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Abstract

Two general methods for the lexicalization of
probabilistic grammars are presented which are
modular, powerful and require only a small
number of parameters. The first method mul-
tiplies the unlexicalized parse tree probability
with the exponential of the mutual information
terms of all word-governor pairs in the parse.
The second lexicalization method accounts for
the dependencies between the different argu-
ments of a word. The model is based on a
EM clustering model with word classes and se-
lectional restrictions as hidden features. This
model is useful for finding word classes, selec-
tional restrictions and word sense probabilities.

1 Introduction

Unlexicalized probabilistic grammars like prob-
abilistic context-free grammars (PCFGs) fail
to disambiguate frequent syntactic ambiguities
like PP-attachment and coordination ambigui-
ties correctly, because they lack the necessary in-
formation about lexical dependencies. Compare
e.g. the sentences He ate the cake with a spoon
and He ate the cake with apricot glaze. A sim-
ple unlexicalized PCFG would assign the same
structure to both sentences. Correct disam-
biguation of these sentences requires the knowl-
edge that a spoon is a likely nominal head of
with PPs modifying the verb eat, whereas glaze
is a likely nominal head of with PPs modifying
the noun cake.

Probabilistic grammars are usually lexical-
ized (Charniak, 1997; Collins, 1997; Carroll and
Rooth, 1998) by replacing the grammar symbols
with pairs consisting of a grammar symbol and
a lexical head. The rule VP — V NP e.g. is re-
placed by a set of rules of the form (VP,eat)
— (V,eat) (NP,cake). Because this results in
a data sparseness problem, the lexical heads of

the arguments are usually assumed to be inde-
pendent given the left-hand side of the rule (or
the whole rule). In the simplest case, a proba-
bilistic grammar with two types of rules is ob-
tained. Rules of the first type select a grammar
rule given the lexical head. They are exemplified
by the rule (VP,eat) — (V,eat) (NP,VP,eat).
Rules of the second type choose the lexical head
of an argument. They are exemplified by the
rule (NP,VP,eat) — (NP,cake).

This type of lexicalization has the disadvan-
tage that each unlexicalized parameter is re-
placed by a large number of lexicalized parame-
ters.

This paper presents an alternative method
where the lexicalized model is a modular ex-
tension of the unlexicalized model and where
the number of parameters is easy to control.
The lexicalized probability of a parse is obtained
by multiplying its unlexicalized probability with
the exponential of the pointwise mutual infor-
mation of each word and its lexical governor.
The number of parameters is small because in-
dividual parameters are only required for pairs
whose frequency differs significantly from the ex-
pected frequency under the assumption of inde-
pendence. The model assumes that the different
arguments of a word are statistically indepen-
dent given the word.

A second lexicalization method is described
which captures the dependencies between the
arguments of a word. It is based on a EM
clustering model and is expected to have good
smoothing properties.

2 Lexicalization With Governors

The first lexicalization method imposes the fol-
lowing rather general restrictions on a proba-
bilistic grammar.



1. The grammar assigns an (unlexicalized)
probability p(T') to each parse tree T

2. The grammar assigns to each word w in a
parse tree T at most one governor g.

There are no other restrictions on the def-
inition of the governor than its uniqueness
(which will later be weakened). Governors
may be words, lemmas or pairs consisting of
a word/lemma and a grammatical function like
subject, indirect object etc. For efficiency rea-
sons, it is desirable that an efficient algorithm
for the labeling of parse forests with governors
is available.

