Learning Grammars for Different Parsing Tasks by
Partition Search

Anja Belz
ITRI
University of Brighton
Lewes Road
Brighton BN2 4GJ, UK
Anja.Belz@itri.brighton.ac.uk

Abstract

This paper describes a comparative applica-
tion of Grammar Learning by Partition Search
to four different learning tasks: deep parsing,
NP identification, flat phrase chunking and NP
chunking. In the experiments, base grammars
were extracted from a treebank corpus. From
this starting point, new grammars optimised for
the different parsing tasks were learnt by Par-
tition Search. No lexical information was used.
In half of the experiments, local structural con-
text in the form of parent phrase category in-
formation was incorporated into the grammars.
Results show that grammars which contain this
information outperform grammars which do not
by large margins in all tests for all parsing tasks.
It makes the biggest difference for deep pars-
ing, typically corresponding to an improvement
of around 5%. Overall, Partition Search with
parent phrase category information is shown to
be a successful method for learning grammars
optimised for a given parsing task, and for min-
imising grammar size. The biggest margin of
improvement over a base grammar was a 5.4%
increase in the F-Score for deep parsing. The
biggest size reductions were 93.5% fewer nonter-
minals (for NP identification), and 31.3% fewer
rules (for XP chunking)

1 Introduction

Grammar Learning by Partition Search is a
computational learning method that constructs
probabilistic grammars optimised for a given
parsing task. It can be used with varying de-
grees of supervision and prior knowledge, but its
main practical application is the adaptation of
grammars to new tasks, where prior knowledge
is used in the form of an existing grammar, and
learning is supervised in the sense that parsed
data samples representing a given parsing task

are used. One example application is the adap-
tation of conventional, “deep” grammars to the
shallow parsing tasks (such as NP extraction)
involved in many practical NLP applications.

The ability to automatically adapt an ex-
isting grammar to a new parsing task saves
time and expense. Furthermore, using Parti-
tion Search to adapt deep grammars to shallow
parsing tasks has a specific advantage: it per-
mits those parts of deeper structural analysis to
be retained that are useful for detecting more
shallow components, while discarding the rest.

The experiments reported in this paper also
investigate the usefulness of parent phrase cate-
gory information for the different parsing tasks.
The general idea is that using Local Structural
Contezt (LSC) in PCFG parsing increases pars-
ing accuracy (Belz, 2001, shows this).

The general aim in the experiments was to
test the PCFG Partition Search method (with-
out lexicalisation and with parent phrase cate-
gory information) on a range of parsing tasks for
which there are existing results, and to compare
the results across the different parsing tasks.
Results show that this approach has very dif-
ferent effects on the four parsing tasks.

The remainder of this paper is organised in
two main sections. Section 2 provides a brief
summary of the main features of Grammar
Learning by Partition Search (a much more de-
tailed description can be found in (Belz, 2002)).
Section 3 describes experiments and results for
the four parsing tasks.

2 Partition Search PCFG Learning

The Partition Search method for PCFG learning
belongs to a generic class of CFG learning
algorithms in which new CFGs are derived from
old by merging and splitting subsets of the old
CFG’s set of nonterminals. The following is a

simple example, where merging the nontermi-
nals NP-SUBJ and NP-0BJ in the CFG G results in
a derived cFG G’ which has one nonterminal NP
instead (assuming a standard 4-tuple definition
of cras!):

G = (W3 N’ NS"R)’

W = {NNS, DET, NN, VBD, JJ}
N = { S, NP-SUBJ, VP, NP-0BJ }
No= {s}

R= { S -> NP-SUBJ VP,

NP-SUBJ -> NNS,
NP-SUBJ -> DET NN,

VP -> VBD NP-0BJ,
NP-OBJ -> NNS,

NP-0BJ -> DET JJ NNS }

GI = (W7 NI7 NSJ RI)7

W = {NNS, DET, NN, VBD, JJ}
N = {sS, NP, VP}
NS= {s}
R'= { S ->NP VP,
NP -> NNS,
NP -> DET NN,
VP -> VBD NP,

NP -> DET JJ NNS }

Splitting nonterminals is the converse oper-
ation. A given base CFG together with the
merge and split operations defines an infinite
search space that can be searched by different
search algorithms for a CFG that optimises some
given objective function, for example minimis-
ing grammar size.

Partition Search is an instance of this generic
CFG learning method. It also starts from a given
base grammar, but avoids the split operation
and makes the search space finite by defining
a mazimally split nonterminals set (Maz Set)
and the corresponding mazimally split grammar
(Maz Grammar) in advance.

