
Effective Structural Inference for Large XML Documents

Jason Sankey Raymond K. Wong

School of Computer Science & Engineering
University of New South Wales

Sydney 2052, Australia

Abstract

This paper investigates methods to automatically
infer structural information from large XML doc-
uments. Using XML as a reference format, we ap-
proach the schema generation problem by applica-
tion of inductive inference theory. In doing so, we re-
view and extend results relating to the search spaces
of grammatical inferences for large data set. We
evaluate the result of an inference process using the
concept of Minimum Message Length. Comprehen-
sive experimentation reveals our new hybrid method
to be the most effective for large documents. Finally
tractability issues, including scalability analysis, are
discussed.

1 Introduction

Given the recent emergence of XML, there are many
problems that must be solved to facilitate its most
effective use. Amongst the most important of these
involves addressing the differences between the new,
loosely formatted data and traditional, structured
data. Clearly, the ability to infer the structure of
XML documents would be a very powerful tool for
bridging the gap. Given such a method of infer-
ence, XML information may be handled in more ef-
fective ways without loosing the advantage of flex-
ibility. There are still many possible approaches
to the problem, and correspondingly many suitable
outcomes. For this reason it is best to firstly de-
rive a suitable measure for the quality of an inferred
DTD. As will be seen in section 3.1, determining the
relative utility of content models is a task in itself.
This paper extends the hybrid method from our pre-
vious work (Sankey & Wong 2001) to automatically
infer structural information from large XML docu-
ments. Comprehensive experimentation reveals the
proposed method to be the most effective for large
documents.

The paper is presented in the following fashion.
Section 2 provides details of previous work in this
and related fields. Section 3 provides an overview
of our solution method, followed by details of the
inference algorithms in section 4. Section 5 includes
comprehensive testing for large models and section

6 discusses the tractability considerations, followed
by conclusions in section 7.

2 Previous Work

The inference of structure in XML information is a
relatively new area of research. However, there are
several closely related topics that have been studied
for a longer period. Many of these topics fall into
the general field of Inductive Inference, more specif-
ically the sub-field of Grammatical Inference. This
sub-field is concerned with the theory and methods
for learning grammars from example data. For fur-
ther details concerning the field of Grammatical In-
ference the reader is referred to the surveys of Pitt
(Pitt 1989) and Sakakibara (Sakakibara 1997). In
addition, there has also been prior research into au-
tomatic recognition of document structure. Earlier
attempts by (Chen 1991), (Fankhauser & Yu 1994)
and (Shafer 1995) in similar problem spaces all use
solutions based on heuristic methods. In each case,
the generalisation step involves searching for sim-
ilar patterns in the data and combining the cor-
responding structural information. Although these
techniques may work well in some cases, their ap-
plicability is restricted by a lack of generality. The
approaches of (Ahonen 1996) and (Young-Lai 1996)
are more powerful in concept. In both of these
works, methods derived from theoretical grammat-
ical inference are applied to the problem of infer-
ring DTD content models. The first known appli-
cation of such theory to this problem, in (Ahonen
1996), makes use of a characterising method to infer
a subset of the regular language class. The alterna-
tive solution in (Young-Lai 1996) makes use of an
adapted stochastic method. In both cases, the re-
sults are post-processed to produce more desirable
content models. Unfortunately, neither paper inves-
tigates or compares other methods. It is partly for
this reason that these methods have been included
in this study for comparisons. The more recent pa-
per of Garofalakis et al (Garofalakis et al. 2000)
is very similar to this work in terms of motivation
and the application of information theory. However,
their inference algorithms are based upon direct gen-

eralisation and factoring of regular expressions, with
information theoretic principles used to choose a fi-
nal result from a pool of candidates. In contrast,
we propose a hybrid method which employs various
principles throughout the inference process, with the
aim of producing a more general method.

3 Overview of Solution

The major grammatical inference methods fall into
a few general categories. One of these categories in-
cludes a family of algorithms known as state merging
methods. A state merging method typically begins
by constructing what is known as a Prefix Tree

Automaton (PTA) from the positive examples of
the language to be inferred. If we let the set of pos-
itive examples be R+, then the prefix tree for R+
(PTA(R+)) may be constructed as follows. We be-
gin with an automaton that simply accepts the first
string in R+. Then we iterate over the rest of the
strings in R+ and for each one follow transitions
in the automaton for as many symbols as possible.
When a symbol is found that does not match a valid
transition, the PTA is augmented with a new path
to accept the rest of the string. In particular, a
Probabilistic Finite State Automaton (PFSA)
is merely an automaton with probabilities associated
with each transition and final state. This is impor-
tant both for some of the inference methods and for
evaluating the quality of solutions.