In order to motivate our solution, assume for
the moment that a PCFG is to be lexicalized and
that the words are generated by unary lexical
rulesC — w. We see in eq. 1 that the lexicalized
probability p(C — w|C, g) = p(w|C, g) is identi-
cal to the product of the unlexicalized probabil-
ity p(C — w|C) = p(w|C) and EMI(w, ¢|C),
the exponential of the pointwise mutual infor-
mation between w and g given C.
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= p(w|C) EMI(w,g|C) (1)

Therefore, the lexicalized probability of a parse
tree is its unlexicalized probability multiplied by
the EMI factors of the word-governor pairs. In
order to simplify the model, a dummy governor
is assigned to words without governor. The re-
sulting formula for the computation of the lexi-
calized parse probability is shown in eq. 2, where
n is the sentence length and w;, C; and g; are
the i-th word, its category and its governor, re-
spectively.

leex(T) = Punlex(T) l_n[ EMI(’U)Z', gz|Cz) (2)
=1

2.1 Parameter Training

The EMI parameters are either estimated from
unparsed corpora using the Expectation Maxi-
mization (EM) algorithm or from treebank data.

Treebank training requires a treebank which
is annotated with governor information. If gov-
ernor information is missing, it has to be added
by running the annotation program whose avail-
ability is presumed. Given the annotated parse

trees, the training algorithm counts how often a
category C' with governor g is expanded to some
word w.

For each tuple (w,C,g) with f(w,C,g) > 0,
the algorithm checks whether its frequency di-
verges significantly from the expected value un-
der the assumption that w is independent of g
given C. To this end, it computes the proba-
bility that a sample of size n = Y, f(w',C, g)
which is randomly drawn from a Bernoulli dis-
tribution with probability p = p(w|C) contains
m = f(w,C,g) or more “1” events. To this
end, it sums the probabilities of the binomial
distribution b(r;n,p) = (I)p" (1 — p)*~" for all
r > m.! If this sum is below e.g. 5 % (the usual
threshold for significance), the algorithm esti-
mates a separate EMI parameter for this tuple
according to eq 3.
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The frequencies f(w,g,C) are smoothed fre-
quencies obtained by absolute discounting (Ney
et al., 1994) or similar smoothing methods (see
e.g. (Chen and Goodman, 1996)). All words w
which are not in the set Ws(g, C) of words with
significant frequency, share a single parameter
EMI(w,g|C) = EMI(—,g|C) for a given con-
text C and governor g. In order to obtain a
probability distribution, this parameter has to

1Usually it is easier to compute the equivalent quan-
tity 1 — b(< m;n,p).



be defined such that eq. 4 holds.

> _p(wl)EMI(w,g|C) =1 (4)

Solving this equation for the unknown parame-
ter EMI(—,g|C) gives the following formula for
the computation of this parameter:

1- EwEWs(g,C) p(U)lC)EMI(’LU, glC)
1- ZwEWs(g,C) p(’LU|C)

(5)

Because EMI parameters are only stored for
word-governor pairs with significant frequency,
the number of parameters remains small.

2.2 Multiple Governors

Linguistic grammars often analyze control verbs
like to promise in such a way that an argu-
ment is governed by two verbs. The noun
phrase Peter in the sentence Peter promised
to come e.g. is governed by the two verbs
promised and come.

The lexicalized probability of an argument
which is governed by two words is derived in
the following way: (For simplicity, we omit here
the C on which all probabilities depend.)

P(wagl) P(UJ,QQ)

p(w)p(g1) p(w)p(gz)
p(w, g1, 92)p(w) p(g1)p(g2)
p(w, g1)p(w,g2) p(g1,92)

= p(w) EMI(w,g1) EMI(w,g2)
EMI(91792|U)) (6)
EMI(Ql,QQ)

p(wl|gi,92) = p(w)

We obtain an expression similar to the one in
eq. 1, but with two additional terms. The first
additional term is the EMI score of the second
governor. The second term captures the fact
that the relation between w, g; and go is not
fully described by the pair-wise dependencies.

How could the second parameter be esti-
mated? Estimating a separate parameter for
each triple consisting of an argument and a gov-
ernor pair is difficult due to data sparseness
problems, although one of the governors has
to be a control verb. Again, it seems a good
idea to estimate this parameter ©(w, g1,92) =
EMI(g1,g2|w)/EMI(g1,g2) only for the small
number of triples whose frequency diverges sig-
nificantly from the expected value. To this

end, we check whether b(r;n,p) < 0.05 for
ro= f(waglaQQ)a n = f(glaQQ) and p =
p(w)EMI(w,g1)EMI(w, g2).

