FROM TREES TO PREDICATE-ARGUMENT STRUCTURES

Maria Liakata and Stephen Pulman
Centre for Linguistics and Philology, Oxford University
Walton Street, Oxford OX1 2HG
Firstname.Lastname@ling-phil.ox.ac.uk

Abstract

The Penn Treebank encodes valuable informa-
tion such as grammatical function, semantic
roles, and identification of traces. The addi-
tion of such information was intended to facil-
itate the process of predicate-argument extrac-
tion. However, even with the enriched anno-
tation this task is far from trivial and, to our
knowledge, no complete set of predicate argu-
ment structures derived from the Treebank ex-
ists. Our paper describes a method for retriev-
ing predicate-argument structures that circum-
vents the complexity of the tree structures in
the corpus, while employing few template rules.
Our system operates on a flattened, morpholog-
ically enriched version of the corpus. This flat-
tened representation allows access to all levels
of the tree simultaneously and thus enables the
detection of the main sentence constituents by
means of simple template rules. A small number
of rules apply to identify the head words of each
constituent and the latter fill in the constituent
templates, to build the logical forms represen-
tative of the predicate argument structure. The
system is robust in the face of incomplete syn-
tactic coverage.

The problem

In (Marcus et al., 1994) a revised version of
the Penn Treebank was described which in-
cluded various types of annotation in addition
to the original constituent structure. These
extra annotations included information about
grammatical functions (SUBJECT, LOGICAL
SUBJECT, etc), semantic roles (LOCATION,
MANNER, etc), the identification of traces with
moved or controlling phrases, and information
about various types of ellipsis and null elements.
As well as being interesting and valuable in its
own right, this extra annotation was intended

in part to facilitate the extraction of predicate
argument structures from Treebank trees: e.g.
((5
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken) )
((VP (MD will)
(VP (VB join)
(NP (DET the) (NN board) )
(PP-CLR (PREP as)
(NP (DET a) (NN director) ))
(NP-TMP (NNP Nov.) (CD 29))))

corresponds to a (simplified) predicate-
argument construction something like:

and(join(el, ‘Pierre_Vinken’, the(board)),
as(el, a(director)), ‘TMP’(el, ‘Nov.29’))

However, extracting such predicate argument
structures automatically is by no means a triv-
ial task, even with the extra level of annota-
tion provided. Various groups have reported
different approaches, which we discuss below,
but to our knowledge no complete conversion
of the Penn Treebank to predicate-argument
structures exists.

Note that here we are concerned simply with
building structures that reflect basic predicate-
argument relations, in a traditional first-order-
logic-like notation. We are not concerned with
assigning the appropriate case or thematic roles
to phrases in some relation to the predicate: this
is partly done for some adjuncts in the Tree-
bank already, but to do this for all arguments
and adjuncts requires access to external lexi-
cal information about the verbs and adjectives
involved. Nor are we concerned with sense dis-
ambiguation: we will simply map a word to a
similar logical constant, ignoring possibilities of
polysemy. We regard both of these steps as de-



sirable, but separable later additions.

In our case, the main reason for wanting such
simple predicate-argument structures is in or-
der to provide data to an inductive logic pro-
gramming machine learning system aimed at
constructing simple ‘domain theories’ - theories
which say what is and what is not likely to hap-
pen in some domain. We need these theories
for various kinds of disambiguation methods for
syntax and reference resolution.

Other approaches

The canonical method of building logical forms
from syntax trees is via a form of syntax-
directed translation, presupposing a complete
syntactic grammar. Typically, each syntax
rule has associated with it a semantic opera-
tion which constructs the interpretation of the
mother constituent from those of its daugh-
ters. This construction might be via function-
argument application, if the interpretations are
represented as terms of some higher order logic,
or via feature instantiation in unification or con-
straint based theories of grammar.

Some groups have tried the canonical syntax-
directed translation route. (Frank et al., 2002),
working within the framework of Lexical Func-
tional Grammar, induce a Context Free PS
grammar from the Treebank, and, less directly,
from the Susanne corpus, and then associate
with each PS rule regular expressions which al-
low f-structure representations to be built. Al-
though the method is claimed to achieve high
levels of precision and recall when evaluated
against a hand-constructed gold standard, rel-
atively small numbers of sentences have been
processed, presumably due to the level of effort
needed to enrich the PS rules, the large number
of these implicit in the treebank, and the fact
that for the syntax directed method to be suc-
cessful, each constituent (LHS & RHS of a rule)
in the whole tree must be matched by at least
one template rule. Even though the regular ex-
pressions are more generalised than the PS rules
(template/rule ratio of 0.36), the latter fact is
crucial, for it means that for those trees contain-
ing any constituent for which no semantic rule
has been written, nothing at all will work, at
least, not without some further means of deal-
ing with the incompleteness of coverage.!

