MACH : A Supersonic Korean Morphological Analyzer

Kwangseob Shim
School of Computer Science and Engineering
Sungshin Women’s University
Seoul 136-742, KOREA

shim@cs.sungshin.ac.kr

Jaehyung Yang
Department of Computer Engineering
Kangnam University
Kyunggido 449-702, KOREA
jhyang@kangnam.ac.kr

Abstract

This paper introduces a supersonic Korean mor-
phological analyzer named MACH. It analyzes
a 1 GB document within 5 minutes on a typi-
cal personal computer with a 1 GHz Pentium II1
CPU. This means that it analyzes about 500,000
words per second. In fact, the analysis speed of
MACH is 12-20 times faster than the most fa-
mous Korean morphological analyzers. In spite
of its supersonic speed, the analysis accuracy of
MACH is not degraded at all, compared with
any other Korean morphological analyzers.

1 Introduction

Researches on computational analysis for Ko-
rean started in the early 1980s. Morphologi-
cal analyzers, one of the most essential parts
in natural language processing systems, were
considered easy to develop. A lot of differ-
ent methodologies were proposed for Korean
morphological analysis (S.S5.Kang and Y.T.Kim
1994; D.B.Kim et. al. 1994; H.S. Park 1999;
S.H.Yang and Y.S.Kim 2000).

At those times, the processing speed of a mor-
phological analyzer was not regarded so impor-
tant becasue other parts of a natural language
processing system were very slow. The only con-
cern was the accuracy of analysis, and that was
the only measure for evaluating morphological
analyzers.

It had been true until the advent of what
is called an internet age. In the internet age,
the processing speed is thought more important
than the accuracy because a vast number of doc-

uments scattered over the internet are waiting
for being indexed for information retrieval. In-
ternet is not the only source of the need for a
faster morphological analyzer. Besides informa-
tion retrieval, there are many other applications
that need morphological analysis as a minimal
requirement. As the size of disks is doubled ev-
ery year, so is the number of documents stored
in them. This is another source of the require-
ment for a faster morphological analyzer.

Recently, some researchers have made efforts
to implement a faster Korean morphological
analyzer. Among them, Yang and Kim pro-
posed a high-speed Korean morphological anal-
ysis method that was based on pre-analyzed
partial words (S.H.Yang and Y.S.Kim 2000).
They shifted the computational overhead such
as segmentation of morphemes to an off-line
pre-analysis dictionary building stage, in order
to reduce the number of run-time dictionary
lookups. As a result, they could attain the im-
plementation of a high-speed morphological an-
alyzer. They reported that their morphologi-
cal analyzer processed a 1 GB document in 172
minutes on a personal computer with a 333 MHz
Pentium II CPU.

In this paper, MACH, an acronym that
stands for Morphological Analyzer for Contem-
porary Hangul, is introduced. As the name im-
plies, MACH is a morphological analyzer that
flies at a supersonic speed. For example, MACH
analyzes a 1 GB document within 5 minutes
on a personal computer with a 1.0 GHz Pen-
tium IIT CPU. This means MACH is about 12

times faster than Yang and Kim’s morpholog-
ical analyzer, the latest state-of-the-art high-
speed analyzer'. In fact, the processing speed
of MACH is 12-20 times faster than that of the
most famous Korean morphological analyzers.
In spite of its supersonic speed, the accuracy
of MACH is also comparable to that of other
analyzers.

2 Problems with Previous Methods
2.1 Candidate Generation and Filtering

In Korean, whatever looks like a word is rather
called an eojeol. Though a content word itself
can be an eojeol, it is more often the case that
an eojeol is made up of a content word and one
or more function words such as josa (postpo-
sition) or eomi (ending)?. For a given eojeol,
a morphological analyzer for Korean generates
all possible combinations of a content word and
one or more function words with an appropriate
part-of-speech tag sequence.

