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Abstract

This paper describes a technique for parsing de-
pendency grammars using a bottom-up chart
parser originally designed for phrase-structure
grammars, using typed feature structures as the
only data structure. Each lexical item is rep-
resented as a tree where nodes indicate lexical
elements (the anchor, its dependents and gover-
nor) and edges (branches) indicate dependency
relations between these elements. Nodes may
carry additional features, including one for node
saturation. Trees combine into derived trees
provided that node and edge features unify. The
ALE system is used to implement an active
chart parser where a chart edge represents a
tree, and two adjacent edges are combined into
a more saturated tree.

1 Dependency grammar

The term dependency grammar (DG) desig-
nates a class of grammars in which syntactic
structure takes the form of a network of rela-
tions between words, such that each word is
connected to another word. This should be con-
trasted with phrase structure grammars (PSG),
which are based on constituency. This distinc-
tion is independent from that concerning the
specification of syntactic elements in terms of
(morphological, syntagmatic, or phrasal) cate-
gories or in terms of syntactic functions.

In a dependency tree there is exactly one node
for each word in the sentence. Each word de-
pends on exactly one other word. The former is
called a dependent, the latter it’s governor. The
only exception is the root of the tree, which has
no governor. A word may govern several depen-
dents.

To illustrate this, figure 1 shows a dependency
graph as proposed by (Tesniere, 1959), who calls
it a stemma. An arc connects the dependent
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Figure 1: Stemma for “She likes lean gram-
mars”. I and II indicate subject and object,
respectively.
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Figure 2: Ordered dependency graph

and its governor, with the dependent appearing
below its governor. Arcs may be labelled to
indicate the nature of the dependency relation.

Word order is not necessarily preserved in a
stemma. As a matter of fact, in DG word order
is modelled independently of dependency. Fig-
ure 2 shows an alternative representation of the
dependency network, but which preserves word
order. The arcs have been replaced by arrows
pointing from the governor to the dependent.

Dependency is related to valency, which pro-
vides a detailed characterization of the relations
between a governor and its essential dependents.
In “He was charged with murder. The soldiers
charged the enemy. He charged me 1 dollar.”
the verb “to charge” appears in different ar-
gument configurations. We say this verb has
multiple predicators, each of which selects its
dependents and their properties.

In valency grammar one commonly distin-
guishes two major types of dependency relations
and hence two types of dependents: valency el-
ements and adjuncts (or modifiers). A valency
element is a dependent the properties of which



are selected by its predicator. Modifiers, on the
other hand, may be combined with all predica-
tors of a certain type. The list of valency ele-
ments selected by a verbal predicator is some-
times called its valency frame.

Whereas verbal predicators are always con-
sidered to be governing their valency elements
and modifiers, there is less agreement about the
dependency status of determiners, prepositions,
conjunctions, auxiliary verbs, and so on. What-
ever position one takes in these issues has no im-
plications for the parser described below. The
parser merely provides general mechanisms to
deal with types of objects such as valency ele-
ments and modifiers. It is up to the linguist to
decide whether a particular lexical item will be
represented by this or that object type. This
decision will be reflected in the lexicon only.

Tree adjoining grammar (TAG (Joshi, 1987)),
and Lexicalized TAG in particular, is related to
dependency in that it uses trees (rather than
categories) as its elementary units, i.e. the rep-
resentation of a lexical element is a tree. Two
types of trees are distinguished, with special-
ized combination procedures (substitution and
insertion).

2 Elementary dependency trees and
derivation

To illustrate the way elementary trees are com-
bined into derived dependency trees, it is con-
venient to have a concise graphic representation
of such trees.

