An Inference-based Approach to Dialogue System Design

Johan Bos and Tetsushi Oka
Institute for Communicating and Collaborative Systems
Division of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, Scotland, UK
{Johan.Bos,Tetsushi.Oka}@ed.ac.uk

Abstract

We present an architecture for spoken dialogue
systems where first-order inference (both theo-
rem proving and model building) plays a crucial
role in interpreting utterances of dialogue par-
ticipants and deciding how the system should
respond and carry out instructions. The di-
alogue itself is represented as a DRS which
is translated into first-order logic for inference
tasks. The system is implemented as a society
of OAA-agents, and evaluated against a specific
application (home automation).

1 Introduction

This paper presents an inference-based ap-
proach to human-computer dialogue under-
standing in both its theoretical form and its
practical implementation. In this framework,
contributions of the dialogue participants are
recorded in a semantic representation, and logi-
cal inferences are drawn to manage the direction
of the dialogue from the system’s point of view:
when to perform which action, how to answer
a question, and whether to show agreement or
disagreement towards the user’s contribution.
This paper specifically addresses the interpre-
tation of instructions commanded by dialogue
participants.

The key problem in dialogue management is
to make sense of vocal contributions of other
dialogue participants and to generate a suit-
able reaction. The role of inference to play
here is in the first place distinguishing con-
sistent from inconsistent states of affairs. In
the inference-based approach to dialogue under-
standing the aim is to find a consistent semantic
representation capturing the meaning of the di-
alogue. If a consistent interpretation cannot be
found, we have got a signal that something is
going wrong in communication. Such a situa-

tion might arise from disagreement or misun-
derstanding between dialogue participants.

But the use of inference goes further than just
triggering disagreements. It contributes to am-
biguity resolution (for instance the resolution of
pronouns and other anaphoric expressions) and
helps finding preferred interpretations. More-
over, with the help of model building, inference
can be used for performing actions and answer-
ing questions, too. We argue that, with the help
of inference tools, it is possible to design a dia-
logue system that is more easily portable to new
domains than existing dialogue systems, which
core is based on a semantically-driven, domain
independent dialogue move engine.

What kind of logical representations are suit-
able for this task and what kind of inference
rules should we use? There are two require-
ments to build a prototype dialogue system.
Firstly, the representation language should have
a level of expressiveness capable of capturing a
substantial amount of natural language’s mean-
ing. Secondly, because we aim to implement a
genuine inference component, the logic of choice
should be supported by an arsenal of inference
engines that provide enough capacity to imple-
ment interesting dialogue behaviour. These re-
quirements balance each other out: on the one
hand we want to have a rich representation lan-
guage, but on the other hand we want infer-
ence tools that perform their tasks in reasonable
time. We believe that first-order logic fulfills
this task as the best of these worlds.

First-order logic is certainly strong enough
to capture many interesting natural language
phenomena (and is able to give useful approx-
imations of phenomena that require higher-
order descriptions). For instance, the formal-
ism that we are adopting, Discourse Represen-
tation Theory (DRT, Kamp and Reyle (1993)),

deals with context-sensitive phenomena, and of-
fers a translation from Discourse Representa-
tion Structures (DRSs) to first-order formulas.
Moreover, nowadays there are many out-of-the-
box inference tools available for first-order logic
(theorem provers and model builders have seen
an enormous increase in performance during the
last decades). We will use automated theo-
rem provers to check for potential inconsisten-
cies arising in the dialogue. Simultaneously, we
will use automated model builders that generate
first-order models and thereby show consistency
of the dialogue.

Especially the use of model builders is of im-
portance in our inference-based approach to di-
alogue analysis. Model builders (for first-order
logic) have pleasant properties for semantic pro-
cessing: they offer a positive handle on the sat-
isfiability problem (theorem provers offer a neg-
ative handle by trying to find a counter-proof),
and they are able to construct finite minimal
first-order models for a theory. The representa-
tions of these models contain no recursion and
therefore are extremely easy to process. Hence,
they are much more convenient to use for dia-
logue management than the logical representa-
tions that gave rise to these models.

Model building approaches for text under-
standing are proposed by Gardent and Konrad
(2000) and Ramsay and Seville (2000). The ap-
proach in this paper differs from these in the fact
that we actually use these models to carry out
concrete actions in dialogue. In our view, mod-
els are not just formal objects—they are objects
with fantastic practical implications.