'We would like to thank Josef van Genabith for mak-

(Palmer et al., 2001) have also used a tem-
plate matching approach to map trees into pred-
icate argument structures. Once a template is
matched to a portion of tree, an appropriate
corresponding feature bundle is selected accord-
ing to the semantic class of the word instanti-
ated as the predicate of the template. The tem-
plates are inspired by the kind of data structures
used in Tree Adjoining Grammar, and mimic
various TAG operations in that they can apply
to non-contiguous stretches of tree. The point
of the templates is to recognise tree configura-
tions that signal particular grammatical rela-
tions. The large number of templates (c. 200)
required is presumably motivated by the fact
that there are many variations in tree config-
urations that need to be accommodated even
though they are not relevant to the recognition
of grammatical relations.

Theirs is a more ambitious aim than ours in
that they are also trying to annotate arguments
with thematic role information acquired from
WordNet (Miller, 1995) and other resources, as
well as carrying out sense disambiguation. Be-
cause of the intensive human effort needed, a
relatively small subset of the Treebank has been
analysed. Accuracy for the automatic part of
predicate-argument assignment is reported to
be around 80%.

Gildea and Jurafsky (Gildea and Jurafsky,
2000) are concerned with identifying seman-
tic roles of sentence constituents within certain
semantic frames. Since this approach, as is
the case with Palmer’s work, views predicate-
argument structure with Information Extrac-
tion in perspective, the notion of a frame is sem-
inal. Gildea and Jurafsky propose two meth-
ods for performing the frame labelling. In
the first case, they train a parser on sentences
from FrameNet (Baker et al., 1998) that con-
tain frame annotation in order to derive con-
stituent related features indicative of the appli-
cation of a certain frame. They then use the
learned features to identify frames in test data
from FrameNet. The second approach is sim-
ilar, the difference being that their aim is to
extract features that act as frame boundaries
without the initial training on the manually an-
notated data. The caveat in the previous ap-
proach is that FrameNet contains a small set of

ing us aware of this work.



sentences for each frame and even then, they
are not representative of the corpus but rather
constitute ideal examples.

We have recently come across work by (Cahill
et al., 2002) that attempts automatic annota-
tion of the entire Penn Treebank (Marcus et al.,
1994) with LFG f-structure information. An an-
notation algorithm traverses each tree top down
and partitions CFG rules into head and left and
right contexts. The above tripartition as well as
subcategorization information for the most fre-
quent rules is used to construct an annotation
matrix. Once the annotation process is over, the
result is input to a constraint solver that makes
the final f-structure assignments. About 78% of
the sentences in the Treebank were reported to
have been annotated with a single f-structure
whereas the rest received several fragmented f-
structures or none. However, no results were
available with respect to the quality of the f-
structures generated and there was no provision
for phenomena marked in terms of traces in the
Penn-II annotation.

Our Approach

Our intention was to develop a method for
extracting predicate argument structures that
would avoid the problems posed by the classical
technique i.e. requiring complete coverage, and
that would also be economical in the number of
templates required. We also required the pro-
cess to be compatible with the use of external
knowledge sources (dictionaries, thesauri, etc.)
at a later stage without requiring any reimple-
mentation.

The key idea in our method is to avoid the
complexity entailed by the original tree repre-
sentation, requiring a recursive application of
semantic rules, or the complicated application
of templates to non-contiguous portions of tree,
and instead to represent the tree structures in
a logically equivalent ‘flat’ representation which
allows access to all levels of the tree simultane-
ously. This technique will apply to any hierar-
chically structured object like a tree or a logic
term.

In a flat representation of a term, the main
functor is indexed, each of its arguments is
replaced by a new index, and this process is
applied recursively, in a depth-first, typically
left-to-right fashion throughout the term. Thus

a structure like:
likes(father-of(mary),john)
would be represented as
0:likes(1,3), 1:father-of(2), 2:mary, 3:john

This representational technique goes back
at least as far as the various ‘path-indexing’
schemes for terms developed in the logic pro-
gramming and theorem proving community
(Stickel, 1989) and has been used several times
within computational linguistics, e.g. (White-
lock, 1992; Copestake et al., 1995).