Figure 3 shows some examples of elementary
trees. Following TAG (including for terminol-
ogy), two types of elementary trees are distin-
guished: initial and auxiliary trees, also called
a and [-trees, respectively. A tree node may
be labeled to indicate some of its relevant fea-
tures. Black and white nodes (vertices) indicate
saturated and unsaturated nodes, respectively.
Arrows (edges) indicate dependency relations,
where the arrow points from the head to the de-
pendent. Elementary trees contain at least one
lexical anchor, representing the lexical element
that motivates the tree.

a9 is the elementary tree for the noun “bike”,
which appears as a black node at the center of
the tree, with the feature N for ‘noun’. As in-
dicated by the arrows, this element governs one
valency element while being itself governed by

another. The element governed by the noun ap-
pears as the node below the anchor; it will have
the function of determiner (noted as ‘det’). The
white node indicates the element has not been
found (saturated) yet. The element governing
the lexical anchor appears as the white node
above it. A tree is unsaturated when one or
more valency elements are unsaturated. A dia-
mond next to the tree identification indicates a
saturated tree. Note that initial trees don’t con-
tain nodes for modifiers, since the latter have no
impact on the saturation of the local tree.

The initial tree a4 illustrates a verbal predica-
tor governing two valency elements: subject and
object. Of course, the number and properties of
the elements in the valency frame will depend on
the identity of the predicator. These examples
only specify syntactic function, but since va-
lency slots will be represented by feature struc-
tures of arbitrary complexity, very fine-grained
constraints can be expressed.

Both nodes and arrows may be labeled, but
need not be. For ay the relation between the
pronoun and its governor is labeled as ‘subject’,
whereas this is not the case for as, which is
under-specified. Whereas the pronoun ‘he’ can
only be a subject, the noun (with its depen-
dents) could also be the object, or (part of) an
indirect object, and so on. So there is no need
for specifying the noun’s function. Indeed it
is preferable not to do so, to avoid “duplicate”
trees for cases where it has a function other than
that of subject.

An auxiliary tree, such as (1, is recognized
by the square node for the lexical anchor. Its
root node specifies the conditions that should
be met (i.e. the features to be unified) in or-
der to combine the S-tree with the anchor of a
governing tree. This root node is called the foot
of the f-tree. A [-tree may have valency ele-
ments (either optional or required), as for tree
B2, where the adjective “adequate” governs a
prepositional head “for” (other analyses being
possible, of course). [-trees may be combined
with other f-trees, e.g. for degree adverbs such
as “very” in “very new”.

A [-tree is a dependent that contains (in its
foot) the information about the kind of gover-
nor it combines with. For a-trees the situation
is the other way round: here it is the governor
that contains (in the valency slots) the infor-
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Figure 4: Derived trees for ’a bike’,

mation about the dependents it combines with.
The reason for this distinction is one of econ-
omy. If there were only a-trees, one would have
to enumerate all possible modifiers as optional
dependents, and do so for each elementary tree.
This would be highly inefficient.

Tree derivation. Larger trees are derived from
elementary trees in two ways. First, by unifying
an unsaturated valency slot with a dependent
tree of type «. This supposes that the prop-
erties of the corresponding nodes and their de-
pendency relations (as indicated by the labels
on the adjacent arrows) match.! As an addi-
tional condition it may be required that the de-
pendent is saturated also. The combination of
trees as and a3 produces the derived tree A
(figure 4). The determiner node of the noun
appears in black since it is now saturated. The
combination of o7 and a4 results in As.

The second type of combination concerns (-
trees being added as a dependent of the anchor
node of its governor, as in Ay. The analysis of
the sentence “he repears a new bike” results in
the dependency tree Ay.

3 Word order

The general mechanism of tree derivation out-
lined in the previous section does not prevent

'Note that we are unifying entire trees (rather than
isolated nodes or relations), i.e. the properties of the
lexical anchor node, its relation to the governor, and all
of the anchor’s dependency (nodes and relations) when
present.
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‘new bike’, 'he repairs’, ’he repairs a new bike’

sentences like “repairs he new a bike” from be-
ing analyzed as correct: they indeed respect
the constraints on valency and dependency cap-
tured in the elementary trees. An additional
criterion is required to verify word order.