This paper introduces an inference-based
framework for dialogue system design (focus-
ing on instructive dialogues) and is organised
as follows. Section 2 formulates an extension
of DRT that covers a wide variety of dialogue
phenomena and offers a (modal) translation to
first-order logic. The interpretation of this DRS
language is given in Section 3. We present
the inference-based approach for dialogue sys-
tem design in Section 4, where we show the use
of inference (both theorem proving and model
building) in dialogue management. Then, in
Section 5, we present an implementation of a
general dialogue system using state-of-the-art
theorem provers and model builders as part of
the inference component. Finally, in Sections 6

and 7, we evaluate the use of our framework
by using it for a specific application (home au-
tomation).

2 Representing Dialogue

We will use Discourse Representation Struc-
tures to represent the meaning of the dialogue
between user and system. There are three
reasons that motivate this choice of formal-
ism. First and foremost, DRT is a well under-
stood framework and covers a wide variety of
linguistic phenomena (Kamp and Reyle, 1993;
Van der Sandt, 1992). These phenomena in-
clude context-sensitive expressions such as pro-
nouns and presuppositions. To our knowledge,
there is no other semantic formalism that comes
close to the empirical coverage of DRT. Second,
there now exist computational implementations
that provide means to extend existing linguis-
tic grammars with DRS-construction tools, and
there are efficient algorithms available that im-
plement Van der Sandt’s presupposition pro-
jection algorithm for DRT (Blackburn et al.,
2001). Third, there is a direct link between
DRT and first-order logic—there is a transla-
tion from DRSs to formulas of first-order logic
that behaves linear on the size of the input.

DRT was initially designed to deal with texts,
so we will use an extension of standard DRT
that enables us to cope with certain dialogue
phenomena. This extension introduces first
of all actions into the DRS-language, but it
also covers up modal expressions and questions.
This extended DRS-language is interpreted by
a translation function from DRSs to first-order
logic that covers these extensions as well.

Let us first look at the DRS language itself.
Basic DRSs have two components: a set of dis-
course referents, and a set of conditions upon
those referents. Discourse referents stand for
objects mentioned in the course of the dialogue.
Conditions constrain the interpretation of these
discourse referents. More formally, DRSs and
merge of DRSs are defined in the usual way:

Syntax of DRSs

1. If {x1,...,xn} is a set of discourse ref-
erents, and {v,...,Ym} is a set of
DRS-conditions, then the ordered pair

{x1y-- %}, {71,---,Tm}) is a DRS;
2. If By and By are DRSs, then so is (B1;Bz2).

In order to deal with imperatives in dia-
logue, we extend the DRS language with ac-
tion terms following Lascarides (2001). Atomic
action terms are identified by the d-operator.
Actions can be of composite nature. Com-
plex action-terms are composed out of other ac-
tion terms by either “” (sequence) or “|” (free

choice).

Syntax of DRS-action-terms:
1. If B is a DRS, then 6B is a DRS-action-term;

2. If A; and A, are DRS-action-terms, then so are
(Al;Ag) and (A1|A2)

The DRS-conditions (see below) subsume
those of standard DRT. Further we have the
modal operators O and < (clauses 3 and 6). Hy-
brid DRS-conditions formed by discourse refer-
ents and DRSs (clause 5). Clause 6 describes
necessary and possible effects of actions, and
clause 7 introduces DRS-conditions that de-
scribe actions that are commanded.

Syntax of DRS-conditions:

1. If R is a relation symbol for an n-place
predicate and x;...x, are discourse referents
then R(x1,...,X,) is a DRS-condition;

2. If x; and x5 are discourse referents, then x; =
X5 is a DRS-condition;

3. If B is a DRS, then —B, OB, ¢B, 7B are
DRS-conditions;

4. If B; and B,y are DRSS, then By V B2, B1 =
B2, B17Bs are DRS-conditions;

5. If x is a discourse referent and B a DRS, then
x:B is a DRS-condition;

6. If A is a DRS-action-term, and B a DRS, then
[A]B and (A)B are DRS-conditions;

7. If A is a DRS-action-term then 'A is a DRS-
condition.

Because hybrid DRS-conditions (clause 5) are
non-standard, they deserve some extra atten-
tion. The domain D of interpretation is sorted,
consisting of D; (the individuals) and D,, (the
possible worlds). Depending on their sort, dis-
course referents either denote individuals or
possible worlds. So, what a DRS-condition of
the form x:B effectively does is explicitly pick-
ing out a possible world, stating that the infor-
mation expressed by the DRS B holds in the
world denoted by x. An example DRS is shown
in Figure 1.