The morphological analysis methods that
have long been used are to generate morpholog-
ically possible analysis candidates from a given
eojeol, and then cross out those that prove false
in that there are no such words in Korean. Con-
sider an eojeol gal. Morphologically, it can be
realized in four different ways as shown in (1).
(1)

ga/stem + [/eomi addition)

a.
b. gal/stem + [/eomi deletion)

o

gad [stem + [/eomi alternation)

(
(
(
(

d. gah/stem + [/eomi alternation)

Stems in (la) and (1b) are true, whereas those
in (1¢) and (1d) are false. The proof of falsehood
for each candidate needs dictionary lookups,
which is time-consuming. Kang proposed sev-
eral heuristics that turned out somewhat ef-
fective in reducing the number of false candi-
dates (S.S.Kang and Y.T.Kim 1994; S.S.Kang
1995). However, false candidates are still gen-
erated even with the heuristics.

!For comparison, the execution time is divided by 3
on the assumption that the execution speed would be
proportional to CPU’s clock speed.

2For explanation, only simple eojeols will be consid-
ered in this paper. The proposed method is also ap-
plicable to real eojeols, which are formed in a lot more
complex way than described here.

Candidates are generated by applying mor-
phological transformation rules such as addi-
tion, deletion and alternation. Since morpho-
logical transformation accompanies the break-
down of a syllable to a character level, the com-
posite code system has been considered to be
the most appropriate for morphological analy-
sis for Korean3. The problem is that the com-
plete code system is much more prevailing in
real texts. This problem has been treated in
such a simple way as introducing a code con-
version module into a morphological analyzer.
That is, input strings in complete code system
are converted to strings in composite code sys-
tem, and then morphological analysis is per-
formed on them to produce internal analysis re-
sults. They are converted back to the original
complete code system to get the external anal-
ysis results.

Although this approach seems to solve the
problem anyhow, there is a bit of inefficiency
in that the whole input strings are converted
back and forth whereas only a small portion
of input strings are subject to the morpholog-
ical transformation. There had been no argu-
ments for adopting a code conversion module
until Yang and Kim suggested a method for by-
passing code conversion by using pre-analyzed
partial words (S.H.Yang and Y.S.Kim 2000).

2.2 Sequential Analysis

A morphological analyzer is supposed to gen-
erate all possible analyses for a given eojeol.
For example, consider yi-reul*. A typical mor-
phological analyzer for Korean would generate
analyses as shown in (2)°. These analyses are
generated one by one, in sequence. It would
cost many CPU clocks in generating one analy-
sis. There have been many efforts to reduce the
number of CPU clocks consumed in morpho-

3In the complete code system, a unique 2-byte code
is assigned to each syllable. In the composite code sys-
tem, the 2-byte area is divided into three parts, each for
the leading consonant, a vowel, and the optional trailing
consonant, respectively.

“Dots are used to distinguish syllables in an eojeol.

5In each analysis, a string in italic type represents
a Korean word, whereas a two-letter symbol in upper
case represents a part-of-speech tag. NN, NP, NX, NU,
VI, VT, AJ, JO and EM represent noun, pronoun, aux-
iliary noun, numeric noun, intransitive verb, transitive
verb, adjective, josa (postposition) and eomi (ending),
respectively.

logical analysis (S.S.Kang and Y.T.Kim 1994;
S.S.Kang 1995).

(2) a. yi/NN+ reul/io

a
b. yi/NP + reul /o
c. yi/NX + reul/Jo
d. yi/NU + reul/1O
e. yi-reu/Vi+ [/EM
f. yirreu/vT 4+ 1/EM
g. yirreu/AJ + I/EM

What about the number of analyses? If the
number of analyses could be reduced by half,
the morphological analysis speed would be dou-
bled. However, as mentioned above, since a
morphological analyzer is supposed to generate
all possible analyses, it is impossible to reduce
the number of analyses.

