Compilation of Unification Grammars with Compositional
Semantics to Speech Recognition Packages

Johan Bos
Institute for Communicating and Collaborative Systems
Division of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, Scotland, UK

Johan.Bos@ed.ac.uk

Abstract

In this paper a method to compile unification
grammars into speech recognition packages is
presented, and in particular, rules are specified
to transfer the compositional semantics stated
in unification grammars into speech recogni-
tion grammars. The resulting compiler cre-
ates a context-free backbone of the unification
grammar, eliminates left-recursive productions
and removes redundant grammar rules. The
method was tested on a medium-sized unifica-
tion grammar for English using Nuance speech
recognition software on a corpus of 131 utter-
ances of 12 different speakers. Results showed
no significant computational overhead with re-
spect to speech recognition performances for
speech recognition grammar with compositional
semantics compared to grammars without.

1 Introduction

This paper presents a method to gener-
ate speech recognition packages that pro-
duce generic domain independent logical forms.
Therefore, no subsequent post-processing is
needed (apart from [-conversion) to derive the
logical form from a string by use of a parser.
Moreover, the proposed method is domain in-
dependent, because it shows how to construct
generic logical forms in speech recognition pack-
ages in a compositional way using the lambda
calculus.

In particular, a system is presented that com-
piles medium-sized linguistic unification gram-
mars (UG) into the Grammar Specification Lan-
guage (GSL) that Nuance! speech recognition
software requires before compiling it to finite
state machines making up the language model.
The method described in this paper has close

1
See: www.nuance.com.

points of contact with recent research on com-
piling domain independent linguistically moti-
vated grammars into GSL (Rayner et al., 2000;
Rayner et al., 2001b; Rayner et al., 2001a).
Language models based on GSL are relatively
cheap to generate and therefore are an interest-
ing alternative to statistical models, which are
relatively expensive to produce and require a
relatively large corpus. Compiling from UG to
GSL finds also motivation in the fact that UGs
are much easier to maintain.

The compiling method described in this pa-
per extends previous work (mentioned above)
in this tradition by adding a genuine and com-
pletely general semantic component to GSL
grammars. There are several challenges to
meet: the language models for Nuance do not
allow left-recursion in the grammar rules and
there is no support for feature unification. The
basic idea is to map this unification grammar
into GSL, the format that Nuance requires be-
fore compiling it to finite state machines, mak-
ing up the language model for the speech recog-
niser. This compilation includes eliminating left
recursion and provides means for a generic com-
positional semantics. This paper discusses the
requirements for such a compilation and pro-
poses and implements a solution.

First, an overview of the architecture of the
compiler, named UNTANCE, is given, and uni-
fication grammars and GSL (Section 2) are in-
troduced. Then each system component is de-
scribed in detail in Sections 3-7. The results
obtained with the compiler are evaluated with
respect to practical speech recognition and pre-
sented in Section 8.

2 System Overview

Input to the UNIANCE compiler are phrase
structure rules of the form LHS — RHS, where

[cat:np,case:_,num:N,per:3,refl:no,sem:apply(X,Y)] --> [cat:det,count:C,num:N,sem:X],

[cat:noun,count:yes,num:sg,sem: lambda(X,radio(X))] --> [lex:radio].

[cat:noun,count:yes,num:sg,sem: lambda(X,car(X))] --> [lex:car].

[cat:noun,count:C,num:N,sem:Y].

Figure 1: Examples of unification grammar rules.

LHS (the left-hand side) is a single (non-
terminal) category, and RHS (the right-hand
side) a sequence of (terminal or non-terminal)
categories. Non-terminal categories consist of a
category symbol C annotated with a finite (pos-
sibly empty) set of pairs of distinct features and
values, as shown in Figure 1. Terminal cate-
gories define lexical items.

A restricted form of unification grammars is
considered, where features values can only be
instantiated with atomic values (except for one
special slash feature).2 As usual in unification
grammars, values for features can be left un-
specified, and values of different instances of
features can be constrained to have the same
value (by unification). Hence feature unification
constrains possible derivations expressed in the
grammar.