In applying this technique to the Treebank,
we first ‘Prologised’ the trees, so that they took
the form of embedded lists. We further ‘Fea-
turised’ the lists to separate POS tags from
grammatical function and semantic role tags
and allow for a clean cut distinction between the
POS label of a node, its features and its value, or
constituents in the case of non-terminal nodes.
The features correspond to the information en-
coded in the tags of the Treebank and are sep-
arated by the POS information by means of
hashes. They include grammatical function and
semantic role, type of trace where applicable,
a flag for gap threading and indices to the
nodes providing the information for the reso-
lution of gaps and traces. We also used the
morphological component of WordNet 1.6 to
add morphological stem information that is in-
cluded in the features as ‘root="". (We have
also slightly changed the tagset, incorporating
distinctions between different types of determin-
ers and prepositions).

A sentence from the featurised version of the
Treebank can be found below:

[[¢s’:[1,

[‘NP’:[fn= ‘SBJ’],
[¢‘DET’: [wh= n], ‘The’],
[‘NN’: [root= turf],turf]],

Lve2: 1,
[‘VBZ’: [root= have],has],
Lve2: 1,

[‘VBN’: [root= range] ,ranged],
[‘PP’:[fn= ‘CLR’],
[‘PP’: [1,
[‘PREP’:[],from],
(‘NP> :[],[“NNP’:[],‘Chile’]]],
(‘pp:[1,



[¢TO’:[]1,to],
[‘NP’:[],[‘NNP’:[], “Austria’]111111]

Each file now contains sentences in the form of
Prolog predicates such as the above. Next we
flatten the structure to give:

‘s’ ([1,[1,4D),

‘NP’ ([fn= ‘SBJ’]1,[2,31),
‘DET’ ([wh= n],[’The’]

‘NN’ ([root= turf], [turf]),
‘vp’ ([1,[5,6]1),

‘VBZ’ ([root= have], [has]),
‘vpr ([1,[7,81),

‘VBN’ ([root= range], [ranged]),
‘PP’ ([fn= ‘CLR’1,[9,131),
: ‘PP’ ([]1,[10,11]1),

10 : ‘PREP’ ([1, [from]l),

11 : ‘NP> ([1,[12]),

12 : ‘NNP’([],[’Chile’]),

13 : ‘PP’ ([1,[14,15]),

14 : ‘T0’ ([, [tol),

15 : ‘NP’ ([1,[16]1),

16 : ‘NNP’ ([]1,[‘Austria’l)

0O ~NOOTd WN - O

©

Retrieving proposition components

We build predicate-argument structures in three
stages. Firstly, we process moved elements and
gaps so as to produce a kind of canonicalised
version of the corpus in which movements are
undone and gaps are filled. This is described
later. Secondly, we pull out of the flattened
tree the constituents that supply the compo-
nents of the predication. Thirdly, we convert
those constituents into logical forms (actually,
quasi-logical forms (QLF'), since further contex-
tual processing would be needed to have some-
thing directly evaluable for truth).

Having the sentence tree structure available
in a flattened list format makes it possible
to define, in a clean declarative way, var-
ious predicates on trees using traditional
linguistic notions like ‘dominates’, ‘precedes’,
‘c-commands’, etc. Given definitions of these
predicates it is easy now to write declarative
rules which will pick out various structural
configurations, such as the following:

Rule for locating the subject of a sentence:
“An NP containing the feature ‘SBJ’ is the

subject of a sentence S which most immediately
dominates it” (The extra Treebank annotation

does most of the work here).
Rule for finding the main verb:

“The main verb of a sentence S is the V node
most directly dominated by the VP which is
dominated by the S node. The V cannot have
a VP sister unless the latter dominates an
infinitive”.

Rule for finding a direct object:

“An NP sister to a main verb, that is not
marked ‘TMP’, and where the verb immedi-
ately precedes the NP, is the direct object of
that verb”.