sax
system(s)
kitchen(x)
et
1§ Y switch(e,s,t)
light(y) | =
in(y,x) t: on(y)

Figure 1: Example DRS paraphrasing the ut-
terance “Switch every light in the kitchen on”.

3 Interpreting Instructions

The translation to first-order covering our ex-
tended DRS-language is based on the relational
translation for modal logic to first-order for-
mulas (Moore, 1980). It is essentially similar
to the standard translation from DRT to first-
order logic (Kamp and Reyle, 1993), extended
with Moore’s rules to deal with the modal op-
erators. DRS-action-terms are translated into
three-place relations where the first argument
denotes the current state, the second argument
describes the actions, and the third argument
denotes the resulting state. (Due to space re-
strictions we won’t give a formal definition of
the translation function here.) The example
in Figure 1 would be translated into first-order
logic as follows:
dwIsdadx (possible_world(w) A system(w,s) A
kitchen(w,x) A 3vda (action(w,a,v) A Vy (light(a,y)
A in(a,y,x) — Jedt (switch(w,e,s,t) A on(t,y)))))
Note that the translation increases the arity
of all predicates symbols with one, where the
additional argument position denotes a possi-
ble world. In a situation with one kitchen with
two lights a (minimal) model satisfying this for-
mula (and further background knowledge in the
form of meaning postulates describing the pre-
conditions and effects of switching on devices)
could contain the following information:

D={d1,d2,d3,d4,d5,d6,d7,d8}
F(possible_world)={d1,d2,d3}
F(system)={(d1,d4),(d2,d4),(d3,d4)}
F(kitchen)={(d1,d5), (d2,d5),(d3,d5)}
F(action)={(d1,d2,d3)}
F(light)={(d1,d6), (d2,d6),(d3,d6),
(d1,d7),(d2,d7), (d3,d7)}
F(in)={(d1,d6,d5), (d2,d6,d5), (d3,d6,d5),
(d1,d7,d5) ,(d2,d7,d5),(d3,d7,d5) }

F (poweron={(d2,d6),(d2,d7)}
F(off)={(d1,d6),(d1,d7)}
F(on)={(d3,d6),(d3,d7)}

The nature of concrete models as produced
by model builders makes them preferable to the
original description in “formula” syntax for sev-
eral dialogue management tasks. Since models
are essentially flat structures without recursion,
they are easy to process. For instance, all quan-
tification and boolean structures are explicit in
models. This makes models ideal to function
as a database-lookup table to find out whether
there are actions to be performed by the system.
In the example model above, for instance, a pos-
sible action is to supply power to the devices 46
and 47.

4 The Update Algorithm

In the inference-based framework of dialogue
processing we present here, we assume that con-
tributions of the user are processed as semantic
representations in the form of DRSs (see Sec-
tion 2). We also assume a translation function
from DRSs to first-order logic, and a theorem
prover and model builder for first-order logic.
Given this, we propose the algorithm shown in
Figure 2 for utterance interpretation and move
planning.

The contributions of the user are interpreted
with respect to the previous context. Due to
ambiguities appearing in natural language, this
will result in a set of DRSs (Step 1). To make
the interpretation of the dialogue sensitive to
context, also a DRS of the extra-dialogic con-
text is available (Step 2). The aim of the algo-
rithm is to find a set of interpretations. There-
fore, we start with the empty set (Step 3) and
attempt to find consistent interpretations for
each of the DRSs (Step 4). The theorem prover
and model builder work in a complementary
way. As soon as a proof is found the model
builder does not need to further attempt to find
a model because it will never succeed in doing
so. However, if a model is found, the theorem
prover can stop its attempt to find a proof, be-
cause it will never be able to do so. Finally, the
system is instructed on how to react on the set
of interpretations found (Step 5 and 6).