Most features constrain syntactic derivations
and have a finite set of values. The feature sem
is used to build up semantic representations for
the parsed utterances. A completely general
and standard compositional semantics will be
used. Expressions of the form lambda (X,F) de-
note lambda abstraction, where X is the variable
abstracted over, and F a formula. Expressions
of the form apply(A,B) denote functional ap-
plication, where A is the functor, and B plays
the role of argument. Some examples of the
use of these expressions are shown in Figure 1.
Note that in each production of a UG, the se-
mantic values of sem features in RHS categories
are always variables, and that the value of the
sem feature of the LHS is (normally) expressed
in terms of the values of the sem feature of the
RHS.

The job of the compiler is to output a gram-

2 Another restriction that imposed on the unification
grammar is that RHS need to be non-empty. There
is a standard way of eliminating e-productions from
a context-free grammar (Aho et al., 1996), and it is
planned to integrate such a procedure in future version
of the compiler.

mar in GSL format describing the same frag-
ment as the input grammar. This is a chal-
lenging task because GSL has a number of re-
strictions in its expressiveness: there is no sup-
port for features or feature unification, and left-
recursive rules (productions) are not allowed.

GSL is a form of context-free grammar where
terminal symbols start with lowercase symbols,
non-terminals with uppercase symbols, round
brackets indicate sequence, and square brack-
ets alternatives. An additional technique incor-
porated in GSL, slot-filling, provides means to
return information (other than the recognised
string) and is often used in speech applications
to derive domain-specific interpretations.

NpCaseNomNumP1Per3Ref1lNo
[(DetCountYesNumPl:a NounCountYesNumP1l:b)
{return(strcat ("apply (" strcat(strcat($a strcat("," $b)) ")")))}]

NpCaseNomNumSgPer3Ref1No
[(DetCountYesNumSg:a NounCountYesNumSg:b)
{return(strcat ("apply (" strcat(strcat($a strcat("," $b)) ")")))}]1

NpCaseObjNumP1Per3Ref1No
[(DetCountYesNumP1l:a NounCountYesNumP1:b)
{return(strcat ("apply (" strcat(strcat($a strcat("," $b)) ")")))}]

NpCaseObjNumSgPer3Ref1No
[(DetCountYesNumSg:a NounCountYesNumSg:b)
{return(strcat ("apply(" strcat(strcat($a strcat("," $b)) ")")))}]

NounCountYesNumSg

L
(radio) return("lambda(X,radio(X))")
(car) return("lambda(X,car(X))")

]

Figure 2: Some example GSL rules.

Figure 2 shows the GSL equivalent for the
unification grammar rules in Figure 1. In
this example one slot was assigned to each
category to store its semantic representation,
which is passed up to mother nodes by in-
stances of return/1 while using the GSL built-
in strcat/2 function to generate functional ap-
plication operations using string concatenation.
The compiler generates such equivalent GSL
grammars from unification grammars.

The compiler, implemented in Prolog, func-
tions as a pipeline of different components in
the following order: feature instantiation, elim-

inating left recursion, reducing redundant rules,
packing and compressing the remaining gram-
mar rules, and finally annotating rules with se-
mantic operations (Figure 3). These compo-
nents will be discussed in the remainder of this

paper.

UG rules
p g

Feature Instantiation

4

Left Recursion Elimination

¢

Redundancy Elimination

Y

Packing and Compression

4

Semantic Annotation

(8
GSL rules

Figure 3: The architecture of UNIANCE.

3 Feature Instantiation

This component of the compiler reads in the
unification grammar (including lexical rules)
and converts all rules into the compiler’s inter-
nal format. The primary task of this component
is instantiating features with all of their possi-
ble values. In other words, it creates a context-
free backbone of the input unification grammar.
This process is carried out only for features with
a finite number of possible values. Hence, the
feature sem is ignored in this part of the compi-
lation. Feature instantiation is implemented by
collecting the range of feature values followed
by a top-down traversal of rule instantiation.
In an initial step, all grammar and lexical
rules are inspected and for each category en-
countered the range of possible features and
their values are collected. This gives all pos-
sible features used but not necessarily all possi-
ble values. So in a consequent step, the range
of possible values is expanded by examining dif-
ferent values for features of related categories.
Categories C; and Cy are related if C; and C,
denote the same categories, if C; is a parent of
Co, or if Cy is a parent of Cq. For instance, if

the initial step yields for the feature F a value
V1 for category Ci, and a value Vs for category
Cq, and C; and Cy are related, then V4 is also
a value for F with respect to C;.