3.1 Evaluating a Solution

To measure the quality of the inferred DTD, we use
the concept of Minimum Message Length (MML)
(Georgeff & Wallace 1984). In particular, we adapt
the formula developed for PFSA (Raman 1997) as
below:

MML(A) =

N
∑

j=1

{

log
2

(tj − 1)!

(mj − 1)!
∏mj

i=1
(nij − 1)!

}

+M(log
2

V + 1) + M
′ log

2
N

− log
2
(N − 1)!

where:

• N is the number of states in the PFSA

• V is the cardinality of the alphabet plus one

• tj is the number of times the jth state is visited

• mj is the number of arcs from the jth state (plus
one for final states)

• m
′

j is the number of arcs from the jth state (no
change for final states)

• nij is the frequency of the ith arc from the jth state

• M is the sum of all mj values and

• M
′ is the sum of all m

′

j values

3.2 Implementation

One of the goals of this work was to both pro-
duce new inference methods and make comprehen-
sive comparisons with existing techniques. This en-
tailed a significant amount of implementation that
consists of several modules to perform stages of the
inference process. The most important stage in-
volves PTA generalisation using the inference meth-
ods. These methods fall into two broad categories,
which are labelled generalisation and optimisation
in the implementation. The first of these consists of
the Merge methods with its pseudo-code shown in
algorithm 1.

Algorithm 1 GeneralisePTA

Input: A PTA A to be generalised, a merge crite-
rion criterion

Output: The generalised form of A

Method:

1. repeat

2. for all pairs (s1, s2) of states in A do

3. if criterion(s1, s2) then
4. A.merge(s1, s2)
5. criterion.forcedMerges(A)
6. if criterion.determinise() then

7. determinise(A)
8. end if
9. end if

10. end for

11. until no more merges are possible
12. if not criterion.determinise() then

13. determinise(A)
14. end if
15. return A

Here the merge criterion determines the actual be-
haviour of the inference procedure. For each method
belonging to the merge family, a merge criterion
class is derived from a base interface. The merge
criterion is allowed to make forced merges after an
initial merge is decided (see line 5), which may be
necessary to fit the semantics of a method, or may be
more efficient. Also, merge criteria may decide if the
PFSA is determinised after every merge (lines 6–8)
or only at the end of the inference process (lines 12–
14). Determinisation itself is performed by merging
of states, as opposed to the traditional algorithms.
The alternative inference methods all apply optimi-
sation techniques to try and minimise the MML of
the PTA. These algorithms vary significantly in im-
plementation, ruling out the possibility of building
them around the same core algorithm.

4 Inference Algorithms

4.1 Reference Methods

Several previously applied methods were imple-
mented to evaluate their relative performance. Two
such algorithms are those applied by Ahonen in
(Ahonen 1996), the first known paper to address
DTD generation using tradition grammatical infer-
ence methods. These methods are theoretically ap-
pealing, as they guarantee to infer languages falling
within certain language classes. These classes are
termed k-contextual and (k, h)-contextual, so named
as they assume the structure to be inferred to have
limited context. It is not clear whether this assump-
tion is valid in practice, however. Another method
applied to DTD generation ((Young-Lai 1996)), is
derived from more recent work in grammatical in-
ference. The base algorithm is known as Alergia,
introduced in (Carrasco & Oncina 1994b). The cri-
terion for state equivalence in Alergia is based upon
observed frequencies of transitions and finalities of a
pair of states. As with the methods of Ahonen, Aler-
gia has strong theoretical appeal. Again, though, we
are interested in practical performance. Further to
the methods described above, we devised two ba-
sic optimisation strategies against which to bench-
mark the results of our main algorithm. The first
of these, termed the Greedy method, is a straight-
forward steepest-descent algorithm which employs
incremental MML calculation to optimise a PTA.
Along with this a weighted stochastic hill-climbing
method was implemented, which also used incremen-
tal MML calculation. These two methods illustrate
the need for more sophisticated optimisation algo-
rithms.

