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Abstract

This paper introduces four different notions of
correctness to be used when measuring the per-
formance of protein name taggers, each of which
reflects certain characteristics of the tagger un-
der evaluation. The discussion regarding the dif-
ferent notions is centered around the evaluation
of two protein name taggers; Yapex, developed
by the authors, and KeX developed by Fukuda
et al. (1998). For the purpose of illustrating
the difference between the ways of evaluation,
both taggers are applied to a test corpus of 101
MEDLINE abstracts in which all occurrences of
protein names have been marked up by domain
experts.

1 Introduction

The roles and functions of proteins are impor-
tant study objects in many areas of the life sci-
ences, as well as in the pharmaceutical indus-
try. In view of the vast amount of scientific text
produced in these areas, it is important to de-
velop tools and methods for automatic struc-
turing and extraction of the information found
therein.

The detection and categorization of named
entities, such as names of people, organisations
and places, in classical MUC-style information
extraction tasks, e.g., (Borthwick et al., 1998)
might be regarded a solved problem. But names
of proteins present a different challenge because
of their variant structural characteristics, their
resemblance to regular noun phrases and their
oftentimes unclear position on the continuum
between proper names and terminology. They
share these characteristics with other biological
substances and probably with many other kinds
of named terminology as well.

One common reason for developing methods
for automatic detection of protein names in text

has been the desire to build systems for auto-
matic extraction of interactions between pro-
teins, e.g., (Blaschke et al., 1999; Thomas et al.,
2000). However, the detection of protein names
is useful in itself. In our case, the first appli-
cation at hand is a browsing support system,
which links protein names in scientific text to
entries in SWISS-PROT (Bairoch and Apweiler,
2000), which is an annotated protein sequence
database.

Previous attempts at identifying protein
names in text can be divided into systems us-
ing machine learning techniques, e.g., (Nobata
et al., 1999; Collier et al., 2000), and systems
based on hand-written rules, e.g., (Fukuda et
al., 1998; Humphreys et al., 2000). The advan-
tage of using machine learning techniques is that
such a system is relatively easy to tune to new
domains, provided that tagged training data ex-
ists. A rule based system, on the other hand,
requires a lot of human analysis and labor, but
results in a transparent system which is easier
to support, adjust and expand. In Yapex, we
utilise an off-the-shelf syntactic parser to im-
prove the performance of a rule-based system.

Work on evaluation of protein name taggers
seldom clearly specify what notion of correct-
ness has been used when evaluating the systems,
with the exception of de Bruijn and Martin
(2000), who present figures on undertagging and
overtagging, as well as type and token matches.
Correspondingly, the definition of what should
be regarded a protein name is often implicit.

2 Protein Names

Despite the lack of common standards and fixed
nomenclatures, protein names exhibit several
regularities that can be exploited in order to
identify previously unseen instances. Primar-
ily, protein names are almost always descrip-



tive in some way. Protein characteristics such
as function (e.g. growth hormone), localization
or cellular origin (such as HIV-1 envelope gly-
coprotein gp120), physical properties (salivary
acidic protein-1), similarities to other proteins
(Rho-like protein) are commonly reflected in the
name. Names are also constructed using a com-
bination or abbreviation of the above. As can
be noted from the examples, protein names of-
ten consist of multiple words.

It needs to be said that the definition of what
should be considered a protein name is not self-
evident and that it can be varied to a certain
extent. In this study, we define a protein name
semantically as something that denotes a single
biological entity composed of one or more amino
acid chains. Protein fragments or protein fami-
lies are not included in this definition.

In addition to the semantic definition above,
from a text structural point of view, we de-
fine a protein name as a sequence of words
denoting a specific, individual protein entity.
Furthermore, we also include some, more in-
direct, references to individual protein enti-
ties into the protein name definition, (e.g.
<prot>importin betal</prot> derivatives). The
definition excludes non-specific reference to in-
dividuals (transcription factor, a 89 kD pro-
tein). It also excludes most reference to groups
or classes of proteins (protein kinases, globu-
lins), though phrases denoting small groups of
nearly identical proteins are included (eukary-
otic RhoA-binding kinases).

Finally, the definition of a protein name ex-
cludes anaphoric references to proteins (this pro-
tein).