Each point in the search space corresponds to
a candidate grammar which can be derived from
the Max Grammar together with a partition? of
its set of nonterminals. The set of all partitions
of the Max Set thus corresponds to the set of

points in the search space®.

A Context-Free Grammar (cFG) is a 4-tuple
(W, N, N%,R), where W is a set of terminal symbols,
N is a set of nonterminal symbols, N° is a set of start
symbols, and R is a set of production rules.

2A partition of a nonempty set A is a subset II of 24
such that () is not an element of IT and each element of
A is in one and only one set in II.

3The concept of context-free grammar partitioning in

In the current implementation, a variant of
beam search is used to search the partition
space. Search starts with the Max Grammar
and proceeds in one direction by progressively
merging more and more nonterminals without
permitting a decline in the performance on the
given parsing task.

In the experiments reported in this paper,
Partition Search is applied to probabilistic
CFGs, and is used for supervised grammar learn-
ing using prior knowledge in the form of a base
grammar derived from a treebank corpus. The
Max Grammars are defined on the basis of par-
ent phrase category information. The objective
is to find a grammar that is as small as possi-
ble and performs as well as possible on a given
parsing task (e.g. NP chunking).

3 Learning Grammars for Different
Parsing Tasks

3.1 Experiment Set-up

In each set of experiments the objective was
to start from a base grammar automatically
derived from the Wall Street Journal Corpus
(wsic), define a Max Grammar using informa-
tion available in the corpus, and then to find a
new grammar by Partition Search that performs
as well as possible on the given parsing task.

Data: Sections 15-18 of wsic were used for
deriving the base grammar and as the base
training corpus, and different randomly selected
subsets of Section 1 from the same corpus were
used as task-specific training corpora during
search. Section 1 was also used as a testing set
during the development of the Partition Search
method, while Section 20 was used for final per-
formance tests only.

Parsing tasks: Results are reported in this
paper for four different parsing tasks:

In full parsing (or ‘deep’ parsing) the task is
to assign a complete parse to the input sentence.
The parses in the wsJC are used without mod-
ification as the gold standard for this task.

In NP identification the task is to identify in
the input sentence all noun phrases?, nested and
otherwise, in the corresponding WSJC parse.

this paper is not directly related to that in (Korenjak,
1969; Weng and Stolcke, 1995).
“WsJc categories NP, NX, WHNP and NAC.

The task of XP chunking was defined by
(Tjong Kim Sang and Buchholz, 2000), and in-
volves dividing a sentence into flat chunks of 11
different types®. The target parses are derived
from WsJC parses by a conversion procedure®.

NP chunking was first defined by (Abney,
1991), and involves the identification of flat
noun phrase chunks. Target parses are derived
from WsJC parses by a conversion procedure®.

Evaluation: The Brill Tagger was used for
POS tagging testing data, and achieved an av-
erage accuracy of 97.5%". An existing parser®
was used to obtain Viterbi parses. If the parser
failed to find a complete parse for a sentence, a
simple grammar extension method was used to
obtain partial parses instead (based on Schmid
and Schulte im Walde (2000, p. 728)). The
evalb program by Sekine and Collins® was used
to obtain Precision and Recall figures on the
parses produced by the parser.

Base grammar derivation: A simple tree-
bank grammar'® was derived from Sections 15—
18 of the wsJ corpus by the following procedure:

1. Tteratively edit the corpus by deleting (i) brack-
ets and labels that correspond to empty cate-
gory expansions; (ii) brackets and labels con-
taining a single constituent that is not labelled
with a POs-tag; (iii) cross-indexation tags; (iv)
brackets that become empty through a dele-
tion.

2. Convert each remaining bracketting in the cor-
pus into the corresponding production rule.

3. Collect sets of terminals, nonterminals and
start symbols from the corpus. Calculate prob-
abilities for production rules from the rule fre-
quencies by Maximum Likelihood Estimation.

The result of applying this procedure to Sec-
tions 15-18 is the base grammar BARE which
has 10, 118 rules and 147 nonterminals.

®Corresponding to WSIC categories NP, VP, ADVP, ADJP,
PP, SBAR, CNJP, PRT, INTJ, LST and UCP.

5Devised by E. Tjong Kim Sang.

"The data was automatically POs tagged in order to
make results comparable, in particular to those produced
by the Lca Project (Nerbonne et al., 2001) and for CONLL
Workshop shared tasks.