4.2 The sk-strings Method

The sk-strings method actually consists of a family
of algorithms, described in (Raman & Patrick 1997)
and in more detail in (Raman 1997), of which five
were implemented. The basis of these algorithms is
an extension upon the k-tails heuristic of Biermann
and Feldman (Biermann & Feldman 1972), which
in turn is a relaxed variant of the Nerode equiva-
lence relation. Under the Nerode relation, a pair
of states are equivalent if they are indistinguishable
in the strings that may be accepted following them.
The k-tails criterion relaxes this to only considering
these strings (tails) up to a given length (k.) The
sk-strings method is extended using stochastic au-
tomata, and considers only the top s percent of the
most probable k-strings. The k-strings differ from
k-tails in that they are not required to end at a fi-
nal state, unless they have length less than k. The
probability of a k-string is calculated by taking the
product of the probabilities of the transitions exer-
cised by that k-string.

4.3 Ant Colony Optimisation

The Ant Colony Optimisation (ACO) meta-heuristic
is a relatively new optimisation technique. First de-
scribed in (Dorigo et al. 1991), the method uses a
positive feedback technique for searching in a simi-
lar manner to actual ants. In biological experiments
it was revealed that insect ants cooperated in find-
ing shortest paths by leaving pheromone trails as
they walked. An ant traveling back and forth along
a short path increases the pheromone level on that
path more rapidly than an ant using a longer path,
thus influencing more ants to take the shorter route.
The effect is then self-reinforcing until eventually all
ants will choose the shorter path. ACO algorithms
mimic this technique using artificial ants to search
out good solutions to optimisation problems.

The ACO heuristic operates over several iterations
to allow the positive feedback of the pheromones to
take effect. In each iteration, the artificial ants nav-
igate the search space using only a simple heuris-
tic, but as they move they leave pheromones on the
trail they follow. In some variants, including the one
used in this work, the pheromone placement is de-
layed until the end of an iteration, when all ants have
completed a full walk. At this point the amount of
pheromone assigned to each ant is weighted with re-
spect to the quality of the solution it found. Thus
moves involved in higher quality solutions are more
likely to be chosen by ants in future iterations. Al-
though ants acting by themselves are only capable of
finding relatively poor solutions, working in cooper-
ation they may approach higher quality ones. After
a certain number of iterations without improvement
to the best solution found the algorithm terminates.

4.4 The Proposed Hybrid Method

The sk-ANT Heuristic: The motivation for this
new heuristic was to create a method that would be
successful for a variety of input data sizes by com-
bining the best features of both the sk-strings and
ACO techniques. One consideration was to first run
the sk-strings algorithms, and then use the results
to seed the ACO optimisation. However, this ap-
proach suffers from several problems. Firstly, it is
not practical to attempt all possible combinations
of both algorithms. Thus we would be required to
choose a limited number of models resulting from
the sk-strings technique to seed the second stage of
the process. The simplest way to achieve this would
be to choose the best models, up to a reasonable
number. These models will not necessarily lead to
the best results, though, as they may have already
been over-generalised. More importantly, by letting
the sk-strings methods run to completion we would
lose many of the advantageous aspects of the ACO
method. Most notably, its willingness to explore a
greater breadth of the search space would be missed.

The new method thus incorporates both the sk-
strings and ACO heuristics at each step of the infer-
ence process. It is most easily described as a mod-
ified version of the ACO technique with the ants
guided by an sk-strings criterion. The guiding is
made progressively weaker as the model becomes
smaller, to allow the advantages of the ACO method
for smaller models to take effect. The key of this new
method is a new algorithm for the ant move selec-
tion as shown in algorithm 2. In particular in line 4,
a merge must pass the sk-strings criterion to be con-
sidered. The outer while loop on line 2 and if state-
ment on line 11 combine to progressively weaken the
sk-strings criterion when it has become too strict.
Eventually the criterion will be weak enough to let
all merges pass, and the algorithm will behave iden-
tically to the original version.

Algorithm 2 sk-antMoveSelector

Input: A set of all state pairs merges, an ant
heuristic heuristic, an ant weighting function
weighting, a pheromone table pheremones and
an sk-strings criterion skCriterion.

Output: A state pair representing the chosen
merge.