We do not fully distinguish complements from
adjuncts at this stage since the distinction is
not made in the Treebank. Since the rules are
purely declarative we anticipate that it will be
an easy matter to interface them with appro-
priate lexical information at this stage of pro-
cessing later. Currently we use just an initial
heuristic that a non-temporal NP immediately
after a verb is a direct object, and anything else
we treat as an adjunct, except for predicative
adjective phrases and sentential complements.
There are a total of just 8 structural rules and
predicates which are very robust (i.e. they yield
some kind of result for every non- fragmented
sentence in the corpus) and together serve to
extract the main sentence components, i.e. sub-
ject, verb, and complements/adjuncts.

Thus for the above sentence we get the follow-
ing information about the sentence components:

VERB: 7 : VBN([root=range], [ranged])
SUBJECT: 1 : NP([fn=SBJ],[2,3])
COMPLEMENTS & ADJUNCTS:

[8 : PP’ ([fn= ’CLR’]1,[9,13]1)]

The rule for the extraction of proposition con-
stituents will apply recursively into any comple-
ments until all main verbs and their arguments
are retrieved from a sentence.

Treatment of Null Elements

An issue discussed extensively in (Marcus et
al., 1994) is the representation of null elements,
originating from WH-movement, passive con-
structions, infinitival clauses and topicalised ar-



guments. The former are co-indexed with the
nodes that lend them their meaning.

In order to obtain viable logical forms for
the predicate argument structures, one needs to
resolve such null elements. Rather than leav-
ing this task for the stage of the actual logi-
cal form construction (qlf), we decided to apply
a pre-processing trace resolution stage to the
Treebank and deal with empty elements orig-
inating in infinitives, wh-movement and pas-
sives while creating a new flattened version of
the corpus. We refrained from treating more
configurations than the previously mentioned as
the latter seem to amount to a high percentage
of cases and resolution is more straightforward
than in the case e.g. of extraposed sentences.
The rules involved in this first stage are exactly
the same kind of thing as we saw above, using
predicates on trees, along with the Treebank
indexing system, to de-transform transformed
structures. (Two exceptions to this are ellipsis
and logical subject detection in passives, which
we deal with instead by the third stage.)

In the null element phase there are 4 rules
for infinitives, 4 for cases of wh-movement
and 1 for passives. Below is an example of a
flattened passive sentence before and after the
application of trace resolution.

Before trace resolution:

0 ‘s’ ([1,[1,51),

1 : ‘NP’ ([fn= ‘SBJ’,idx= 47],[2,3,4]),
2 €JJS’ ([1, [most]),

3 : ‘NN’ ([root= country], [countryl),

4 : ‘NNS’([root= fundl, [funds]),

5 : ‘vp’([1,[6,71),

6 ‘VBD’ ([root= bel, [werel),

7 ‘vp’([1,[8,9,101),

8 : ‘VBN’ ([root= clobber], [clobbered]),
9 : ‘NP’ ([trace=*,idx=47],[‘**tracexx’]),
10 : ‘PP’ ([fn= ‘TMP’],[11,12]),

11 : ‘PREP’([], [after]),

12 : ‘NP’ ([],[13,14,15]),

13 : ‘DET’ ([wh= n], [the]l),

14 . ‘CD’([1,[“1987°]1),

15 : ‘NN’ ([root= crash], [crashl])

After trace resolution:

‘s’ (01, [1,51),

‘NP’ ([fn= ‘SBJ’,idx= 47]1,[2,3,4]1),
€JJS’ ([1, [most]),

‘NN’ ([root= country], [country]),
‘NNS’ ([root= fund], [funds]),

D W iNe O

‘vp’ ([1,06,71),

‘VBD’ ([root= be], [werel),
‘vp’([1,[8,9,10]1),

: ‘VBN’ ([root= clobber], [clobbered]),
9 : ‘NP’ ([trace= *,idx= 47]1,[2,3,4]),
10 : ‘PP’ ([fn= ‘TMP’],[11,12]),

11 : ‘PREP’([], [after]),

12 : ‘NP’ ([]1,[13,14,15]),

13 : ‘DET’ ([wh= n], [the]),

14 : ‘CD’([1,[“1987°]),

15 : ‘NN’ ([root= crash], [crash]),

0 ~N OO

In the latter case the value of the empty ‘NP,
9 ‘NP’ has been replaced by the value of the
co-indexed ‘NP’, 2:'NP’ while the trace infor-
mation of the empty ‘NP’ is maintained in the
features. For instances of unindexed traces or
omitted logical subjects the value of the corre-
sponding ‘NP’ is set to ‘unspecified’.