3 Yet another protein name
extractor — Yapex

Arguably, building information extraction sys-
tems always involves decisions regarding how to
balance recall and precision; depending on the
application, one may want to focus on one or the
other. Yapex initially strives for high recall with
the consequence of poor precision. Later mod-
ules in the pipelined system use filtering tech-
niques and syntactic information to boost pre-
cision, and a local dynamic dictionary is even-
tually applied to increase recall.

The Yapex algorithm can be described as con-
sisting of the seven steps described below: The

first four steps are concerned with the lexical
analysis of singel word tokens, and the first two
of these are implementations of some of the
heuristic steps in the algorithm described by
Fukuda et al. (1998) from which the terminol-
ogy of these steps is borrowed. Steps five and
six are concerned with the syntactic analysis of
noun phrases and of the lexical categories de-
rived in the previous steps, and the final step uti-
lizes the syntactic information gathered to iden-
tify new single- or multi-word protein names.
The Yapex system is available for testing at
http://www.sics.se/humle/projects/prothalt/.

3.1 Lexical analysis of feature terms

Feature terms are words, e.g., receptor and en-
zyme, that describe the function or character-
istics of a protein. These words often occur in
or nearby a protein name and can be used as
indicators of the presence of such a name. The
analysis discriminates between internal and ex-
ternal feature terms, internal terms being words
that belong to the name like protein, particle,
and receptor. External feature terms are words
—e.g. peptide, domain, and terminal — that acts
as indicators of a protein name but, most often,
does not constitute a part of the name itself, ac-
cording to our protein name definition. Among
the internal feature terms we treat strong terms
separatly. These terms (factor, receptor, and en-
zyme) are even stronger indicators of a protein
name. We currently tag words as feature terms
if we find them in our list of about 50 such words.

3.2 Lexical analysis of core terms

A core term constitutes the nucleus of a protein
name. These terms are the parts of a protein
name that show the closest resemblance to reg-
ular proper names in that the principles for their
coining vary, and often are rather arbitrary. As
candidates for these terms we pick words ending
in -ase and -in, or strings with characteristics
typical of protein names, i.e., strings containing
instances of upper case letters or numbers, found
in names of proteins like HsMad2 and US3-55k.
Furthermore, as all protein names do not con-
form to the patterns above, words are dubbed
core terms if they are found in a list of estab-
lished protein names such as interferon.

Two general filters are applied to these terms
to avoid overgeneration: Words consisting of >
50% non-word characters, and measuring units



are discarded as core terms.

3.3 Lexical analysis of specifiers

Yapex also recognizes a third lexical category,
the specifier. Specifiers are terms that often oc-
cur in the beginning or end of a protein name
to, e.g., specify an individual protein. We treat
arabic and roman numerals, letters, greek letter
names, and combinations of these as specifiers.

3.4 Applying filters and knowledge
bases

To remedy the low precision obtained in the pre-
vious step, a set of filters is applied to get rid
of false hits. Some filters use regular expression
patterns of word suffixes to rule out, e.g., names
of chemical substances. Other filters use pat-
terns of whole words/expressions to filter out,
e.g., personal names and other parts in bib-
liografical references, chemical formulas, arith-
metic expressions, and amino acid sequences. A
third group of pattern matching filters remove
the core term annotation on words unlikely to
function as core terms: Words, > 6 charcters
long consisting solely of upper case letters, or
consisting of upper case letters and more than
one hyphen are discarded.

Short core terms (< 3 characters) get spe-
cial treatment. Only those found in our
short-protein-name knowledge base drawn from
SWISS-PROT are considered core terms. All
the others are tagged as potential core terms to
be used later in the protein name identification
process. Core terms resembling regular proper
names are treated the same way.

3.5 Finding noun phrases

In order to enhance detection of name bound-
aries, this step takes advantage of the Func-
tional Dependency Grammar (FDG) parser
from Conexor Oy (Tapanainen and Jérvinen,
1997). For every noun phrase, we identify the
head and its preceding lexical modifiers. This
constitutes the minimal noun phrase — the noun
phrase without any subordinate noun phrases
— and is considered a potentional protein name
location.