Using this information, the final stage of fea-
ture instantiation takes a grammar rule, instan-
tiates all features with possible values (for those
features with variables as values) and verifies
each assignment by checking whether the in-
stantiation of the rule is supported by the cur-
rent set of grammar rules. This is done in a top-
down fashion, by recursing on the categories of
the right-hand side of each rule. Finally, the fea-
ture instantiation component passes the instan-
tiated rules to the component that eliminates
left recursive rules. The rules have now been
translated in a format Cy — C;...C,,, where
C; is of the form cat(A,F,X) and A is a cate-
gory symbol, F is a finite (possible empty) set
of instantiated feature value pairs, and X the
semantic representations. The result is a CFG
backbone which can (almost) be compiled into
a GSL-style grammar.

However, there seem some clouds on the hori-
zon. GSL grammars with left-recursive rules
cannot be compiled into Nuance speech recog-
nition grammars so they need to be replaced by
equivalent right-recursive ones. Furthermore,
if one is able to do this, one need to do this
for the sem feature as well, in order to obtain
the right meaning representations on the trans-
formed trees. The next section shows how to
deal with this problem.

4 Eliminating Left Recursion

Left-recursive rules are common in linguistically
motivated grammars to express coordination or
modification. Since GSL does not allow left-
recursive rules, there is a need to introduce
a way to transform grammars containing left-
recursive productions into grammars without.
There is a standard way of eliminating left-
recursion from a context free grammar (Aho et
al., 1996), as long as the grammar contains no
cycles (rules of the form C — C, which of course
do not appear in any sensible linguistic gram-
mar), and no e-productions. This is also the
method used in this paper.

The current version of the compiler only con-
siders immediate cases of left recursion. The
standard way of dealing with this is to note that

if there is a production rule expressing left re-
cursion, there must be some production with
the same left hand side that is not left recur-
sive. What one needs to do is rewrite the left
recursive production in terms of the production
that does not have any left recursion, which
can be done by replacing left-recursive pairs of
productions A —+ AB, A — C by A — CA’,
A" - BA’ and A’ — €. A similar transfor-
mation, but not introducing € productions, can
be formulated as replacing left-recursive pairs
of productions A -+ AB, A - C by A — CA’,
A — C, A" - B, and A’ - BA’. Although
the first method produces less rules than the
second method, in terms of implementation the
latter is preferred because it is easier to trans-
fer the results of the transformation into GSL
(no empty productions are generated with the
second method).

The standard way of eliminating left-
recursive features deals with the context-free
backbone of the grammar, but not with the
compositional semantics, i.e., the values of the
sem feature. A category with name A and fea-
tures F is left-recursive if there are rules of the
form cat(A,F,X) — cat(AF,Y) Ci..C,. Two
elimination rules are defined: one that covers
the non-recursive grammar rules for a recursive
category, and one that covers the left-recursive
cases.

LR Elimination Rule I

For each left-recursive category, and
for all non-recursive grammar produc-
tions of the form

cat(A,F.X) = C1..C,

extend the grammar with productions
of the form:

cat(A,F,apply(Z,X))
— C1...C, cat(new,rec:A|F],Z)

LR Elimination Rule IT

For each left-recursive category, re-
place all recursive productions of the
form

cat(A,F,X)
— cat(AF)Y) C,...C,

by the following two productions:

cat(new,[rec:A|F],lambda(Y,apply(Z,X)))
— C;...C,, cat(new,[rec:A|F],Z)

cat(new,[rec:A|F],lambda(Y,X))

The LR elimination rules introduce new cat-
egories and transform the semantic operations
in such a way that the semantic representa-
tions yielded by the transformed rules are log-
ically equivalent to their left-recursive counter-
part. This is done by what is very similar to
type-shifting in a Montagovian semantics: in-
troducing lambda abstraction (LR Elimination
Rule IT) and postponing application (LR Elim-
ination Rule I). It ensures that the order of se-
mantic combinations in the original grammar is
maintained in the transformed grammar. Elim-
ination Rule IT is the most interesting one. By
abstracting over Y (the semantic value of the
recursive category in the RHS), it guarantees
that any occurrences of Y in X (the semantic
value of the recursive category in the LHS) are
bound, no matter how the semantics for X is
defined in terms of the semantic values for the
RHS categories.