Note that this algorithm deals directly with
declarative and imperative forms of utterances.
Both declaratives and imperatives will be either

1. Construct a (finite) set of DRSs B for a new
utterance with respect to the previous DRS
Boia;

2. Construct a DRS C representing the extra-
linguistic context;

3. Initialise the set of interpretations T to (;

4. For each B; € B:

(a) Translate the compound DRS (B;;C) to
the first-order representation ¢;;

(b) Compute appropriate background knowl-
edge stated as the first-order theory 6; for
¢’i;

(c) Attempt to build a model for (6; A ¢;) by
simultaneously performing:

i. Give (0; \¢;) to a model builder, possi-
bly resulting in a model M;; (for con-
sistent interpretations).

i. Give =(6; N\ ¢;) to a theorem prover,
possible resulting in a proof (for incon-
sistent interpretations);

(d) If a proof is found cancel 4(c)i. If a model
is found add (B;, M;) to T and cancel
4(c)ii;

5. If T = 0 perform a misunderstanding act and
quit. FElse perform an understanding act and
select a preferred interpretation (By, Mp) from
Z;

6. Use the information in M, to decide whether
to perform any actions. Replace Byq by Bp.

Figure 2: Update Algorithm for inference-based
dialogue management.

acknowledged (by an understanding act) or re-
fused (by means of a misunderstanding act).

5 Implementation

The inference-based dialogue system as pro-
posed in this paper is implemented as a collec-
tion of agents within version 2.1.0 of the Open
Agent Architecture, OAA (Cheyer and Martin,
2001). OAA is a piece of middleware support-
ing C++, Java, Lisp and Prolog, which en-
ables one to put components together as a work-
ing dialogue system in a prototyping environ-
ment, where agents can run on different ma-
chines. Agents (roughly corresponding to the
different components) communicate via solv-
ables, specific queries that can be solved by cer-
tain agents. Although the agents are connected
to one central facilitator, in the inference-based
dialogue system there is a separate functional
hierarchy governing them. Figure 3 illustrates

DIALOGUE SYSTEM Inference |

DME . Tools :
. USER | | ———upR DRS | |
g ~-r| ASR | = | RES E| INF i
' ! ode |
: @ | — |
| T < > !
R | SYN Sable ﬂl IS HIS -

A Y

¥ <>HEYU| | FoL

/TN ey

APPLICATION |

Figure 3: Architectural overview of the inference-based dialogue system. Boxes represent OAA-
agents (see Section 5). The application shown here is dialogue in home automation (see Section 6).

these dependencies, and shows what kind of
messages are used as interfaces between them
and in what order they are sent between com-
ponents. We will now describe each of these
agents in more detail.

The ASR agent (Automated Speech Recog-
nition) is implemented as the off-the-shelf
(speaker independent) Nuance 7.0 speech recog-
niser (see http://www.nuance.com). The Nu-
ance recogniser requires an application specific
GSL grammar which is compiled from a linguis-
tic unification grammar and includes seman-
tic representations (Bos, 2002). This means
that the output of the ASR agent is actu-
ally a semantic representation, more specifi-
cally it is an underspecified discourse represen-
tation (UDR). UDRs are proto-DRSs with still
unresolved information (anaphora and scope).
The SYN agent, implemented as the Festival
synthesiser (see http://www.cstr.ed.ac.uk/
projects/festival/), synthesises utterances
coded in SABLE format (an XML standard for
speech synthesis markup).

The DME, the dialogue move engine based
on the information-state approach to dialogue
management (Traum et al., 1999), updates the
information state with respect to new utter-
ances (from the user) and decides the next
move of the system. The information state
(IS), stored in the dialogue history HIS, is fairly

straightforwardly structured, and comprising a
record structure consisting of a stack of ‘last-
moves’ and an ordered list of pairs of DRSs and
models. Dialogue updates are carried out in a
rule-based fashion, where the effects of update
rules are applied to the information state if their
pre-conditions hold. One of the update rules
consults the resolution component RES to per-
form contextual resolution (resolving ambigui-
ties arising from anaphoric expressions or scope
bearing operators), mapping the UDR (stored
in ‘last-moves’) into pairs of DRSs and models.
Other update rules use the GEN component to
generate utterances from the DRS, or generate
actions from the model.