Thus, the proposition components in the lat-
ter case will be identified as:

VERB: 8 : VBN([root=clobber], [clobbered])

SUBJECT: 1 :

COMPLEMENTS & ADJUNCTS:

[9 : NP([trace= *,idx=47]1,[2,3,4]),
10 : PP([fn= ‘TMP’],[11,12])]

Constituent to QLF Rules

Once the principal sentence components have
been identified, a set of rules apply that detect
the head word of each component and then use
these head words to construct the QLF of the
sentence. The core of each sentence is the main
verb, which is always represented as a two, three
or four place predicate, with the root of the verb
as the functor, an event index individual to each
verb in the sentence as its 1st argument and the
head word of the subject as its 2nd argument. A
check is performed to determine whether there
exist a direct object, adjective phrase, or sen-
tence in the list of verb complements and if so,
their head words, or the results of a recursion,
are added as arguments to the verb predicate.

The rest of the members of the complements-
adjuncts list (see previous section) are consid-
ered to be verb modifiers and are represented
as predications of the preposition over the verb
event index and the head noun (in the case of
a PP adjunct) or, in the case of an adjunct NP,
as a predicate of its semantic role over the event
index and the head noun.

There is a relatively small number of head
word extraction rules, namely 20 for NPs, 6 for

NP ([fn=SBJ,idx=47], [unspecified])



ADJPs and 5 for PPs. Notice that since we are
at this stage ignoring many modifiers and going
just for the main components of a predication
this number will increase if we want our logical
forms to be more fine-grained.

We now give some examples of output from
the system:

[‘Apple’, ‘II’,owners,‘,’,for,example,‘,’,
had,to,use,their,television,sets,

as,screens,and,stored,data,on,audiocassettes]

Qlf:
have(el,owner, (use(e3,owner,set),
and as(e3,screen)),
and
(store(e2,owner,datum),

and on(e2,audiocassette))))

[‘At’ ,the,end,of, ‘World’, ‘War’,‘II’,¢,’,
‘Germany’ ,surrendered,before, ‘ Japan’]

Q1f: surrender(el, ‘Germany’)
and before(el, ‘Japan’)
and ‘At’ (el,of(end, ‘World_War_II’)

As one can observe from the above examples,
the qglfs consist strictly of head words, so that
most modifiers of NPs have been omitted, with
the exception of “NP of NP” expressions. Mod-
ifier qlfs could be added at any time, by includ-
ing a few more rules but our initial aim was
simply to get the method working quickly on
a wide range of sentences. (Note that the el-
lipsis ‘before Japan’ is not fully resolved: even
with the extended Treebank annotation there is
not enough information to resolve this type of
ellipsis).

1 Evaluation

It is impossible to measure fully the accuracy
of our procedure in terms of the usual precision
and recall ratios, because we have no indepen-
dent gold standard to measure against. A raw
count of the percentage of sentences in the Tree-
bank that we get useful logical forms from gives
a misleadingly high picture: we get something
useful from almost every sentence, but neither
our recall nor our precision are perfect.

To attempt a more realistic evaluation we
took 100 sentences at random from the Tree-
bank and annotated them by hand, counting
the number of distinct predicates that should
be found, the number of arguments expected

for each predicate, and the level of embedding
of the predicates. The latter is necessary in or-
der not to double count errors: for example, if
the correct QLF should be:

[‘The’ ,organization,is,scheduled,to,meet,

in, ‘Vienna’,beginning, ‘Nov.’,¢25%,¢.]
schedule(el,

unspecified,

organization,

(meet (e2,organization)
and in(e2,vienna)
and temporal(e2,’Nov._25")))

then if the system makes an error in
the QLF of the level 2 embedded -clause
(meet (e2,organisation) and ....) we
want that to count only as an error for the lower
clause and not also for the level 1 root clause,
even though in a sense the root clause now has
an inaccurate or incomplete argument.

Then we looked at what the system had
actually given for these sentences. The raw
recall scores are:

Level | Predicates | Arguments
1 90.3 90

2 87.76 95.7

3 80.9 93.78
Total: | 86.32 93.16

There is a 4th level of predicate embedding
as well, but there weren’t enough instances to
yield results comparable to the first three lev-
els. We have not calculated a score for preci-
sion, although one can argue that the score for
arguments provides a measure for predicate pre-
cision. With a very few systematic exceptions,
errors always consist in missing a predicate or
argument, not in getting the wrong one.