3.6 Identifying protein names

To identify the protein name we start off by
adjoining all specifiers to their preceeding core,
potential core, or feature term. Then all exter-

nal or plural feature terms, their adjoined spec-
ifiers, and words without a lexical analysis from
Yapex is stripped off from the right edge of the
noun phrase. From the left edge, words earlier
identified as numerals together with measuring
units are stripped off. The remaining part of
the noun phrase is considered a potential pro-
tein name. It is selected as such if it contains a
core term, a strong feature term together with
at least one other word token, a feature term
with an adjoined specifier, or a potential core
term together with a feature term somewhere in
the unstripped noun phrase.

3.7 Applying a local dynamic
dictionary

The relevant terms in the protein names iden-
tified in the previous step are stored in a local
dictionary as regular expressions. For every doc-
ument, the dictionary is used in an additional
tagging pass over the text to make possible flex-
ible matching of protein names in noun phrases
undetected or misinterpreted by the parser.

4 Evaluation
4.1 Reference and test corpora

From the set of answers obtained by posing
the following query to MEDLINE!, 99 abstracts
were drawn randomly to form a reference (train-
ing) corpus used during development of Yapex:

protein binding [Mesh term] AND
interaction AND molecular

with the parameters abstract, english, human,
publication date 1996-2001. The reference cor-
pus, as well as the test corpus (described below),
were annotated by domain experts connected to
the Yapex project.

The test corpus consists of 101 MEDLINE ab-
stracts and it is divided into two distinct parts,
the first of which — corpus part one — con-
tains 48 abstracts obtained as part of the re-
sult when posing the above query to MEDLINE.
Part one contains a total of 1213 annotated pro-
tein names. The remaining 53 abstracts of the
101 in the test corpus — corpus part two — cor-
respond to a randomly chosen, re-tagged sub-set

!MEDLINE is a bibliographic database owned
by the U.S. National Library of Medicine.
MEDLINE can be searched via PubMed:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi



CORPUS PART ONE CORPUS PART TWO FULL CORPUS

YAPEX KeX YAPEX KX YAPEX KeX
SLOPPY | R=828% | R =835% || R=80.9% | R =83.4% || R =82.1% | R = 83.5%
P=829% | P=8.0%1|P=8.3%| P=762% || P=838% | P =821%
F=829%|F=84.7% || F=83.0% | F =79.6% || F =82.9% | F = 82.8%
PNP | R=T740% | R=68.9% | R =733% | R=60.1% || R=73.7% | R — 65.3%
P—734% | P =477% | P =778% | P —=401% || P = 75.1% | P — 44.5%
F=7137%|F =564% || F =75.5% | F =48.1% || F = 74.4% | F = 52.9%
STRICT | R=67.1% | R=432% || R=653% | R=375% || R =66.4% | R = 41.1%
P=672% | P=445% || P =688% | P =343% || P = 67.8% | P = 40.4%
F=671% | F =438% || F=67.0% | F =35.8% || F =67.1% | F = 40.7%
LEFT | R=T47% | R =57T4% || R=729% | R =54.3% || R = 74.0% | R = 56.2%
OR| P=747% | P =591% | P=769% | P =49.7% || P = 75.5% | P = 55.3%
RIGHT | F =T47% | F =582% || F =74.9% | F =51.9% || F = 74.8% | F = 55.8%
LEFT | R=716% | R=60.9% || R=71.9% | R=65.4% || R=71.7% | R = 62.6%
P=T17%|P=627% || P=758% | P=59.8% || P =73.2% | P = 61.5%
F=T17%|F =618% || F=738% | F =625% || FF =72.5% | F =62.1%
RIGHT | R=77.7% | R=538% || R=740% | R=433% || R=76.3% | R = 49.9%
P=778% | P=554% || P=780% | P =39.6% || P =77.9% | P = 49.1%
F=718% | F=546% || F=75.9% | F =413% || F = 77.1% | F = 49.5%

Table 1: Results for Yapex and KeX given in recall (R), precision (P), and F-score (F').

of the GENIA corpus (Collier et al., 1999) con-
taining 723 annotated protein names. The ref-
erence and test corpora are mutually exclusive.