Let’s take a look at the example (2) again. A
morpheme yi has four different part-of-speech
tags. Although NN, NP, NX and NU are different
in some point, they share common properties
as a noun. They do not inflect and they usually
accompany JO. In fact, they are ramified from
a common category cheon. Another morpheme
yi-reu has three different part-of-speech tags vi,
vT and AJ that share common properties. They
are also ramified from a common category yon-
gon. Words of this category always accompany
EM.

Considering these facts, we will merge several
analyses into just one analysis as shown below.

(3) a. yi/{NN, NP, NX, NU} + reul/{10}
b. yi-reu/{v1, vr, A3} + [/{EM}

This shows that it is possible to do morpho-
logical analysis in quasi parallel rather than in
sequence. The number of analyses in (3) is only
one-third of those in (2). Analysis speed will be
enhanced as much.

3 Proposed Method

3.1 Dictionary

We can avoid false candidate generation by list-
ing all possible inflected forms in a dictionary.
Assume that gal, an inflected form of both ga
and gal, is listed in a dictionary as shown be-
low.

(4) gal ga/{v1, vx} + I/{EM}
gal/{vt} + 1/{Em}

With this kind of dictionary, only one dictionary
lookup is sufficient to find all possible combina-
tions of content and function words. Compare
this with the candidate generation and filter-
ing approach where four dictionary lookups are
needed in addition to candidate generation pro-
cess. Since there are several thousand different
function words in Korean, however, it is not a
good idea to list all possible combinations of
content and function words in a dictionary.

It is not always possible to separate function
words from preceding content words at syllable
boundaries. Some function words start with a
dangling consonant that cannot be a syllable
by itself. In that case, the dangling consonant
is melted into the last syllable of a preceding
content word. Consider the following examples.

(6) a. pir-da = pi/{v1, vi} + da/{EM}
b. pin-da = pi/{v1, vT} + n-da/{EM}

In (5a), the separation is done at a syllable
boundary. In (5b), the separation is not done
at a syllable boundary because the given eojeol
pin-da is realized by combining a content word
pi with a function word n-da that has a dangling
consonant n. With the complete code system,
it has been considered impossible to take out
a dangling consonant from the last syllable of
a content word. For this reason, existing mor-
phological analyzers adopted a code conversion
module.

Fortunately, some specific consonants such as
n, I, m, b and ss. Therefore, there are only 5
combinations for a Korean intransitive verb ga,
as shown in (6).

(6) a. gan : N.CMBD
b. gal :

c. gam : M_CMBD

L_.CMBD

d. gab : B.CMBD

e. gass : SS_.CMBD

We can list all combinations of content words
and those consonants®. By doing so, we can
eliminate code conversion modules.

Our dictionary is defined as a list of sextuples
as shown below. Each sextuple will be called
dinfo here after.

5These combinations are automatically generated
through simple morphological processing.

(7) (<entry>, <base>, <tagset>, <form>,
<tagset_condition>, <form_condition>)

<entry> represents an entry in our dictionary
that is used as a search key. <entry> may be
a base or a combination with a dangling con-
sonant. <base> is the base form of <entry>.
<tagset> stands for a set of part-of-speech tags
that <base> assumes. <form> indicates the
inflection form of <entry>, and takes either
BASE to indicate that <entry> is a base form,
or X.CMBD to indicate that <entry> is com-
bined with a dangling consonant X where X
is one of N, L, M, B and ss. A function word
or a cheon that does not inflect in itself al-
ways takes BASE as the value of <form>. Fi-
nally, <tagset_condition> and <form_condition>
specify part-of-speech tags and inflection form
of a word, if any, that adjoins to the left of
<entry>7.