Cases of indirect left recursion can be dealt
with by using the algorithm provided by Aho
et al. (1996), which eliminates all left recursion
from a grammar. This algorithm iterates on all
productions where nonterminals are part of the
left hand side, by replacing all nonterminals in
the right hand side by its corresponding pro-
duction and then applying the transformation
for immediate left-recursive rules as presented
above to the resulting new production.

5 Removing Redundant Productions

Grammar rules might turn out to be redundant
because certain lexical items in the grammar do
not appear in the selected application domain or
the grammar itself might be ill-formed. There
can be two reasons for a production to be re-
dundant:

1. For a non-terminal member C of the RHS
there is no production where C' appears as
LHS (redundant RHS productions);

2. A LHS category, but not the beginner cat-
egory, does not appear as member of the

RHS of any other production (redundant
LHS productions).

Productions that violate any of the con-
straints above are removed from the grammar.
Of course, removing rules might cause other
ones to be irrelevant. So this elimination pro-
cess will continue until a fixed point is reached.

In more detail, this algorithm works as fol-
lows: first eliminate all redundant RHS pro-
ductions, until a fixed point is reached (none of
the existing productions is not redundant with
respect to members of the RHS). Then elimi-
nate all redundant LHS productions by checking
whether the beginner category (as specified by
the input grammar) reaches each LHS. Again,
removing rules with undefined LHS might cause
rules with irrelevant RHS members. So after
removing rules with redundant LHS, the proce-
dure for eliminating redundant RHS members
is called into action again. This entire process
is repeated until a fixed point is reached.

6 Packing and Compression

This component carries out two tasks. First,
it changes the internal structure of the gram-
mar rules by packing rules that share LHSs to-
gether. This is a preparation to the next pro-
cessing step in the pipeline, where all produc-
tions are printed in GSL format. Second, it
compresses productions by looking for similar
grammar rules that can be reduced to a single
one.

Packing is in principle straightforward. Re-
call that the grammar is organized as a set
of rules of the form cat(A,F,X;) — C;. The
packing process changes this format so that the
grammar is structured by a set of rules of the
form cat(A,F) = {(C1,X1),...,(Cp,Xp)}, in such
a way that there are no two occurrences of a
LHS with different sets of RHSs in the gram-
mar.

In the compression phase different produc-
tions with the same RHS are replaced by a single
production. It works as follows:

1. Replace a pair of rules C; — C and C; —
C (i # j) by Cx — C (where Ci is a new
category);

2. Substitute Cy for all occurrences of C; and
C; in the grammar.

Compression might be a potential factor to
boost recognition speed because it reduces the
number of derivations in the grammar (Dowding
et al., 2001). Section 8 shows that this is indeed
true.

7 Incorporating Semantics and
Outputting GSL

The input of the last component of the compiler
is a set of rules of the form LHS — C, where C
is a set of ordered pairs of RHS categories and
corresponding semantic values. The output of
this component is a grammar in GSL format.
First of all it writes the beginner node (as spec-
ified by the input grammar) with the sem slot.
Suppose that the beginner category is S. Then
this will yield:

.Grammar
[S:a {<sem strcat($a ".")>}]

Next, for each grammar rule, the LHS is con-
verted to a single non-terminal GSL category
symbol. Similarly, for each RHS in C, all mem-
bers are converted to (terminal or non-terminal)
GSL categories. Some further book-keeping is
required for associating the semantic represen-
tations in the UG rules with GSL slot-filling,
because semantic values of the RHS in the UG
rules are variables that have to be represented
as lower-case atomic symbols in GSL, and the
occurrences of these variables in the semantic
representation of the LHS in GSL need to be
prefixed with a $, referring to the value of a slot
(see Figure 2 for examples). This is carried out
by maintaining a list of pairs of variables (occur-
ring as semantic values for members of RHSs)
and slot names (to be output in GSL format).
This list is consulted when the semantic value
of the LHS is output where the Nuance built-
in strcat/2 function is used for concatenating
strings that describe the original semantics.