4.2 Notions of correctness

This evaluation presents performance figures for
Yapex and KeX? on the test corpus using four
different notions of correctness. The perfor-
mance is measured according to the following
different notions of correct matching:

Stoppy: If any token of the proposed hit, as
suggested by the tagger, matches some to-
ken of the answer key, constructed by do-
main experts, the hit is counted as a match.

PROTEIN NAME PARTS (PNP): Each token of
the hit that matches any token of the an-
swer key is counted as one match. This is
a quantification of the SLOPPY match, that
gives the degree of overlap between the pro-
posed hit and the answer key.

STRICT: If a proposed hit matches one answer
key exactly, the hit is counted as a match.

BOUNDARY:

2KeX is a freely available protein name tagger based
on the algorithms presented by Fukuda et al. (1998).
KeX can be downloaded from http://www.hgc.ims.u-
tokyo.ac.jp/service/tooldoc/KeX /intro.html.

LEFT: If a proposed hit exactly matches
a left boundary in the answer key, the
hit is counted as a match.

RiGHT: If a proposed hit exactly matches
aright boundary in the answer key, the
hit is counted as a match.

LEFT OR RIGHT: If a proposed hit exactly
matches any boundary of the answer
key, the hit is counted as a match.

4.3 Results

In Table 1, Yapex and KeX are compared in
terms of precision, recall and F-score3. Looking
at the SLOPPY row in the table, we can see that
this is the only notion under which Yapex and
KeX yield similar figures. The difference be-
tween the systems is more obvious, in favour of
Yapex, when the other notions of correctness are
reviewed — the figures for Yapex are substan-
tially better when measuring the taggers’ perfor-
mance in terms of PNP, STRICT, LEFT, RIGHT
and LEFT OR RIGHT. We notice also that it is

3F-score is a measure combining precision and recall:

p_ (B+DPR

(B°P + R)

where [ is a parameter that represents the relative im-
portance of Precision (P) and Recall (R), in our case
equally important.



only under the SLOPPY condition that KeX per-
forms close to the results reported in de Bruijn
and Martin (2000), but not at all close to what
its authors reported in (Fukuda et al., 1998).

Both taggers appear to be stable in the sense
that each tagger exhibits similar figures for both
precision and recall in any given row in Table 1,
with one exception — the difference between re-
call and precision for KeX under the PNP no-
tion. This, in combination with the results un-
der the SLoprPY condition, suggests that KeX’s
matches are too long; KeX’s high recall and pre-
cision under SLOPPY tells us that KeX’s sugges-
tions are located close to the correct ones with-
out to many false suggestions entirely outside.
Still, KeX gives a lot of false suggestions when
it comes to protein name parts.

Visualizing the F-scores for the full corpus
evaluation in Figure 1, it is clear that both a
STRICT and a PNP definition of a match favours
the Yapex system. The result under the PNP
condition clearly shows that the overlap between
the proposed hits and the corresponding answer
keys is remarkably higher for Yapex than for
KeX, i.e., Yapex will find more of the protein
name parts. We believe that this is due to
the ability of the FDG parser to analyse noun
phrases well, and thereby predict the boundaries
of protein names.

When looking at the result under the STRICT
condition, the impression remains the same, sug-
gesting that Yapex is much better at finding the
exact edges of the protein names. This is also
shown by the result under the LEFT, RIGHT,
and LEFT OR RIGHT conditions in Table 1. In
fact, this difference is further emphasized if we
look at only the correct hits under the sSLOPPY
condition. Looking at the result this way (Fig-
ure 2), we find that Yapex recognizes the correct
left boundary in 87.4% of all cases, while the
figure for recognising the correct right bound-
ary is a bit higher; 93%. The same figures for
KeX is 75% for the left boundary and 59.8%
for the right. Thus, in contrast to Yapex, the
KeX system appears to correctly recognise the
left boundary more often than it does the right
boundary. Further, given a SLOPPY hit, Yapex
finds one of the left and right boundaries in
90.2% of the cases, while the same figure for
KeX is 67.4%. The difference between Yapex
and KeX is even greater in the case of the sys-
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Figure 1: F-score for Yapex and KeX when evalu-
ated on the full corpus along the SLOPPY, PNP and
STRICT notions.
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Figure 2: Given a SLOPPY hit, this chart shows the

probability of finding protein name boundaries for
Yapex and KeX.

tems correctly matching both the left and right
boundaries (i.e., STRICT) of a protein name un-
der the sLOPPY condition; 80.9% and 49.2% for
Yapex and KeX, respectively.