8LoPar (Schmid, 2000) in its non-head-lexicalised
mode. Available from http://www.ims.uni-stuttgart.
de/projekte/gramotron/SOFTWARE/LoPar-en.html.

%http://cs.nyu.edu/cs/projects/proteus/evalb/.

0The term was coined by Charniak (1996).

Max Grammar definition: Two different
approaches to defining the Max Grammar were
used. In the first, the base grammar BARE it-
self was used as the Max Grammar. This re-
sults in a very restrictive search space definition
and amounts to optimising the base grammar in
terms of size and performance on a given task
without adding any information to it.

In the second approach, Local Structural
Context (LsC) was used for defining the Max
Grammar (resulting in grammar PN). Using LSC
means weakening the independence assump-
tions inherent in PCFGs by making the rules’ ex-
pansion probabilities dependent on part of their
immediate context. The LSC that was used here
was parent phrase categories, where the parent
of a phrase is the phrase that immediately con-
tains it. Several previous investigations have
demonstrated improvement in parsing results
due to the inclusion of parent phrase category
information (Charniak and Carroll, 1994; John-
son, 1998; Verdu-Mas et al., 2000).

Algorithm parameters: All results were av-
eraged over 5 runs differing only in random
selection of the training data set. In all ex-
periments, the variable algorithm parameters
were training data set size x = 50, beam width
b = b5, and size of current best set n = 5. In
the current implementation of the algorithm,
the search space is reduced further by avoid-
ing duplicate partitions, and by only consider-
ing merges of nonterminals that have the same
phrase prefix NP-, VP- etc.

3.2 Full Parsing

The full parsing results achieved by Partition
Search are compared with existing results in the
table below. The first result shown is that ob-
tained with grammar BARE, i.e. the unmodified
treebank grammar extracted with the method
described above. The next two results are
for two other nonlexicalised treebank methods
(Charniak, 1996; Krotov et al., 2000), and the
last two are for the best existing lexicalised re-
sults (Charniak, 2000; Collins, 2000). The re-
sults highlighted in boldface font are the best
individual runs of Partition Search (Ps) for Sec-
tions 1 and 20 of WsJC respectively (both ob-
tained with grammar PN). Results in brackets
are the unlabelled F-Score equivalents (Charniak
does not provide labelled results).

Max Result type Tter. Eval. | F-Score Grammar F-Score
Grammar (subset) Rules | NTs | SO0L | S20
BARE Max Grammar result — — — || 10,118 147 | 74.09 | 73.49
Average 90.2 | 2,000.8 83.43 || 9,288.4 | 59.8 | 74.05 | 73.59
Best size and F-score S 01 114 2,686 86.04 8,409 35 | T4.54 73.6
Best F-score S 20 94 2,174 85.12 9,476 55 | 74.07 | 73.82
PN Max Grammar result — — — || 16,480 970 77.8 | T7.57
Average 426.8 | 10,559.4 87.87 || 15,850 | 545.2 | 77.87 | T7.24
Best size 656 16,335 91.38 || 15,403 316 | 7781 | T7.14
Best F-score S 01 625 15,554 89.44 | 15,608 347 | 78.01 | 7741
Best F-score S 20 145 3,329 86.67 || 16,338 827 | 78.00 | 77.46

Table 1: Partition Search results for full parsing task.

Full parsing]

Grammar BARE (S 1/20) 74.09/73.49
Nonlex.: Krotov et al. (2000) (79.12) 76.09
Charniak (1996) (79.59) — —

Best S 1 PS result (PN)

Best S 20 PS result (PN)

Lexicalised: Charniak (2000)
Collins (2000)

(80.54) 78.01
(79.99) 77.46
— —90.10
— —90.25

The different results are not completely com-
parable, because the earlier results were ob-
tained training on WSJC Sections 2-21 and test-
ing on Section 23, but given that only 3 sections
were used for training in Partition Search, that
the earlier results leave out partially parsed sen-
tences, and given that the wsJC is a very homo-
geneous corpus, the comparison is at least fair
to the earlier results.

The huge improvements in parsing accuracy
due to lexicalisation are well known, so it is not
surprising that Partition Search using an unlex-
icalised Max Grammar does not get near the
best lexicalised results. The main comparison
is with the other two nonlexicalised results and
there Partition Seach does considerably better.