The final GSL rules are decorated with prob-
abilities obtained from a (domain-specific) cor-
pus. This is done by boot-strapping, where the
corpus is parsed using a GSL grammar with-
out probabilities, and the frequencies of rule
applications are stored in a table. In a second
compilation phase, this table is used to assign
probabilities to each rule. Furthermore, a sim-
ple heuristic in case of structural ambiguities is

used, where derivations with the closed attach-
ments are preferred.

8 Evaluation and Comparison

The GSL compiler UNTANCE has been tested
on a unification grammar (producing under-
specified discourse representation structures as
logical forms) for English containing 1238 lexi-
cal rules and 80 grammar rules, four of which
suffered from left-recursion (one rule for verb
phrase modification, and three rules for coordi-
nation of adjectives, nouns, and sentences). The
performance of the different components during
compilation of this grammar into GSL is pre-
sented in Table 1.

Table 1: Performance of the GSL compiler

(Time measured in msecs).
Process Rules Time
UG productions 1318 2140
Feature instantiating 4444 591030
Eliminating left-recursion =~ 5426 61040
Removing redundancies 5425 819330
Packing and Compression 272 343230
GSL productions 272 9020

Using version 7.0.4 of Nuance, the result-
ing GSL grammar, with 553 productions of
which 252 where lexical entries®, was com-
piled into a speech recognition package us-
ing the program nuance-compile with the
options -dont flatten (required for right-
recursive grammars). The resulting language
model (consisting of 1497 nodes) was tested on
131 utterances, comprising route instructions
given to a mobile robot by 12 different native
speakers (Lauria et al., 2001). To get an idea
of the kind of data used, consider the transcript
in Figure 4, consisting of four utterances (of the
instructor).

er head to the end of the street — turn left — take
the first left — er go right down the road past
the first right and it’s the next building on your
right

Figure 4: Transcription of instruction u8_GC_HD
taken from the IBL corpus.

3The 272 GSL rules are represented as disjunctions,
as illustrated in Figure 2, but effectively they correspond
to 553 productions.

Using Nuance’s batchrec facility, this yielded
an average recognition speed of 0.919xRT and
a word error rate (WER) of 38.70% (of 1168
words). This relatively high average WER is
due to the fact that around 44% of the utter-
ances in the test suite are not covered by the
unification grammar. Some of these utterances
contain repairs or hesitations, some of them are
non-grammatical, and others are due to their
complications not covered by the current ver-
sion of the grammar (mostly fragmentary in-
put). Given this, the WER is actually not as
bad as it first appears. (There are also speaker-
dependent factors involved. Some speakers trig-
ger very high WERs. For several speakers the
WER drops down under 20%.)

Next, these results were compared with a
GSL grammar that was produced without mak-
ing use of the compression component (Sec-
tion 6). This resulted in a GSL grammar with
more rules (433 rather than 272), but the by
NUANCE created language model had a similar
amount of nodes (1488). However, this language
model slightly slowed down the recognition pro-
cess (1.017xRT) and gave a slightly higher av-
erage word error rate (39.13%). These results
show the importance of this component in the
GSL compiler and confirm findings presented in
Dowding et al. (2001).

Finally, it was tested whether the addition
of operations for computing semantic repre-
sentations to GSL grammars affected the per-
formance of speech recognition. The UNI-
ANCE compiler was used to generate an iden-
tical grammar without semantic features. The
average speech processing time for the gram-
mar without semantic construction operations
yielded a similar 0.921xRT (with the same WER
of 38.70%). Hence, the experiment showed no
substantial computational overhead in produc-
ing logical forms during speech recognition. Ta-
ble 2 sums up the evaluation results.

Table 2: Evaluation of compiled GSL gram-
mars tested on 131 utterances, using Nuance’s
batchrec facility. Sem=including semantic rep-
resentations, Com=using rule compression.