Finally, the INF agent is a mediator for in-
ference facilities, using both theorem provers
(controlled by the TP agent) and model builders
(controlled by the MB agent) to find either mod-
els or counter-proofs. It collects incoming calls
(DRSs), starts TP and MB agents, waits for the
first result, and kills inference jobs that are
doomed to fail or not anymore required. The
TP agent takes the DRS, translates it into a
first-order logic formula, consults the knowledge
base for supporting background knowledge, and
attempts to prove the negation of the result-
ing formula by giving it to the theorem prover
SPASS (see http://spass.mpi-sb.mpg.de/).
The MB agent, on the other hand, tries to

generate a model for the translated DRS and
background knowledge, using the model builder
MACE (see http://www-unix.mcs.anl.gov/
AR/mace/).

6 Example Application

To apply our inference-driven spoken dialogue
prototype system to a specific scenario, we set
up a home machine environment where people
can talk to voiced-controlled domestic devices.
The scenario we envisaged comprised a ‘smart
room’ with three lights (referred to as red, blue,
and black respectively) and a radio, that can
be controlled over the standard power-net us-
ing X-10 technology (see www.x10.com). Users
are able to control these devices by spoken com-
mands such as turn the red light on, turn it off,
switch on all devices, turn off all devices except
the radio, turn on the red or blue light, turn off
another light, and so on, and the system re-
acts with a response that either expresses under-
standing (for consistent instructions) or signals
contradiction (for inconsistent instructions), fol-
lowed by a performance of the action(s) that
were requested.

To illustrate the system and the use of in-
ference with an example, assume the user com-
mands “turn on a light”. The ASR will produce
an unresolved discourse representation (UDR)
and give that to the DME. The DME will re-
solve the UDR with respect to the DRS of the
previous dialogue. This will give a set of ranked
potential DRSs. Further a DRS containing the
current situation of the home is created (assume
for the sake of the example that the red light is
turned on, and all other devices are switched
off). The models generated on the basis of this
information (the DRS of the dialogue combined
with the DRS of the current situation) will con-
tain a ‘power-on’ action for either the blue or
black light with respect to the actual world. So
for this example, model building naturally con-
nects the use of the indefinite “a light” with an
object that meets that description and its pre-
condition of the command.

7 Evaluation

The issues that were addressed in evaluation
were: (1) adaptability—how difficult is it to
plug a new application in the core dialogue sys-
tem? (2) portability—what kind of additional

knowledge is required? (3) scalability—how well
do general purpose theorem provers and model
builders for first-order logic perform in real ap-
plications? We will address these issues one by
one in the remainder of this section.

Adaptability To adapt the core dialogue
system (Section 5) to the devices in the
‘smart room’ we used HEYU software (see
heyu.tanj.com. This allowed us to create an
OAA agent that was able to control the de-
vices with simple power commands (for instance
turn on a3 switches on the device plugged in
socket a3) and to return the current situation
of all used devices (i.e., whether they are on or
off). In order for the dialogue system to know
what kind of devices are plugged into the X-10
sockets, the HEYU agent (see Figure 3) reads an
XML encoded configuration file that specifies
the devices that are used and links a meaning
description (in the form of a DRS) to each de-
vice (Figure 4). This functionality enables the
INF agent to request information on the current
situation (the devices in the network and their
status), and combine it straightforwardly with
the DRS capturing the meaning of the dialogue.
Hence, all inferences that are carried out take
the current situation into account.

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE heyu_config SYSTEM "heyu_config.dtd">
<heyu>

<use device="al"/> <use device="a2"/>

<use device="a3"/> <use device="a4"/>
<label device="al">

lambda(P,merge(drs([X], [black(X),light(X)]),apply(P,X)))

</label>

<label device="a2">

lambda(P,merge(drs([X], [red(X),light(X)]),apply(P,X)))
</label>

<label device="a3">

lambda(P,merge (drs([X], [blue(X),light(X)]),apply(P,X)))
</label>

<label device="a4">

lambda(P,merge(drs([X], [radio(X)]),apply(P,X)))
</label>

</heyu>

Figure 4: X-10 Configuration file for HEYU
agent, labelling devices with DRS descriptions.