Table 1 shows the complete set of results for
the full parsing experiments. The first column
shows the Max Grammar used in a given batch
of experiments. The second column indicates
the type of result, where the Max Grammar re-
sult is grammar size, performance and F-Scores
of the Max Grammar itself, and the remaining
results are the average and single best results for
size and F-Scores achieved by Partition Search.
The third and fourth columns show the number
of iterations and evaluations carried out during
search. Columns 5-9 show details of the final
solution grammars: column 5 shows the evalu-

ation score on the training data, column 6 the
number of rules, column 7 the number of nonter-
minals, and columns 8 and 9 the overall F-Score
on Sections 1 and 20 respectively.

The best result for Section 1 (78.01) repre-
sents a 5.2% increase over base grammar BARE,
that for Section 20 (77.46) a 5.4% increase.

Results for Section 20 are slightly worse than
for Section 1, and the same is true for all other
grammar/task combinations, here and below.

3.3 NP identification

For the remaining parsing tasks, the existing
results use Section 20 as a testing set. For NP
identification, the base grammar BARF achieves
an F-Score of 78.996 on this section, and Parti-
tion Search improves this to 80.89.

The following table shows how these results
compare with existing results, all of which are
reported in Nerbonne et al. (2001, p. 103).

| | Np identification]

Chunk Tag Baseline 67.56
Grammar BARE (S 20) 78.996
Current best nonlexicalised 80.15
Best S 20 PS result (PN) 80.89
Current best lexicalised 83.79

The chunk tag baseline F-Score is obtained by
tagging each POS tag in a sentence with its most
frequent chunk tag, which is a standard baseline
for tasks like this one'!. The best lexicalised
result was achieved with a cascade of memory-
based learners. The nonlexicalised result was
for a treebank grammar with LSC. The best

" Chunk tags may correspond to e.g. the begin-
ning/end/inside/outside of an NP.

Max Result type Tter. Eval. | F-Score Grammar F-Score
Grammar (subset) Rules [NTs S01] S20
BARFE Max Grammar result — — — 10,118 147 | 79.29 | 78.996
Average 1114 | 2,629 87.83 8,655 | 37.6 | 79.10 | 78.14
Best size 113 | 2,679 86.14 8,374 36 | 78.90 | 78.06
Best F-score S 01 114 | 2,694 90.25 8,041 41 | 79.51 | 78.16
Best F-score S 20 114 | 2,667 86.88 8,627 35| 79.08 | 78.29
PN Max Grammar result — — — 16,480 970 | 82.01 | 81.31
Average 852.6 | 21,051 91.21 || 13,202.8 | 1194 | 81.41 80.33
Best size 909 | 22,474 91.88 12,513 63 | 80.98 | 80.22
Best F-scores 658 | 16,286 89.57 15,305 314 | 82.05 | 80.89
Table 2: Partition Search results for NP identification task.
Max Result type Tter. Eval. | F-Score Grammar F-Score
Grammar (subset) Rules | NTs S01I] S20
BARE Max Grammar result — — — 10,118 147 | 88.11 | 87.82
Average 114.8 2701.4 89.40 7,925.6 34.2 | 88.66 88.2
Best size 120 2,791 89.36 6,951 29 | 88.68 | 88.13
Best F-score S 01 115 2,681 85.96 7,679 34 | 88.75 | 88.25
Best F-score S 20 112 2,672 88.34 8,447 37 88.7 88.3
PN Max Grammar result — — — 16,480 970 | 89.11 | 88.52
Average 674.25 | 16,413.5 94.3 || 14,420.5 | 297.75 | 88.96 | 88.34
Best size 902 22,363 96.150 12,874 70 | 89.06 88.4
Best F-scores 679 16,905 95.113 14,895 293 | 89.23 | 88.69

Table 3: Partition Search results for XP chunking task.

Partition Search result for this task also lags
behind the best lexicalised result, although by
a much smaller margin than for the full parsing
task above.

Table 2 (same format as Table 1) contains
the complete set of results for Partition Search
and the NP identification task. Here the rele-
vant comparison is between the base grammar
BARFE and the best grammars learned by Par-
tition Search. The best result (boldface) was
an F-Score of 82.05% for Section 1 (base result
was 79.29%), although it was accompanied by
an increase in the number of rules from 10,118
to 15,305. This improves grammar BARE by
3.48%.

3.4 XP chunking

Base grammar BARE gets an F-Score of 87.82
on Section 20 for the XP chunking task, com-
pared to the best Partition Search result of
88.69. The table below compares these results
to existing results (again, all for Section 20).
The best nonlexicalised result was again for an
LsC grammar (Nerbonne et al., 2001, p. 103).