Method:

1. choices← []
2. while choices.size() = 0 do

3. for merge in merges do

4. if skCriterion(merge) then
5. h← heuristic(merge)
6. p← pheremones[merge]
7. value← weighting(h, p)
8. choices.add((value, merge))
9. end if
10. end for

11. if choices.size() = 0 then

12. skCriterion.weaken()
13. end if

14. end while

15. return stochasticChoice(choices)

5 Experimental Results

To fulfill our goal of comprehensive testing, we ap-
plied three sets of tests. The first two of these used
generated data, which allowed systematic experi-
mentation on widely varied input. The other test
set consisted of a few models chosen from real data,
to illustrate the nature of the models inferred by the
sk-ANT method. In each test the algorithms were
run with a range of input parameters, and the results
from each run combined.

0 20 40 60 80 100

ACO

Alergia

Greedy

k-con

k-h-con

sk-ANT

sk-ALL

sk-AND

sk-LAX

sk-OR

sk-STRICT

sk-XEN

Stochastic

A
lg

o
ri

th
m

Frequency from 100 Trials

Best Average

Best Overall

Figure 1: Success rates for large models

5.1 Inference of Large Models

The larger data set also consisted of 100 sample
files generated from random PFSA. In this case the
PFSA had a maximum of 20 states with an alpha-
bet cardinality of 8. For each of these a total of 25
strings were generated giving an average PTA size
of 143.38 states. On average the inferred models
were larger than for the small data set, though they
ranged from an average of 1.23 to 142.74 states for
differing algorithms.

Figure 1 shows the success rates of each algorithm
in inferring models with the lowest MML values. For
each algorithm, two results have been shown. The
first is the frequency of inferring the best model over-
all, by choosing the best of the algorithm’s attempts.
The second is the frequency of obtaining the best
average performance, derived by averaging all of the
algorithm’s attempts before ranking. The best over-
all performance is most important, whilst the best
average indicates stability across different input pa-
rameters. In particular, sk-ALL denotes the imple-
mentation of sk-strings with five variants from its
family (refer to (Raman 1997) for details of different
variants). The results show the poor performance
of both the Stochastic and ACO methods, and the
clear dominance of the sk-ANT heuristic. The poor
performance of the ACO and Stochastic methods is
likely due to the large search space. The heuris-
tic guidance used in the sk-ANT method clearly
overcomes this difficulty, producing the best results.
Other poor algorithms are desirable due to their sim-
plicity and efficiency, but are lacking in quality of
solutions found.

The deviations from the best model were calcu-
lated for each algorithm, as presented in table 1.
The numbers were derived from the difference be-
tween the MML values of the best model inferred
by a given algorithm as compared with the best
model overall. The hybrid sk-ANT technique again

Algorithm Average Worst
Deviation (%) Deviation (%)

ACO 31.57 154.87
Alergia 32.44 86.58
Greedy 173.46 574.48

k-contextual 30.39 84.15
(k, h)-contextual 21.57 58.57

sk-ANT 2.81 28.52
sk-ALL 3.15 20.51

Stochastic 36.40 159.11

Table 1: Deviation from the best model inferred
(large data set)

proved to be the best in terms of average devia-
tion at 2.81%. Thus the newer method is preferable
if only one choice is allowed. On the other hand,
the sk-ALL heuristic was better in terms of worst-
case performance, though the deviation is still rather
high. Again, some applications may need to employ
a combination of difference methods to achieve bet-
ter worst-case results.

The experiments have revealed many interesting
points. Firstly, the k-contextual, (k, h)-contextual
and Alergia methods previously applied to this prob-
lem have been shown to perform poorly. Although
the papers describing their use extend the algo-
rithms and employ refining operations, it appears
that other methods are a more appropriate starting
point. We have also seen that the simple Greedy and
Stochastic methods cannot match the performance
of more complicated techniques. This highlights the
difficulties inherent in the search space of grammat-
ical inference. The sk-strings method developed in
(Raman 1997) has proven to be much more effective,
provided combined results from all of the heuristics
are used. A major contribution to its success may lie
in its use of statistical data in the inference process.
The ACO algorithm’s failure on large testing data
led to a new method which we have named sk-ANT.
This new hybrid algorithm proved to be the most
effective by a considerable margin, and is thus the
algorithm of choice. Where worst case guarantees
are required, we recommend using combined results
of both the sk-ANT and sk-ALL methods.