Portability Tuning our dialogue system to
this new domain required only adaptations in
the lexicon and knowledge base. First of all,
lexical entries had to be selected to produce
a new GSL grammar for the ASR agent. No
changes to the grammar were needed because
the GSL compiler we use employs a general

domain-independent linguistic grammar. Next,
the semantic descriptions of the new lexical en-
tries had to be linked up to the core ontological
database that is used to compile out background
knowledge for the inferences tasks. Finally, and
this is the most challenging task, domain spe-
cific axioms about actions and state changes
had to be specified in first-order logic and sup-
plied to the knowledge base (e.g. that “turning
a device on” and “switching a device on” are
kinds of “power-on” action, that a power-on ac-
tion requires the devices to be off in the cur-
rent state and causes them to be on in the re-
sulting state, plus “frame-problem” related ax-
ioms: that power-on relations do not change the
colour of devices, and so on).

Scalability The last evaluation issue—
scalability with respect to inference—is partly
an empirical issue, because there is little known
about performances of general purpose theorem
provers (originally designed for mathematical
problems) applied to linguistic problems.
Performances depend of course on the nature
and amount of background knowledge and
on the formulation of the actual problem. It
should come as no surprise that unrestricted
theorem proving and model building fails for
large dialogues, but for small dialogues (a few
utterances) in a small domain there is a reason-
able real-time performance—even though using
state-of-the-art inference engines (SPASS and
MACE) finding proofs and generating models
can take up several seconds.

To conclude, there are three main reasons for
first-order theorem proving and model building
to play a future role in dialogue systems. First
of all, automated theorem proving, and in par-
ticular the area of model generation, is a promis-
ing emerging field. Moreover, most of the first-
order inference engines, albeit general purpose
machines, are designed to cope with mathemat-
ical problems, and cooperation with researchers
in the area of automated deduction might im-
prove their performance on linguistic inference
problems. Secondly, the current approach is
non-incremental. After a new utterance is
combined with the previous DRS, the com-
plete newly constructed DRS is translated to
first-order logic and checked for consistency—
without appealing to previous inference results
at all. It is likely that inference-based dialogue

understanding would benefit from an incremen-
tal approach, in particular with regard to model
building. Thirdly, we believe that there is room
for improvement on the formulation of the infer-
ence problem itself. Future work should address
the use of sorted logics, include experimenting
with other modal formulations, and consider to
use discourse structure to limit the size of DRS
to be checked for consistency.

Acknowledgements

This work was funded by the EU 5th Frame-
work project D’Homme (Dialogues in the Home
Environment).

References

Patrick Blackburn, Johan Bos, Michael Kohlhase,
and Hans de Nivelle. 2001. Inference and Com-
putational Semantics. In Harry Bunt, Reinhard
Muskens, and Elias Thijsse, editors, Computing
Meaning, volume 2, pages 11-28. Kluwer.

Johan Bos. 2002. Compilation of unification gram-
mars with compositional semantics to speech
recognition packages. In Proceedings of Coling
2002, Taipei.

Adam Cheyer and David Martin. 2001. The
open agent architecture. Journal of Autonomous
Agents and Multi-Agent Systems, 4(1/2):143-148,
March.

Claire Gardent and Karsten Konrad. 2000. Inter-
preting definites using model generation. Journal
of Language and Computation, 1(2):193-209.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic; An Introduction to Modeltheoretic Se-
mantics of Natural Language, Formal Logic and
DRT. Kluwer, Dordrecht.

Alex Lascarides. 2001. Imperatives in Dialogue.
In Proceedings of the 5th International Workshop
on Formal Semantics and Pragmatics of Dialogue
(BI-DIALOG), pages 1-16, Bielefeld, Germany.

Robert C Moore. 1980. Reasoning about knowledge
and action. Technical Report 181, SRI Interna-
tional, California.

Allan Ramsay and Helen Seville. 2000. Models and
discourse models. Language and Computation,
1(2):167-181.

David Traum, Johan Bos, Robin Cooper, Staffan
Larsson, Ian Lewin, Colin Matheson, and Mas-
simo Poesio. 1999. A model of dialogue moves
and information state revision. Technical Report
D2.1, Trindi (Task Oriented Instructional Dia-
logue), November.

Rob A. Van der Sandt. 1992. Presupposition Pro-
jection as Anaphora Resolution. Journal of Se-
mantics, 9:333-377.

	Table of Content
	Topics
	Authors