The following shows part of our dictionary
for two yongons sa and sal. Among 5 different
combined forms, only two of them are shown
below.
(8) a. (sa, sa, {VT}, BASE, {AD}, BASE)

b. (san, sa, {VT}, N.CMBD, {AD}, BASE)
san, sal, {VI,vT,AJ},N_CMBD, {AD}, BASE)

sal, sal, {V1,VT,AJ},L.CMBD, {AD}, BASE)

(
(
(
c. (sal, sa, {VT}, L.CMBD, {AD}, BASE)
(
(sal, sal, {V1, VT, AJ}, BASE, {AD}, BASE)

In this example, (8a) explains that a transitive
verb (VT) sa is a base form and only an adverb
(AD) in base form can adjoin to the left of sa.
(8b) explains that san is not a base form, but
a form realized by combining a base sa with a
consonant n or by combining a base sal with the
same consonant. In this case, only an adverb in
base form can adjoin to the left of san. (8¢) can
be interpreted in a similar way.

The following is another part of our dictio-
nary for some typical function words, that is,
eomis that combines with yongons.

(9) a. (deun, deun, {EM}, BASE,
{V1, VT, AJ, AX, VX}, BASE)

b. (da, n-da, {EM}, BASE,
{V1, VT, AJ, AX, VX}, N.CMBD)

"In this paper, right-to-left analysis is assumed. Left-
to-right analysis is also possible in a similar way.

c. (da, da, {EM}, BASE,
{VI, VT, AJ, AX, VX}, BASE)

d. (gga, l-gga, {EM}, BASE,
{VI, VT, AJ, AX, VX}, L.CMBD)

(9a) explains that vi, vT, AJ, AX or VX in its
base form can adjoin to the left of deun. (9b)
explains, as N.CMBD indicates, that vi, v, AJ, AX
or VX combined with a consonant n can adjoin
to the left of da. (9¢) means that only vi, vT,
AJ, AX or VX in its base form can adjoin to the
left of da. Finally, (9d) shows that vi, vT, AJ, AX
or VX combined with a consonant / can adjoin
to the left of gga.

3.2 Analysis

This subsection describes our morphological
analysis method. Given an eojeol, the prob-
lem of morphological analysis can be reduced
to the problem of searching one or more paths
that satisfy conditions assigned at each node
of a search space. The conditions are fed
from our dictionary (<tagset_condition> and
<form_condition>).

Before giving an algorithmic description of
our analysis method, several examples are given
here. Let us start with an eojeol sal-deun. The
<entry> in (9a) matches with sal-deun, and the
<entry> in (8c) matches with sal-deun. As the
condition fields in (9a) indicates, a yongon (such
as VI, VT, AJ, AX or VX) in base form can ad-
join to the left of deun. The third dinfo in (8c)
satisfies this condition. Therefore, sal-deun is
anlayzed as follows.

(10) sal/{v1, vT, AJ} + deun/{EM}

As anohter example, let us analyze an eo-
jeol san-da. The <entry> in (9b) and (9c)
matches with san-da, and then the <entry> in
(8b) matches with san-da. (9b) indicates that a
yongon combined with a consonant n can adjoin
to the left of da. In (8b), both dinfos satisfy this
requirement. (9c) indicates that only a yongon
in base form can adjoin to the left of da. None of
(8b) satisfies this condition. Therefore, san-da
is analyzed as follows.

(11) sa/{vTt} + n-da/{EM}
sal/{v1, vT, AJ} + n-da/{EM}

Finally, let us take an example with an eo-
jeol sal-gga. In fact, this eojeol is analyzed in

the same way as described above. The <entry>
in (9d) matches with sal-gga, and then the
<entry> in (8c) matches with sal-gga. As (9d)
indicates, a yongon combined with a consonant
[can adjoin to the left of gga. In (8c), the first
two dinfos satisfy this condition, while the third
dinfo does not because it is not an /-combined
form. Therefore, sal-gga is analyzed as follows.