5.2 Real Data Set: Webster’s p Element

The real data set we used was an extract of the dig-
ital form of the 1913 Webster Unabridged Dictio-
nary. The dictionary format is almost compatible
with SGML, and after some preprocessing we were
able to extract the structural information in XML
format. Only a small subset of the entire dictionary
was used, due to its overwhelming size. We selected
the paragraph element ‘p’, which is used to group to-
gether the information pertaining to each dictionary
word, for the experiment. This particular element
was chosen as it exhibits a rather complex and vari-
able structure. This is in contrast to the structure

17

18

i (1)

1 (96)

cd (1)

i (4)

7

sd (1)

8

wf (1)def (14) pos (1)

14

def (1)

i (5)

9 (2)

u (2)

def (9)

u (8)

grk (40)

4 (1)

i (78)

5

cd (1)

13

i (1)

16

cd (1)

11 i (1)

15

def (8)

sd (8)

2

def (2)

pos (83)

i (1)

def (65)

grk (8)

sd (8)

i (39)

12

plw (4)

6

i (2)

0 (3)

point26 (1)

col (2)

hw (86)

sn (7)

blockquote (2)

3

i (2)

10 (1)

i (2)

grk (4) u (1)

col (1)

Figure 2: Best model for the ‘p’ element

of the other models chosen from real data sets, with
the intent being to stretch the capabilities of the sk-
ANT method.

The inferred model is shown in figure 2. Observe
the dominant path through states 0, 2, 9, 4 and 1. It
is most important that this path is preserved, with
the rest of the structure accounting for exceptions
and noise in the data. Such irregularity is a fact of
life when dealing with semi-structured data such as
XML.

6 Tractability Considerations

The goals of grammatical inference such as the struc-
tural inference presented in this paper require not
only that our methods be effective, but also that
they are useful in practice. For this reason, we inves-
tigate the complexity of our new algorithm of choice,
namely sk-ANT. Coverage of the tractability of the
other algorithms may be found in the original papers
in which they are presented ((Ahonen 1996), (Car-
rasco & Oncina 1994b) and (Raman 1997).) In our
testing, we found that the sk-ANT method was the
most expensive in terms of running time. This did
not provide an obstacle for the experimental data,
but may become important when working with very
large PTA (several thousand states) or under tight
time constraints. Fortunately, in practice, a model
for typical large XML documents would be normally
fewer than one hundred states.

By analysing the sk-ANT algorithm, we found
that the most important factor is the number of
merges considered at each iteration of the inference
process. At every step, each one of the possible state
pairings is considered for merging. At a stage when

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160

C
P

U
 ti

m
e

(s
ec

s)

PTA size

sk-ANT
cubic

Figure 3: Empirical measure of sk-ANT complexity

the PFSA being inferred has r states, there are (r

2
)

such merges. This may be expanded to give:

r(r − 1)

2

merges considered. As the algorithm proceeds from
the full number of states, say n, until there is just
one state, the total number of merges considered is:

2
∑

r=n

r(r − 1)

2

These merges are considered by all ants, introducing
an extra constant factor. This factor does not influ-
ence the asymptotic complexity, however, which is
clearly O(n3). Although not unmanageable, there
are applications for which this complexity may be
too great.

6.1 Measured Scalability

To complement the theoretical analysis, we also per-
formed a simple empirical test to measure the per-
formance of the algorithm in practice. The test was
performed on PTA with sizes ranging from 10 to 150
states, with several of each size. Keeping in line with
the experimental results shown earlier, we used the
same range of parameters and averaged the results
for each PTA size.

Figure 3 shows a graph of the obtained timing val-
ues. The points give the actual values for each PTA
size, with a bezier approximation shown using a solid
line. For comparison, we have also included a cubic
function, shown with the dotted line. Clearly the
analytical result corresponds well to the empirical
measurement, with the cubic function proving to be
a reasonable approximation of the points. Note that
the individual CPU times shown are not of partic-
ular interest, as the primary goal of the implemen-
tation was not efficiency. Profiling has shown that
there is scope for improvement, though of course the
asymptotic growth will remain the dominant factor.

6.2 Discussion

The analytical and empirical analysis of the sk-ANT
algorithm have both shown it to have asymptotic
complexity of O(n3). In practice, this is quite ac-
ceptable for a wide range of applications. Where it
is not acceptable, there are several alternatives. A
simple one would be to employ one of the more ef-
ficient algorithms until the PFSA inferred reaches a
small enough size to seed the sk-ANT method. A
more complicated method may use a modified sk-
ANT heuristic that employs approximations, and
perhaps limits the size of the neighbourhood exam-
ined by each individual ant. Such a method may be
able to reduce the complexity to O(n2), though it
has not been thoroughly investigated. Cases where
large amounts of data are involved can often be bro-
ken down into several sub-problems to make them
manageable. For instance, in a database where doc-
uments are drawn from many sources, it may be ap-
propriate to treat each data source separately. In-
deed, this is a requirement for many applications.
In other cases, it is feasible to take a sample of the
data to use for inference, as the sk-ANT algorithm
has been shown to perform well on sparse examples.