5 Discussion

To problematize the metrics of recall and pre-
cision, we have choosen to evaluate along sev-
eral notions of correctness. What is relevant to
annotate varies with the intended application,
and different methods of evaluation can high-
light characteristics of competing systems. PNP
is a relevant measure for this kind of named ter-



minology where even human domain experts ar-
gue about the boundaries of names, since it gives
an idea of how much of the multi-word proteins
the systems match.

We believe that by equipping Yapex with ca-
pabilities of elaborate syntactic analysis, it per-
forms better in recognising protein names with
respect to boundaries as well as content, than
a system like KeX that does not explicitly ex-
ploit syntax. There is nothing surprising about
a syntatic parser being able to aid in the detec-
tion of protein names; names cannot be found
anywhere but in noun phrases. Given a per-
fect parser that identifies minimal noun phrases,
the problem would be reduced to deciding if the
noun phrase is a protein name or not. It should
be noted though, that we use the FDG parser
without modification; it has not been trained
to handle this quite specific subdomain of text.
Our technique of boosting the identification of
protein names by using the Local Dynamic Dic-
tionary finds noun phrases that were not cor-
rectly analysed as such by the parser.

What notion of correctness to actually choose
to describe the performance of a protein name
tagger depends on the setting in which it will
be used; in our case, the tagger will be used
in a browsing aid, connecting protein names
in MEDLINE abstracts with the SWISS-PROT
database. Since the query to SWISS-PROT can
be made in a way that does not require all parts
of the tagged protein name to be present in a
SWISS-PROT entry to yield a match, it is not
crucial that the tagger achieves perfect matches
of the protein names. Thus, in our case, a figure
obtained with the SLOPPY notion may suffice to
describe the performance of the tagger. In an
information extraction setting where the goal is
to automatically build a high quality database,
it would be more important to find the exact
boundaries of the protein names, hence, such
an application would benefit from a description
along the STRICT or BOUNDARY notions.

It is hard to compare two systems like Yapex
and KeX and still maintain a balanced record of
result — there is always a risk that the test data
is biased towards one of the systems. In this par-
ticular case, the domain experts that annotated
the test corpus were also involved in discussing
the development of Yapex, thus the annotators’
definition of what constitutes a protein name

is likely to favour Yapex over KeX. It is pos-
sible, e.g., that KeX’s low performance under
the STRICT, and especially the RIGHT condition
is due to a target definition that includes parts
of proteins, such as protein sites and domains.
Solving problems like this calls for researchers
performing similar studys in the field to clearly
state their definitions of what is considered rel-
evant for solving a particular task. Ideally, the
research community should strive for shared and
open resources. The GENIA project (Collier et
al., 1999) is an effort in this direction, but unfor-
tunately, the subclasses of the GENIA protein
ontology turned out to be incompatible with our
definition of protein names.

6 Conclusions

The LEFT OR RIGHT, LEFT, RIGHT and STRICT
notions are suitable for describing a system’s be-
haviour in a setting such as information extrac-
tion, where it is crucial that the terms searched
for are exactly matched in their entirety. The
SLOPPY notion describes a system’s ability to
find at least some part of the target, and it is
sufficient only when the output from the system
at hand is to be used in a setting where perfect
matches are not crucial.

A combination of the SLOPPY notion and the
BOUNDARY one (as in Figure 2) is good for il-
lustrating how well a system is able to delimit a
match once it has got a hold of one of the parts
of the term searched for.

Presenting results using PNP is suitable for
highlighting the system’s ability to cover multi-
word names.

By using these new notions of correctness —
PNP, STRICT and the variants of BOUNDARY
— in addition to the commonly used SLOPPY
notion, we have illustrated that it is possible
to shed light on different aspects of the perfor-
mance of protein name taggers. Taking into con-
sideration the nature of protein names as such,
i.e., the way they are constructed and behave,
lead us to believe that the notions are suitable
also for other kinds of named terminology.
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