Test Rules Nodes Speed WER
+Sem +Com 272 1497 0.919xRT 38.70
+Sem —Com 433 1488 1.017xRT 39.13
—Sem +Com 272 1497 0.921xRT 38.70

9 Conclusion and Future Work

It is possible to define a general method for
encoding compositional semantics in language
models for speech recognition. The method
is based on compiling the semantic operations
specified in a linguistic unification grammar into
GSL, the grammar specification language used
by Nuance’s speech recognition software. The
method is independent from the choice of logical
form—as long as it includes the standard oper-
ations for compositional semantics (functional
application and lambda abstraction). Fur-
thermore, the method deals with transferring
left-recursive grammar rules to right-recursive
ones (a prerequisite for GSL, and also for
other speech recognition grammars, including
the JSpeech Grammar Format on which the
W3C standard is based), while maintaining the
compositional semantics stated in the original
left-recursive production. The resulting speech
recognition grammars show no loss of recogni-
tion speed, so the computational overhead in
producing semantic representations is negligible
(Table 2).

The GSL compiler, UNIANCE, is used as
part of two projects involving speech recogni-
tion in human-machine dialogues. In the first
project, IBL, users are engaged in a dialogue
with a mobile robot, giving it directions how to
reach a certain destination. The second project,
D’Homme, investigates spoken dialogue in the
home machine environment, where users are
able to control domestic devices by spoken ut-
terances. The use of UNTANCE has proven use-
ful in these projects because (1) both scenarios
have sufficiently sized domains for the GSL com-
piler to produce useful language models, and (2)
semantic representations are directly produced
by the speech recogniser and no separate pro-
cessing step to build logical forms is needed.

Left recursion elimination for compiling
speech grammars is discussed by Dowding et al.
(2001), too. They report that the standard way
of eliminating left recursion from a grammar
caused problems to compile a working language
model—contrary to the findings presented in
this paper. They also mention an alternative
transformation due to R. Moore, which they
claim produces more compact left-recursion free
grammars than the traditional algorithm. So it
would be interesting to consider Moore’s algo-

rithm in future work on UNTANCE.

There are several ways to extend the GSL
compiler. In terms of coverage, future work
should address empty productions in the in-
put UG, cases of non-immediate left-recursion
and complex feature values. A further inter-
esting option is to explore hybrid methods to
language modelling, combining grammar-based
and statistically-based approaches. This has
been advocated by Knight et al. (2001) and
is apparently available in recent versions of Nu-
ance’s speech recognition software.

Acknowledgements

This work was funded by the EU 5th Framework
project D’Homme (Dialogues in the Home Environ-

ment) and IBL (Instruction-based Learning for Mo-
bile Robots), via EPSRC grant GR,/M90160.

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. 1996. Compilers. Principles, Techniques,
and Tools. Addison-Wesley.

John Dowding, Beth Ann Hockey, Jean Mark
Gawron, and Christopher Culy. 2001. Practical
issues in compiling typed unification grammars
for speech recognition. In Proceedings of the 39th
Annual Meeting of the Association for Computa-
tional Linguistics, Toulouse, France.

Sylvia Knight, Genevieve Gorrell, Manny Rayner,
David Milward, Rob Koeling, and Ian Lewin.
2001. Comparing grammar-based and robust ap-
proaches to speech understanding. In Furospeech
2001.

Stanislao Lauria, Guido Bugmann, Theocharis Kyr-
iacou, Johan Bos, and Ewan Klein. 2001. Train-
ing Personal Robots Using Natural Language In-
struction. IEEFE Intelligent Systems, pages 38-45,
September /October.

Manny Rayner, Beth Ann Hockey, Frankie James,
Elizbeth Owen Bratt, Sharon Goldwater, and
Jean Mark Gawron. 2000. Compiling language
models from a linguistically motivated unifica-
tion grammar. In The 18th International Con-
ference on Computational Linguistics. Proceed-
ings of the Conference. Universitiat des Saarlan-
des, Saarbriicken, Germany.

Manny Rayner, John Dowding, and Beth Ann
Hockey. 2001a. A baseline method for compil-
ing typed unification grammars into context free
language models. In Furospeech 2001, pages 729—
732.

Manny Rayner, Genevieve Gorrell, Beth Ann
Hockey, John Dowding, and Johan Boye. 2001b.
Do cfg based language models need agreement
constraints? In Proceedings of 2nd NAACL.

	Table of Content
	Topics
	Authors