The other words w use the same parame-
ter O(w,g1,92) = ©(—,91,92) whose value is
chosen such that the following expression be-
comes 1:

Y _p(w) EMI(w,g1) EMI(w,g2) ©(w,g1,92)
(7)

Solving this equation for the unknown parame-
ter ©(—, g1, g2) gives the expression in eq. 8 with
p*(w) = p(w)EMI(w, g1) EMI(w,g2).
1- ZwEWs(gl,gg) p*(w)(a(waglag2)
1= Y weWw.(g1.0) p*(w)

(8)

For rare governor pairs, the value of ©(—, g1, g2)
has to be computed at run-time.

3 Lexicalization With Arguments

So far, only the dependence of words on their
governors (knife — cut, bread — cut) was consid-
ered. The different arguments of a word (knife,
bread) were implicitly assumed to be indepen-
dent of each other given the word. This is
an oversimplification. Knifes are likely to cut
bread, but managers are more likely to cut jobs.

We drop the independence assumption and
consider lexicalized models where a word w de-
pends on its arguments ai,...,a,. S0, we are
interested in the probability p(wla,...,a,,C)
which is similar to the probability of words with
multiple governors. However, the proposed solu-
tion for multiple governors would not work here,
because multiple arguments are much more fre-
quent and because verbs have up to three argu-
ments.

3.1 Incorporation of a Clustering Model
Instead, the probability p(w|ai,...,an,C) is di-
rectly estimated with an EM clustering model
(EMC) (see e.g. (Rooth, 1998)) which decom-
poses the probability p(w,as,...,an,C) as fol-
lows:

3 p(e) plwle) p(Clo) [ 3 plrle.i, €) plailr)

i=1 T
(9)
We assume here that the number of arguments
is fixed for each category C. The decompo-
sition introduces the hidden features ¢ and 7.



The clusters ¢ are interpretable as word classes
and the r’s are argument classes (= selectional
restrictions). r might be e.g. a concept of a
taxonomy like Wordnet (Miller et al., 1993).
The probability of a word-argument tuple is ob-
tained by summing over all clusters and all argu-
ment classes for each argument. The probability
p(wlai,...,an,C) is computed as

p(w,aq,...,a,,C)
play,...,a,,C)

p(wla,...,an,C) = (10)

and the probability p(ai,...,an,C) is given by

S p(@p(Cle) [[ 3 p(rle.i,C) plaidr) (1)

’L:l T

A separate set of clusters could be used for each
category C, or, alternatively, a single cluster set
for each set of similar categories like e.g. the
verbal categories. There are no other prior re-
strictions on the assignment of words and argu-
ment classes to clusters, i.e. on the probabilities
p(w|c) and p(r|c,i,C). They are learned during
training.

The dependencies between the different argu-
ment positions of a word are modeled by the
clusters. Training with the EM algorithm makes
the clusters of an EMC model homogeneous, i.e.
the words, categories and argument classes with
a high probability for a given cluster are similar
to each other. So, each cluster has high prob-
abilities for a certain group of words w, a cer-
tain group of categories C, and certain argument
classes. Word-argument-tuples which fit the re-
strictions of a cluster well, will have a high prob-
ability. Words with multiple readings are likely
to have large probabilities for different clusters
modeling the different readings.

The distribution p(a|r) of lexical heads a for
a given argument class r is shared by all cluster
sets. p(a|r) is only positive if r dominates a in
the taxonomy.

3.2 Advantages

The resulting probability distribution will be
smooth because

e the dependencies between words and their
arguments are modeled through the clus-
ters which contain other words with similar
arguments. An argument which occurred

with one of the words is likely to occur with
the others, too.

e words select argument classes rather than
individual words as arguments. If a word
occurs with some argument a, then it is
likely to occur also with semantically simi-
lar arguments.