(12) sa/{vt} + lgga/{EM}
sal/{v1, vT, AJ} + l-gga/{EM}

Note that only two dictionary lookups are
sufficient to analyze an eojeol in the above
examples. These are artificial and the situa-
tion may be a bit more complex with a full-
fledged dictionary, and thus the number of dic-
tionary lookups in our approach will increase
accordingly. However, the number of dictionary
lookups will be much smaller than that required
in so-called candidate generation and filtering
approach. Quantitive details is given in the next
section.

No code conversion module is needed in our
approach. Moreover, analysis is done in quasi
parallel. Only two analysis results are generated
in (12), whereas a total of 4 different analysis
results should be generated with a conventional
sequential analysis method. All these factors
contribute to building a supersonic morpholog-
ical analyzer.

The algorithmic description of the pro-
posed method is given in Figure 1. ana-
lyze_word(sqSq41 - - Sp, rtagset, rform) returns
all possible morphological analyses for the
given eojeol SqaSq41 -+ Sp. lookup_dictionary
(SaSa+1- - sp) returns a list of dinfos whose
<entry> matches to s,s,41 - s, where p is any
integer between a and b. If p is not equal to a,
the given eojeol is divided into sqSq41---5p—1
and spspi1---5p, and the analysis goes on
for sgsqq1--Sp—1°. rtagset and rform spec-
ify the adjacency conditions to be satisfied by
SpSp+1°7Sb. Ta(p—1) indicates morphological
analysis results for sqsq41---Sp—1. déb is one
of the dinfos that lookup_dictionary(sq8q+1 - - Sp)
returns. tagset(), form(), tagset_condition()
and form_condition() are macros that return
an appropriate dinfo field. In the algorithm,
base(déb)/ ctag does not mean any division, but

8As mentioned earlier, a right-to-left analysis is as-
sumed in this paper.

procedure analyze_word(S,Sq41 - Sp, rtagset, rform)

begin
r 0
dpp < lookup_dictionary(saSq+1---Sp)
for V di)b € dyp do
ctag + tagset(dép) N rtagset
if ctag # 0 A form(d,,) = rform
then do
if |$qSa41 - Sp—1| > 0 then do
Ta(p—1) < analyze_word(sasa+1---sp_l,
tagset_condition(dé&,
form_condition(d;p)
if [ra(p-1)l > 0 then do
T TUTa(p-1)©® base(dfob)/ctag
end_if
else do
r < r U base (d;b)/ctag
end_if
end_if
end_for
return r
end_procedure

Figure 1: Morphological Analysis Algorithm

means an analysis to be built that looks like,
for example, sal/{v1, vT, A1}. The operator ®
represents the Cartesian product.

Now, let us follow the algorithm with ex-
amples. First, consider a Korean eojeol
ga-neun-de. For the analysis of this, ana-
lyze_word(ga-neun-de, {AD, NN, NX, JO, EM},
BASE) is called. lookup_dictionary(ga-neun-de) re-
turns the following dinfos.

(13) a. (neun-de, neun-de,
{EM}, BASE, {VI, VT, VX}, BASE)

b. (de, n-de, {EM}, BASE, {AJ, AX}, N.CMBD)

c. (de, de, {NX}, BASE, {NN}, BASE)

As the for loop in Figure 1 suggests, each dinfo
is considered in sequence.

Firstly, (13a) is considered and the given eo-
jeol ga-meun-de is divided into ga and neun-de.
The tagset of (13a) is EM and its form is BASE,
which conform to the given adjacency condition,
that is, {AD, NN, NX, JO, EM } and BASE. From
the adjancency condition fields in (13a), only v1,
VT or VX in its base form can adjoin to the left
of neun-de. Therefore, analyze word(ga, {Vv1, VT,
VX }, BASE) is called again. From the dictionary,
the following dinfos are retrieved.

(14) a. (ga, ga, {JO}, BASE, {NN, NX}, BASE)
b. (ga, ga, {V1, VX}, BASE, {AD}, BASE)

c. (ga, ga, {NN}, BASE, {NN}, BASE)

Among them, only (14b) satisfies the new ad-
jancency condition. So, analyze-word(ga) re-
turns ga/{vi, vx}, and thus ga/{vi, vx} +
neun-de /{EM} is stored in 7.