In many languages it is possible to specify
word order locally as the position of dependents
relative to their head as well as to other de-
pendents. Some of the factors involved in the
relative order of the dependents for a given gov-
ernor are syntactic function, part-of-speech of
the dependent, the clitic nature of pronouns,
the nature of the dependent’s dependents (e.g.
presence of a preposition), morphological fea-
tures (person), and so on.

The position (side and distance) of a depen-
dent relative to its governor may be captured in
rules in which the nature of both the governor
and the dependent is identified by one or more
features. As an illustration, consider the feature
combinations and the corresponding distances
in table 1, for the direct an indirect object to
the right of the verb. For any two dependents
A and B of governor G, if B follows A to the
right of G, then B is assigned a distance greater
than A. If A and B appear in both orders, they
are assigned the same distance.

4 Trees, feature structures and
unification

A governor’s valency frame is most easily repre-
sented as a list where each element corresponds
to a F'S stating the features that are appropriate



example it him book to him
POS clit pron noun pron,
pron noun
function obj iobj  obj iobj
preposition - no - yes
distance 5 10 20 20

Table 1: Relative order of valency elements fol-
lowing the verb

for that valency element.

An adequate representation of the valency
frame should allow for the verification of the fol-
lowing properties. Appropriateness: a slot can
be filled only by an element that is appropri-
ate for it. This requirement is easily achieved
through unification. Uniqueness: a slot may be
filled only once (in certain constructions). Com-
pleteness (saturation): it should be clear when
the valency frame is saturated, i.e. when all
obligatory slots are filled. Optionality: it should
be clear whether a slot is optional or required.

In order to verify uniqueness in the context of
unification, a feature (SATUR) is be reserved the
value of which indicates whether or not the slot
is saturated. This feature’s value will be toggled
when the slot is filled. It should be disregarded
when verifying appropriateness to avoid inter-
ference between the saturation of the candidate
and that of the slot. Similarly, the OPTION at-
tribute indicates whether the slot is optional or
required. A tree is saturated when all of its
obligatory valency slots are saturated.

In the parser, elementary and derived trees
are represented as FS. A simplified FS for the
initial tree oy for the pronoun “he” is shown in
(1). It subsumes the complete F'S used in the
actual system. The path TREE groups features
that concern the tree as a whole and that may
be modified in the derivation process. The fea-
ture DEPS is reserved for the dependents, with
subfeatures for the valency frame and the list of
adjuncts (S-trees). The latter is initially empty.
Since this pronoun has no valency elements, its
valency frame is empty. An a-tree doesn’t have
a foot node.

(1) [TYPE  ALPHA
TREE SATUR TRUE
FUNC  SUBJ
CAT PRONOUN
ANCHOR
LEMMA he
VALENCY ()
DEPS
ADJUNCTS ()

In the case of a f3-tree, the FEET feature will
specify as the first element the features of the
governing node with which it may combine (2).

(2) [TYPE ~ BETA
TREE SATUR TRUE
FUNC  QUAL
CAT ADJECTIVE
ANCHOR
LEMMA new
VALENCY ()
DEPS
ADJUNCTS ()
FEET <[ANCHORJ [CAT NOUNH>

For an a-tree with a non-empty va-
lency frame, the frame slots at the path
DEPS|VALENCY contain F'Ss constraining the de-
pendents that may fill the slots (figure 5).

When the trees for the elements “he” and “re-
pairs” are combined, a derived tree results in
which the subject slot of the verb is unified with
the FS of the pronoun (figure 6). The unifica-
tion between the F'Ss of the candidate for a slot
and the slot itself should disregard the feature
SATUR (something which can be achieved in sev-
eral ways). After unification the feature SATUR
is set to TRUE.