The introduction of hidden features reduces
the number of parameters because

e the argument classes (= selectional restric-
tions) depend only on the cluster and not
on the governor or the classes of the other
arguments.

e the lexical heads of the arguments depend
only on the argument class and are further
restricted by the taxonomy.

The lexicalization based on the EMC model
has the following advantages compared to the
previous model:

It models dependencies between arguments.

It models multiple readings of a word.

Word classes are learned.

Selectional restrictions are learned.

The resulting probability distribution is
smooth.

The components of the model are useful for
other applications:

e The p(w|c) probabilities allow different
readings of a word to be separated.

e p(C|c) could be useful for finding frequent
alternations like the causative-inchoative
alternation.

e p(r|c,i,C) yields selectional restrictions for
arguments.

e p(a|r) could be used to obtain probability
estimates for the different senses of a word.

3.3 Interpolated Models

The EMC model smooths the probability distri-
bution. For fixed expressions like “kick the buck-
et” or “spill the beans” the resulting probability
distribution might actually be too smooth. Such
phrases show very specific selectional properties



which are not shared by other words and there-
fore modeled badly. This problem can be solved
with the following method:

1. Compare the observed frequency of each
word-argument tuple with the expected
value according to its model-based proba-
bility.

2. If there is a significant difference, add a new
cluster which generates only this tuple.

The resulting model is basically a weighted mix-
ture of an EMC model and a family of distribu-
tions p(w|C, aq, ..., ay) which are non-zero for a
small number of tuples. The latter parameters
model fixed phrases whereas the EMC model as-
signs probabilities to the remaining data and to
the literal meanings of phrases.

3.4 Training

Because of the hidden parameters, the EMC
model requires iterative EM training when it
is trained on a treebank. Based on (estimates
of) the frequencies of the word-argument-tuples
in a corpus, the expected frequencies f(c,w),
flc,Cyi,r), and f(a,r) are computed according
to the current EMC model. f(c,w), e.g., is com-
puted as follows:

fle,w) =37

(w’aly"'aancy

ple,w,a1,...,a,,,0C)
c) Zc’ p(cI7 w,at, .. -,0ng, C)
(12)
The model parameters are then reestimated

based on these frequency estimates. p(w|c) e.g.
is computed as follows:

fle,w)
p(w|C) Ew’ f(ca wl) (13)
The estimation of frequencies (E-step) and prob-
abilities (M-step) is repeated until the likelihood
of held-out data decreases.

The training algorithm has three parameters,
namely the number of clusters ¢, the set of se-
lectional restrictions r and the set of start prob-
abilities. These parameters should be varied in
order to find a good combination. The different
models could be compared on the basis of the
likelihood of held-out data.

4 Summary

Two methods for the lexicalization of probabilis-
tic context-free grammars have been proposed.

Both methods are modular extensions of unlex-
icalized models and both can be combined with
a wide range of probabilistic grammars. They
only require that an unlexicalized parse tree
probability is defined and that the lexical gov-
ernor/arguments of each word are defined and
efficiently computable.

The first method defines the lexicalized prob-
ability of a parse tree as the product of its unlex-
icalized probability and the exponentials of the
pointwise mutual information scores of all words
and their governors. Governors may be arbitrar-
ily defined. They might e.g. be words or lemmas
or words plus semantic relations. Even multi-
ple governors can be handled in an extension of
the model. Mutual information scores are only
explicitly represented for word-governor pairs
whose frequencies differ significantly from the
expected values for independent words. There-
fore the number of parameters is small.

The second method is based on an EM clus-
tering model which models the dependencies be-
tween the different arguments of a word. This
model contains two hidden features, namely
word classes and argument classes and requires
iterative training with the EM algorithm. The
model is improved by adding parameters which
directly model frequent word-argument tuples
which are not adequately modeled by the EMC
model. This model is also useful for finding word
classes, selectional restrictions and word sense
probabilities.
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