The best lexicalised result is for Support Vector
Machines (Kudoh and Matsumoto, 2000).

| | XP chunking]

Chunk Tag Baseline 77.07
Grammar BARE (S 20) 87.82
Current best nonlexicalised 88.07
Best S 20 PS result (PN) 88.52
Current best lexicalised 93.48

Table 3 contains the complete set of results.
The best result (boldface) was an F-Score of
89.23 (base result was 88.11), although this was
accompanied by an increase in the number of
rules from 10,118 to 14,895. This corresponds
to a 1.27% increase over grammar BARE.

3.5 NP chunking

Base grammar BARE achieves an F-Score of
87.26 on the NP chunking task and Section 20,
and the best Partition Search result for Sec-
tion 20 was 88.83. The best nonlexicalised re-
sult was achieved with the decision-tree learner
C5.0 (Tjong Kim Sang et al., 2000), and the
current overall best result for NP chunking is for

Max Result type Tter. Eval. | F-Score Grammar F-Score
Grammar (subset) Rules [NTs [SO01] S20
BARE Max Grammar result — — — 10,118 | 147 | 88.25 | 87.26
Average 116.8 | 2,749.6 89.64 7,849.6 | 32.2 | 88.57 | 87.51
Best size 119 2,806 89.79 7,541 30 | 88.51 87.6
Best F-score S 01 114 2,674 87.93 7,777 35 | 88.70 | 87.59
Best F-score S 20 116 2,729 93.92 8,071 33 | 88.69 | 87.60
PN Max Grammar result — — — 16,480 | 970 | 89.86 | 88.68
Average 526 | 13,007.8 94.85 || 14,538.3 | 446 | 89.83 | 88.67
Best size and F-scores 877 21,822 93.85 11,972 95 | 90.24 | 88.83

Table 4: Partition Search results for NP chunking task.

memory-based learning and a lexicalised chun-
ker (Tjong Kim Sang et al., 2000)!2.

| | NP chunking |

Chunk Tag Baseline 79.99
Grammar BARE (S 20) 87.26
Best S 20 PS result (PN) 88.83
Current Best: nonlexicalised 90.12
lexicalised 93.25 (93.86)

Table 4 shows the complete set of results. The
best result (boldface) was an F-Score of 90.24
(compared to the base result of 88.25), while
the number of rules increased from 10,118 to
11,972. This result improves the performance
of grammar BARE by 2.2%.

4 Comments and Further Research

Partition Search is able to reduce grammar
size by merging groups of nonterminals (hence
groups of rules) that do not need to be distin-
guished for a given parsing task. It is able to
improve parsing performance firstly by chang-
ing parse probabilities (the most likely parse for
a sentence under a learned grammar can differ
from its most likely parse under the base gram-
mar), and secondly by grammar generalisation
(learned grammars parse a superset of the sen-
tences parsed by the base grammar).

The margins of improvement over baseline
results were biggest for full parsing and NP
identification. Partition Search improved the
Max Grammar performance most reliably for
NP chunking (grammars BARE and PN), and
XP chunking (BARE). It seems particularly dif-
ficult to remove significant amounts of parent

?Nerbonne et al. (2001) report a slightly better result
of 93.86 achieved by combining seven different learning
systems.

phrase category information without loss of per-
formance for the NP identification task, where
only one run of Partition Search succeeded in
improving the PN Max Grammar result. The
only parsing task for which Partition Search re-
sults do not outperform the best existing non-
lexicalised results is NP chunking. This implies
that parent category information and deeper
structural analysis (the distinguishing features
of this approach) are not as useful for this task.

The results presented in the previous section
also show what happens if Partition Search is
used as a grammar compression method (when
existing grammars are used as Max Grammars).
For example, in Table 4, when directly applied
to the base grammar BARE (top half of table),
in the best run for size it reduces the number
of nonterminals from 147 to 30 and the number
of rules from 10, 118 to 7,541, while improving
the overall F-Score. The size reductions on the
PN base grammar are even bigger: 970 nonter-
minals down to 95, and 16,480 rules down to
11,972, again with a slight improvement in the
F-Score (although on average, the F-Score re-
mained about the same). Unlike other grammar
compression methods (Charniak, 1996; Krotov
et al., 2000), Partition Search achieves lossless
compression, in the sense that the compressed
grammars are guaranteed to parse all of the sen-
tences parsed by the original grammar.