5 Implementing DG in ALE

(Kahane, 2001) includes a detailed account
of approaches used in parsing DG. Some are
designed specifically for DG (e.g. (Courtin
and Genthial, 1998), (Hudson, 2000), (Nasr,
1995), (Nasr, to appear)); but in others (e.g.
(Lombardo and Lesmo, 1996)) algorithms orig-
inally proposed for PS grammars (CKY parser,
Earley-type parser) are applied to DG. This
section describes how a unification-based chart
parser designed for PSG can be used as an active
chart parser performing dependency tree unifi-
cation. By using an existing unification parser



( TYPE  ALPHA
TREE
SATUR FALSE
CAT VERB
ANCHOR .
LEMMA repairs
SATUR FALSE SATUR FALSE
VALENCY TREE , | TREE
DEPS FUNC  SUBJ FUNC  OBJ
L ADJUNCTS ()
Figure 5: FS of a lexical element with a non-empty valency frame.
TYPE  ALPHA
TREE
SATUR FALSE
CAT VERB
ANCHOR .
LEMMA repair
[TYPE ~ ALPHA
TREE SATUR TRUE
FUNC  SUBJ
r SATUR FALSE
VALENCY <ANCHOR CAT PRONOUN ’[TREE FUNC  OBJ ]>
DEPS LEMMA he
VALENCY ()
DEPS
ADJUNCTS ()
ADJUNCTS ()

Figure 6: FS (i.e derived tree) obtained by (selective) unification of the FS at the subject slot of

the verb with the FS of the dependent

one takes full advantage of the benefits of uni-
fication in general (extendability, declarative-
ness) and of long-standing efforts on efficiency
optimization.

The Attribute Logic Engine (Carpenter and
Penn, 1999) is a PS parser in which terms are
typed feature structures, rather than categories.
ALE also integrates a definite clause logic pro-
gramming system. The latter is reminiscent
of Definite Clause Grammar (DCG) (Pereira
and Warren, 1980); but whereas in DCG defi-
nite clauses are Prolog goals using Prolog terms
as their arguments, in ALE the arguments are
typed feature structures. The ALE formalism
defines the notation of the signature (i.e. the
declaration of the typed feature hierarchy), lex-
icon entries, grammar rules, macros, definite
clauses, as well as other components which will

not be touched upon here.

ALE uses a bottom-up chart parser. When
a word is read from the input, an edge with
the FS for that word (or multiple edges, for an
ambiguous word) is placed in the chart. This
new edge is combined with adjacent edges on
the basis of the grammar rules, before the next
word is processed.

A CFG rule A — B C would be written as
follows, where A, B, and C should be replaced
by one or more constraints on the FS of the
those elements.

name_of_rule rule

(A)

cat> ( B ),
cat> ( C ).

For instance, if the category information is



stored at the path cAT, B would be replaced by
(cat:b), which corresponds to [CAT BJ.

If the chart contains an edge covering (i,7)
and matching the constraints in B, and a second
one covering (j,k) and matching the constraints
in C, then a new edge covering (i,k) is created
the FS of which will unify the constraints in
A. The reserved word cat> indicates that its
argument (B) is unified with the FS of an edge
e; in the chart. The edge consumed by the next
cat> in the rule, will be to the right side of edge
e; and adjacent to it.

When dependency trees are represented as
FS, the above procedure can be used to derive
a larger tree from two smaller trees. Below is
the simplified rule to combine an a-tree depen-
dent with the (elementary or derived) tree to its
right.

alpha_left rule
( DerivedTree )

cat> ( Dependent,
@type(alpha) ),
cat> ( Governor,

Qunsaturated ),

goal> ( unify_slot(Governor,Dependent,Frame
word_order (left,Governor,Dependent

derived_tree(alpha,left,Governor,
Frame,DerivedTree) ).

beta_left rule
( DerivedTree )

cat> ( Dependent,
@type(beta),
@foot (Governor) ),
cat> ( Govermor ),

list, and (2) the fact that for some features val-
ues will be modified to reflect the properties of
the derived tree. First, unify_slot looks for an
open slot in the valency frame (of the governor)
that matches (i.e. unifies with) the properties of
the dependent. This is similar to substitution
in TAG. If the constraints on word order are
satisfied, a F'S is constructed representing the
derived tree on the basis of the FS of governor
and dependent, and reflecting modifications to
saturation as well as other features.