Secondly, (13b) is considered in the same
way. With this, the given eojeol is divided into
ga-neun and de. The tagset of (13b) is EM and
its form is BASE, which conform to the given ad-
jacency condition, too. Only AJ or AX coupled
with a dangling consonant n can adjoin to the
left of de. Therefore, analyze_word(ga-neun, {AJ,
AX}, N.cMBD) is called again. From the dictio-
nary, only one dinfo is retrieved as shown below.

(15) (ga-neun, ga-neul, {AJ}, N.CMBD, {AD}, BASE)

This dinfo satisfies the new adjacency condition.
So, analyze_word(ga-neun) returns ga-neul/
{a3}, and then ga-neul/{Aa1} + n-de/{EmM} is
added to r.

Finally, (13¢) is considered. With this, the
given eojeol is divided into ga-neun and de.
As the condition field of dinfo indicates, only
NN can adjoin to the left of de. So, ana-
lyze_word(ga-neun, {NN}, BASE) is called again.
As we have seen in (15), there is only one dinfo
for ga-neun, and its tagset does not match with
the adjacency condition, that is, NN . Therefore,
the analysis fails and thus null is returned. Fi-
nal analysis results for ga-neun-de are stored in
r. They are shown below.

(16) ga/{v1, vx} + neun-de/{EM}
ga-neul /{A1} + n-de/{EM}

As we have seen above, morphological analy-
sis is done merely by calling the procedure ana-
lyze_word() recursively. In fact, the procedure is
not called exhaustively. There are several condi-
tions to determine whether the analysis should
go further or not. These conditions are too spe-
cific to be described in this paper.

4 Evaluations

As described in the previous section, our ap-
proach eliminated the need of code conversion
and candidate generation and filtering. More-
over, the analysis is done in quasi parallel. All

test set size size source
(MB) | (eojeols)
A 7.55 | 1,098,316 theses
B 9.74 | 1,172,216 | newspapers
C 8.00 | 1,193,939 | encyclopedia
Table 1: Test Sets
test set | elapsed time speed speed
(sec) (eojeols/sec) | (sec/MB)
A 2.06 533,163 0.273
B 2.67 439,032 0.274
C 2.58 462,767 0.323
A+B+C 7.25 477,858 0.287

Table 2: Analysis Speed

these factors contribute to enhancing the pro-
cessing speed of MACH. In this section, we will
describe the performance of MACH.

For the performance evaluation, many text
documents were collected from different sources.
They were classified into three groups according
to their sources. Table 1 shows the size and
source of each test sets.

The evaluation was performed on a LINUX
platform. As MACH is designed for a higher
speed, the analysis speed should be the first
thing to be evaluated. Table 2 shows the anal-
ysis speed of MACH, measured on a personal
computer with a 1.0 GHz Pentium III CPU.
As we know from Table 2, MACH spends only
4.9 minutes in analyzing a 1 GB text. This
shows that MACH is about 12 times faster
than Yang and Kim'’s analyzer, the latest state-
of-the-art high-speed analyzer (S.H.Yang and
Y.S.Kim 2000). In fact, the analysis speed of
MACH is 12-20 times faster than that of the
most famous Korean morphological analyzers.

As the volume of text to be indexed increases,
there was a proposal to use a noun extraction
system for faster indexing. Because noun ex-
traction is much simpler than full morphologi-
cal analysis, extraction is done much faster. The
extraction speed was reported to be 43,000 eo-
jeols per second on a personal computer with
a 450 MHz Pentium III CPU (D.G.Lee 2000).
If the CPU’s clock speed considered, MACH, a
full-fledged morphological analyzer, is 5 times

test set average average
of dic lookups | # of proc calls
A 2.42 2.94
B 2.66 3.08
C 2.53 3.10
A+B+C 2.54 3.04

Table 3: Dictionary Lookups & Procedure Calls

faster than the simple noun extraction system.