7 Conclusion

We have addressed the problem of structural infer-
ence for large XML documents. In doing so we began
by motivating the research and reviewing the litera-
ture. The use of Minimum Message Length as a mea-
sure for the quality of inferred content models has
been introduced, adapted from work in related fields.
This measure has proven to be an appropriate and
a vast improvement over previous subjective tech-
niques. We have also presented the first wide spread
comparison of different grammatical inference tech-
niques. This involved the implementation of the ex-
isting Alergia, k-contextual, (k, h)-contextual and
sk-strings methods, as well as the creation of new
algorithms. The new methods include the Greedy
strategy, the ACO meta-heuristic, Stochastic Hill
Climbing and our proposed, hybrid sk-ANT heuris-
tic. Comprehensive experimental data revealed that
our proposed method was the most effective and
most stable of the methods, followed by the sk-
strings heuristic. From this work we may conclude
that the problem of structural inference is both im-
portant and tractable. For current applications we
recommend use of the sk-ANT technique. The use
of MML as a quality measure is also recommended,
due to its generality and objectivity.

References

H Ahonen. Generating Grammars for Structured Docu-

ments Using Grammatical Inference Methods. Report
A-1996-4, Department of Computer Science, Univer-
sity of Finland, 1996.

A W Biermann and J A Feldman. On the synthesis of

finite-state machines from samples of their behaviour.
IEEE Transactions on Computers, 21:591–597, 1972.

R C Carrasco and J Oncina (editors). Grammatical In-

ference and Applications. Proceedings of the Second
International Colloquium on Grammatical Inference
(ICGI-94), Lecture Notes in Artificial Intelligence 862,
Springer-Verlag 1994.

R C Carrasco and J Oncina. Learning Stochastic Regu-

lar Grammars by Means of a State Merging Method.
In R C Carrasco and J Oncina (editors) (Carrasco &
Oncina 1994a).

J Chen. Grammar Generation and Query Processing for

Text Databases. Research proposal, University of Wa-
terloo, January 1991.

M Dorigo, V Maniezzo and A Coloni. Positive Feedback

as a Search Strategy. Technical Report 91–016, Di-
partmento di Elettronica, Politecnico di Milano, Italy,
1991.

P Fankhauser and Y Xu. Markitup! An Incremental Ap-

proach to Document Structure Recognition. Electronic
Publishing - Origination, Dissemination and Design,
6(4):447–456, 1994.

M Garofalakis, A Gionis, R Rastogi, S Seshadri and K
Shim. XTRACT: A System for Extracting Document

Type Descriptors from XML Documents. In Proceed-
ings of SIGMOD 2000, pages 165–176, Dallas, TX,
2000.

M P Georgeff and C S Wallace. A General Selection Cri-

terion for Inductive Inference. In T O’Shea (editor),
ECAI-84: Advances in Artificial Intelligence, pages
473–481. Dordretch: Elsevier, 1984.

L Pitt. Inductive Inference, DFA’s and Computational

Complexity. In J Siekmann (editor), Proceedings of
the International Workshop AII ’89, Lecture Notes
in Artificial Intelligence 397, pages 18–44, Springer-
Verlag 1989.

A V Raman and J D Patrick. The sk-strings method

for inferring PFSA. In Proceedings of the 14th Inter-
national Conference on Machine Learning, ICML’97,
1997.

A V Raman. An Information Theoretic Approach to Lan-

guage Relatedness. PhD Thesis, Massey University,
1997.

Y Sakakibara. Recent Advances in Grammatical In-

ference. Theoretical Computer Science Volume 185,
Number 1, October 1997.

J Sankey and R K Wong. Structural Inference for

Semistructured Data. In Proceedings of the ACM In-
ternational Conference on Information and Knowledge
Management, CIKM’01, 2001.

K Shafer. Creating DTDs via the GB-engine and Fred.
Available at http://www.oclc.org/fred/, 1995.

M D Young-Lai. Application of a Stochastic Grammati-

cal Inference Method to Text Structure. Master’s the-
sis, Computer Science Department, University of Wa-
terloo, 1996.

	Table of Content
	Topics
	Authors