Most errors fall into one of the following cat-
egories: (1) errors in Treebank annotation (2)
incomplete treatment of negation (3) VPs in
nominalisations are not always captured (4) we
omitted to write a rule to cope with sentential
subjects (5) our morphology procedure makes
errors on ’s and some other contractions (6) in-
correct embedding of sentential verb modifiers
(7) incomplete numeric expressions (8) inade-
quacy of the rule for possessives. Categories (3)
and (6) account for the most errors though the
amount of error due to inadequate trace infor-
mation in the Treebank is not negligeable.



Conclusion and Further Work

We have described a method for extracting
predicate-argument structures from Treebanks
which is flexible, robust, and seems to work well
in practice. It has several advantages, in our
view:

e The rules needed are declarative, non-
deterministic and relatively few in number
(although this clearly depends on how fine-
grained we require the results to be).

e Multiple external information sources (lex-
icons, thesauri, statistical data) can be
cleanly integrated.

e The system does not require complete syn-
tactic coverage to produce useful results:
even on our first run we managed to get
something useful from practically every
sentence in the Treebank.

Our next step, after developing the current
rule set further, will be to integrate some lexi-
cal information so that we can do a better job
with verb subcategorisation information. We
will also try to do some sense disambiguation of
a limited type.

For somewhat different purposes, we also aim
to export the flattened version of the Treebank
into a relational database format: it is intu-
itively clear that the literals of the flat repre-
sentation could be encoded as database records
allowing us, with the development of a suit-
able set of SQL macros, to perform complex
searches like ‘find all instances of an embedded
verb modified by ‘only’ and with a sentential
complement’ very efficiently, without needing
custom-built tree searching tools like ‘tgrep’.

References

Collin F. Baker, Charles J. Fillmore, and
John B. Lowe. 1998. The Berkeley Framenet
project. In Proceedings of the COLING-ACL,
Montreal, Canada.

Aoife Cahill, Mairead McCarthy, Josef van
Genabith, and Andy Way. 2002. Auto-
matic Annotation of the Penn-Treebank with
LFG F-Structure Information. In Simon-
etta Montemagni Allesandro Lenci and Vito
Pirelli, editors, Linguistic Knowledge Acquisi-
tion and Representation: Bootstrapping An-
notated Language Data, Proceedings of the

Workshop, The 3rd International Confer-
ence of Language Resources and FEvaluation
(LREC), pages 8-15, Las Palmas, Spain.

Anne Copestake, Dan Flickinger, Rob Malouf,
Riehemann Susanne, and Ivan Sag. 1995.
Translation using minimal recursion seman-
tics. In Proceedings of the Sizth International
Conference on Theoretical and Methodologi-
cal Issues in Machine Translation (TMI-6),
Leuven, Belgium.

Anette Frank, Luisa Sadler, Josef van Gen-
abith, and Andy Way. 2002. From Treebank
Resources to LFG F-Structures. In Anne
Abeille, editor, Treebanks: Building and Us-
ing Syntactically Annotated Corpora. Kluwer
Academic Press, Dordrecht, The Nether-
lands.

Daniel Gildea and Daniel Jurafsky. 2000. Au-
tomatic Labeling of Semantic Roles. In Pro-
ceedings of ACL 2000, Hong Kong.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta
Schasberger. 1994. The Penn Treebank: An-
notating predicate argument structure. In
ARPA Human Language Technology Work-
shop.

George A. Miller. 1995. “Wordnet: a lexical
database for English.”. In Communications
of the ACM, volume 38 (11), pages 39 —41.

Martha Palmer, Hoa Dang Trang, and Joseph
Rosenzweig. 2000. Semantic Tagging for the
Penn Treebank. In Proceedings of the Sec-
ond International Conference on Language
Resources and Evaluation, Athens, Greece.

Martha Palmer, Joseph Rosenzweig, and Sam
Cotton. 2001. Automatic Predicate Argu-
ment Analysis of the Penn Treebank. In
Proceedings of Human Language Technology
Conference, San Diego, California.

Mark E. Stickel. 1989. The path-indexing
method for indexing terms. Technical Re-
port Technical Report 473, SRI International,
Menlo Park, CA.

P. Whitelock. 1992. Shake and Bake trans-
lation. In Proceedings of the 14th Interna-
tional Conference on Computational Linguis-
tics, Nantes, France.



	Table of Content
	Topics
	Authors

