infoscripts/planetfa.htm.

Mozart Consortium. 1999. The Mozart Pro-
gramming System web pages.http://www.
mozart-oz.org/.

G. Neumann and G.-J. van Noord. 1994.
Self-monitoring with reversible grammars. In
T. Strzalkowski, editor,Reversible Grammar in
Natural Language Processing.

W. Schuler. 2001. Computational properties of
environment-based disambiguation. InACL ’01.

M. Strube. 1998. Never Look Back: An Alternative
to Centering. InCOLING-ACL ’98.

W. Woods and J. Schmolze. 1992. The KL-ONE
Family. Computer and Mathematics with Appli-
cations, 23(2–5).

	Table of Content
	Topics
	Authors