The second rule (for 8 dependents) differs
only slightly from the previous one. When com-
bining a [-tree with another tree, the foot fea-
tures of the dependent (indicating the required
properties of the head) is unified (shared vari-
able Governor) with the tree of the governor.
This is similar to insertion in TAG.

The two rules above have twins for the case
where the dependent is to the right of the tree
it combines with.

The rules above aren’t rules of syntax, but
merely implement a tree unification procedure.
All syntactic information resides in the trees
that are combined; the grammar is fully lexi-
cixl,ized.

y, The first rule (for o dependents) is to tree uni-

fication what the fundamental rule is to chart
parsing. The saturation features perform the
task which in chart parsing is performed by dot-
ted rules. But whereas the latter impose a fixed
order on the combination of elements, here va-
lency terms can integrate the governing tree (so
to speak) in any order, reducing the number of
required elementary trees to a minimum.

The procedure implements bottom-up head-
corner (bidirectional) active chart parsing on

goal> ( word_order(left,Governor,Dependent)igpendency trees. Analysis proceeds bottom-up

derived_tree(beta,left,Governor, _,

DerivedTree) ).

Dependent, Governor and DerivedTree are
variables (as indicated by the initial capital)
and are unified with the FS of the correspond-
ing edges. The macro @type(alpha) selects
the appropriate path (TREE|TYPE) in the FS of
Dependent and verifies that it is of the appro-
priate tree type.

The keyword goal> starts a definite clause
section. The use of definite clauses stems from
(1) the representation of the valency frame as a

because it amounts to the combination of ele-
mentary and derived trees, each of which origi-
nated from a lexical element. At no point pre-
dictions about the properties of an element are
made. As a result there is no need for filtering
techniques. It is active chart parsing because
derived trees (i.e. edges) may or may not be
saturated. The use of a chart also enables non-
deterministic parsing, generating all parses of
ambiguous sentences. It is head-corner parsing,
since a dependent tree can only be combined
with a tree (elementary or derived) containing
its governor as the lexical anchor. With the ex-



ception of optional valency elements, optional
elements appear as adjuncts (S-trees), and com-
binations are performed only when the optional
element is encountered in the input, increasing
efficiency. The procedure produces the same re-
sults irrespective of the direction (left-to-right
or right-to-left) in which elementary trees are
processed. To obtain incremental parsing it
would be necessary to slightly modify the al-
gorithm used in ALE.

If two adjacent words can not be combined in
a dependency network, this will not halt pars-
ing; there only will be multiple unconnected de-
pendency networks in the chart. Parsing can
work locally. Tree combination may be re-
stricted to saturated dependents, but it need
not be. By lifting this requirement, incomplete
trees can be parsed as well. However, this con-
siderably increases the number of edges in the
chart and hence parsing time.

6 Conclusion

This paper briefly describes an approach to
parsing for dependency grammar which builds
on ideas and insights from various research ar-
eas. From TAG we adopt the representation of
lexical elements as trees, tree derivation, node
substitution, the distinction between « and
trees. However, the internal structure of trees
is simplified, node properties are specified in
functional rather than phrasal terms, and word
order is treated independently. By applying
the fundamental rule of chart parsing to depen-
dency trees, tree derivation can be seen as a pro-
cess that constructs saturated trees step by step,
by combining adjacent parts into larger struc-
tures which get more saturated at each step.
From unification grammar we inherit FS, the
representation of the parse tree as a FS, and, of
course, unification itself. Finally, ALE provides
a powerful tool to test these ideas.

The parser has been tested on a small set of
lexical elements consisting of nouns, adjectives,
determiners, tensed verbs, pronouns, preposi-
tions, adverbs, and relative pronouns. Our aim
was to verify the possibility of parsing DG us-
ing standard unification and chart parsing. This
research provides a powerful technique for tree
unification (as opposed to tree adjoining and
insertion). In the process of this work two addi-
tional tree types (other than o and 3 trees) were

defined; they are not described here, but offer
interesting properties both for parsing and lin-
guistic analysis, and require only minimal mod-
ifications.
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