Grammars incorporating parent phrase cat-
egory information outperform grammars with-
out such information on all parsing tasks. The
difference is biggest for the full parsing task
where it typically represents an improvement of
around 5%. For grammars BARE and PN (the
only difference between which is parent phrase
category information), the difference is 5.01%

and 5.55% for Sections 1 and 20 respectively.

Compared to other approaches using parent
phrase category information, the approach pre-
sented here has the advantage of being able to
select a subset of all parent phrase category in-
formation on the basis of its usefulness for a
given parsing task. This saves on grammar com-
plexity, hence parsing cost.

Further research will look at additionally
incorporating lexicalisation, search techniques
other than beam search, and optimising the
variable parameter combination of the Parti-
tion Search algorithm. In a related project, less
supervised ways of using Partition Search for
grammar learning will be investigated.

5 Acknowledgements

The research reported in this paper was in part
funded under the European Union’s TMR pro-
gramme (Grant No. ERBFMRXCT980237).

References

S. Abney. 1991. Parsing by chunks. In
R. Berwick, S. Abney, and C. Tenny, edi-
tors, Principle- Based Parsing, pages 257—-278.
Kluwer Academic Publishers, Boston.

A. Belz. 2001. Optimising corpus-derived prob-
abilistic grammars. In Proceedings of Corpus
Linguistics 2001, pages 46-57.

A. Belz. 2002. PCFG learning by nonterminal
partition search. In Proceedings of ICGI 2002
(to appear).

E. Charniak and G. Carroll. 1994. Context-
sensitive statistics for improved grammatical
language models. Technical Report CS-94-
07, Department of Computer Science, Brown
University.

E. Charniak. 1996. Tree-bank grammars. Tech-
nical Report CS-96-02, Department of Com-
puter Science, Brown University.

E. Charniak. 2000. A maximum-entropy-
ingpired parser. In Proceedings of NAACL-
2000, pages 132-139.

M. Collins. 2000. Discriminative reranking for
natural language parsing. In Proceedings of
ICML 2000.

M. Johnson. 1998. PCFG models of linguistic
tree representations. Computational Linguis-
tics, 24(4):613-632.

A. J. Korenjak. 1969. A practical method for

constructing LR(k) processors. Communica-
tions of the ACM, 12(11).

A. Krotov, M. Hepple, R. Gaizauskas, and
Y. Wilks. 2000. Evaluating two methods for
treebank grammar compaction. Natural Lan-
guage Engineering, 5(4):377-394.

T. Kudoh and Y. Matsumoto. 2000. Use of
support vector learning for chunk identifi-
cation. In Proceedings of CoNLL-2000 and
LLL-2000, pages 142-144.

J. Nerbonne, A. Belz, N. Cancedda, H. Déjean,
J. Hammerton, R. Koeling, S. Konstantopou-
los, M. Osborne, F. Thollard, and E. Tjong
Kim Sang. 2001. Learning computational
grammars. In Proceedings of CoNLL 2001,
pages 97-104.

H. Schmid and S. Schulte Im Walde. 2000. Ro-
bust German noun chunking with a proba-
bilistic context-free grammar. In Proceedings
of COLING 2000, pages 726-732.

H. Schmid. 2000. LoPar: Design and im-
plementation. Bericht des Sonderforschungs-
bereiches “Sprachtheoretische Grundlagen
fur die Computerlinguistik” 149, Institute
for Computational Linguistics, University of
Stuttgart.

E. Tjong Kim Sang and S. Buchholz. 2000. In-
troduction to the CoNLL-2000 shared task:
Chunking. In Proceedings of CoNLL-2000
and LLL-2000, pages 127-132.

E. Tjong Kim Sang, W. Daelemans, H. Déjean,
R. Koeling, Y. Krymolowski, V. Punyakanok,
and D. Roth. 2000. Applying system combi-
nation to base noun phrase identification. In
Proceedings of COLING 2000, pages 857—-863.

J. Luis Verdi-Mas, J. Calera-Rubio, and R. C.
Carrasco. 2000. A comparison of PCFG
models. In Proceedings of CoNLL-2000 and
LLL-2000, pages 123-125.

F. L. Weng and A. Stolcke. 1995. Partition-
ing grammars and composing parsers. In Pro-
ceedings of the 4th International Workshop on
Parsing Technologies.

	Table of Content
	Topics
	Authors