Table 3 shows an average number of dictio-
nary lookups and the number of function calls
for analyze_word(). Kang reported in his dis-
sertation that the average number of dictionary
lookups was 5.70 when syllable information was
used to reduce the number of dictionary lookups
(S.S.Kang 1993). Our figure was only 2.54 on
the average as shown in Table 3.

The effect of quasi parallel analysis was eval-
uated too. Yang and Kim’s morphological an-
alyzer produced about 2.07 million analyses for
the test set A, while MACH generated about
1.28 million analyses for the same test set. As
mentioned in the previous section, the reduc-
tion in the number of analyses contributes to
the implementation of faster analyzers.

Finally, the accuracy? of MACH was eval-
uated. For accuracy evaluation, 1,000 eojeols
were randomly selected from each test set. The
accuracy averaged 98.8%. Kang reported the
accuracy to be 99.4% (S.S.Kang 1993), while
Yang and Kim reported 98.6% (S.H.Yang and
Y.S.Kim 2000). Since no accuracy reports in
the literature were based on the same data set,
the comparison is not so meaningful. Neverthe-
less, we can say that the accuracy of MACH is
comparable to that of other morphological ana-
lyzers for Korean. Since MACH has just devel-
oped, its accuracy is expected to be enhanced
after fixing the probable errors in our dictionary.

5 Conclusions

In this paper, a supersonic Korean morpholog-
ical analyzer called MACH was introduced. It
analyzes around 500,000 eojeols per second on

9Morphological analyzers for Korean are supposed to
generate all possible analyses. Resolving ambiguities
is often regarded as a tagging task. The term accu-
racy in this paper refers to the generation of all possible
analyses.

a personal computer with a 1 GHz Pentium II1
CPU. That is, it analyzes a 1 MB document
within 0.3 second and a 1 GB document within
5 minutes. In fact, the speed of MACH is 12-
20 times faster than that of the most famous
Korean morphological analyzers. The analysis
speed of MACH seems to be close to that of
an optiomal Korean morphological analyzer. In
spite of the supersonic speed, the accuracy of
MACH is not degraded at all, compared with
other Korean morphological analyzers.

References

Seung-Shik Kang, “Korean Morphological
Analysis using Syllable Information and
Multi-Word Unit Information,” PhD disser-
tation, Seoul National University, 1993.

Seung-Shik Kang and Yung Taek Kim,
“Syllable-based Model for the Korean Mor-
phology,” The 15th International Conference
on Computational Linguistics, pp.221-226,
1994.

Seung-Shik Kang, “Morphological Analysis of
Korean Irregular Verbs Using Syllable Char-
acteristics,” Journal of the Korea Informa-
tion Science Society: Software and Applica-
tion, Vol.22, No.10, pp.1480-1487, 1995.

Deok-Bong Kim et. al., “A Two-level Morpho-
logical Analysis of Korean,” The 15th Inter-
national Conference on Computational Lin-
guistics, pp.535-539, 1994.

Do-Gil Lee et. al., “Korean Noun Extraction
Using Exclusive Segmentation Information
and Post-Noun Morpheme Sequences,” The
12th Conference on Hangul and Korean In-
formation Processing, pp.19-25, 2000.

Hyun S. Park, “Integrating Phrase Structure
Grammar Rules with Spelling Rules for Mor-
phological Analysis of Korean,” Proceed-
ings of the 18th International Conference on
Computer Processing of Oriental Languages,
pp-485-490, 1999.

Seung Hyun Yang and Young-Sum Kim, “A
High-Speed Korean Morphological Analy-
sis Method based on Pre-Analyzed Partial
Words,” Journal of the Korea Information
Science Society: Software and Application,
Vol.27, No.3, pp.290-301, 2000.

	Table of Content
	Topics
	Authors

