Guaranteeing Parsing Termination of Unification Grammars

Efrat Jaeger and Nissim Francez
Department of Computer Science
Technion, Israel Institute of Technology
32000 Haifa, Israel

Abstract

Unification grammars are known to be Turing-
equivalent; given a grammar G and a word w, it is
undecidable whether w € L((G). In order to ensure
decidability, several constraints on grammars, com-
monly known as off-line parsability (OLP) were
suggested. The recognition problem is decidable for
grammars which satisfy OLP. An open question is
whether it is decidable if a given grammar satisfies
OLP. In this paper we investigate various definitions
of OLP, discuss their inter-relations and show that
some of them are undecidable.

1 Introduction

Context-free grammars are considered to lack the
expressive power needed for modelling natural lan-
guages. Unification grammars have originated as an
extension of context-free grammars, the basic idea
being to augment the context-free rules with fea-
ture structures (FSs) in order to express additional
information. Today, several variants of unification
grammars exist, some of which do not necessarily
assume an explicit context-free backbone.

The recognition problem (also known as the
membership problem), for a grammar ' and a string
w, is whether w € L(G'). The parsing problem, for
a grammar (and a string w, is to deliver all parse
trees that G induces on w, determining what struc-
tural descriptions are assigned by G to w. The rest
of this paper is concerned with recognition.

Unification grammars have the formal power of
Turing machines, thus the recognition problem for
them is undecidable. In order to ensure decidability
of the recognition problem, a constraint called off-
line parsability (OLP) was suggested. The recog-
nition problem is decidable for OLP grammars.
There exist several variants of OLP in the literature
(Pereira and Warren, 1983; Johnson, 1988; Haas,
1989; Torenvliet and Trautwein, 1995; Shieber,
1992; Wintner and Francez, 1999; Kuhn, 1999).

Shuly Wintner
Department of Computer Science
University of Haifa
31905 Haifa, Israel

Some variants of OLP were suggested without
recognizing the existence of all other variants. In
this paper we make a comparative analysis of the
different OLP variants for the first time. Some re-
searchers (Haas, 1989; Torenvliet and Trautwein,
1995) conjecture that some of the OLP variants are
undecidable (it is undecidable whether a grammar
satisfies the constraint), although none of them gives
any proof of it. There exist some variants of OLP
for which decidability holds, but these conditions
are too restrictive; there is a large class of non-OLP
grammars for which parsing termination is guaran-
teed. Our main contribution is to show proofs of
undecidability for three OLP definitions.

Section 2 defines the basic concepts of our for-
malism. Section 3 discusses the different OLP defi-
nitions. Section 4 gives an analysis of several OLP
definitions and the inter-relations among them. Sec-
tion 5 proves the undecidability of three of the OLP
conditions.

2 Preliminaries

The following definitions are based on Francez
and Wintner (In preperation) and Carpenter (1992).
Grammars are defined over a finite set FEATS of fea-
tures, a finite set ATOMS of atoms, and a finite set
CATS of categories. A multi-rooted feature struc-
ture (MRS) is a pair {Q,G) where G = (Q, 4, 0)
is a finite, directed, labelled graph consisting of
a set Q C NODES of nodes, a partial function,
§ : Q) x FEATS — @, specifying the arcs and a par-
tial function, 8 : ¢ — ATOMS, labelling the sinks,
and () is an ordered set of distinguished nodes in Q
called roots. (G is not necessarily connected, but the
union of all the nodes reachable from all the roots in
@ is required to yield exactly). The length of an
MRS is the number of its roots, |Q)|.

Meta-variables o, p range over MRSs, and
8,0,Q,Q over their constituents. If o0 = (Q,G)
is an MRS and ¢; is a root in () then ¢; naturally

induces an FS A; = (Q:, ¢, 9, 6;), where Q; is
the set of nodes reachable from g;, §; = 6|g, and
8 = d|g,. Thus ¢ can be viewed as an ordered
sequence (Ay, ..., A,) of (not necessarily disjoint)
FSs. We use the two views of MRSs interchange-
ably.

The sub-structure of 0 = (A4, ..., A,), induced
by the pair (7, j) and denoted o*7,is (A;, ..., A;).
Ifi > j,0"J =\ Ifi = j, ¢ is used for o',

An MRS ¢ = (Q,G) subsumes an MRS ¢’ =
(Q',G") (denoted by o C o) iff |Q] = |Q’| and
there exists a total function & : — Q' such
that for every root ¢; € Q,h(q) = g for ev-
ery ¢ € @ and f € FEATS, if d(q, f) | then
h(é(q, f)) = &'(h(q), f); and for every ¢ € @Q if
0(q)! then 6(q) = 0'(h(q)).

Skeletal grammars are a variant of unification
grammars which have an explicit context-free back-
bone/skeleton. These grammars can be viewed as
an extension of context-free grammars, where every
category is associated with an informative FS. An
extended category is a pair (A, ¢) where A is an FS
and ¢ € CATS.

Definition 2.1. A skeletal grammar (over FEATS,
ATOMS and CATS) is a tuple G = (R, L, A®) where
R is a finite set of rules, each of which is an MRS
of length n > 1 (with a designated first element, the
head of the rule), and a sequence of length n of cat-
egories; L is a lexicon, which associates with every
terminal a (over a fixed finite set 3 of terminals) a
finite set of extended categories L(a); A® is the start
symbol (an extended category).

A skeletal form is a pair (o, ¢), where o is an
MRS of length n and ¢'is a sequence of n categories
(c; € CATS for 1 <17 < m).

Definition 2.2 (Derivation). Let (o4,c4) and
(0B, CB) be forms such that o4 = (Aq,..., Ax)
and og = (Bi,...,Bp). (o4,ci) immedi-
ately derives (o, cB) iff there exist a skeletal rule
(p',cr) € R of length n and an MRS p, p' C p,
such that:

o M = k + n — 2).
o p’s head is some element i of 0 4: p' = gip-
e p’s body is a sub-structure of og: p*" =
Ui...i—}—n—? .
B)

o The firsti — 1 elements of 0 o and o g are iden-

c o3 lai-1_ _1.4-1.
tical: o =o0g ;

o The last k — i elements of 0 4 and o are iden-
i+l m—(k—it1)..m
A =0p

)

tical: o

e cp is obtained by replacing the i-th element of
¢4 by the body of ch.

The reflexive transitive closure of ‘—’ is denoted
‘5. A form (04,c4) derives (0B, cB) (denoted
(04,¢4) = (o, cB)) iff there exist MRSs d'y, a's
such that o4 C o'y, og C oy and (o'}, ch) =
(0B, CB)-

Definition 2.3 (Pre-terminals). Letr w =
ay--a, € X% PT,(j,k) is defined if
1 < 5 < k < n, in which case it is the skeletal

form, <<Aj7Aj+17"-7Ak>7<cj7cj+17'--70k>>
where (A;, C;) € L(a;) for j <i < k.
Definition 2.4 (Language). The lan-

guage of a skeletal grammar G s
LG) = {w € ¥ | w = a---a, and
(A% = ((A1,...,A.), (C1,...,C)) }, where

(A, Ci) € L(ag) forj < i< k.

Definition 2.5 (Derivation trees). (also known
as constituent structures, c-structure) Let G =
(R, L, A®%) be a skeletal grammar. A tree is a
derivation tree admitted by G iff:

o The root of the tree is the start symbol A®;

e The internal vertices are extended categories
(over the same features, atoms and categories
as the grammar G);

e The leaves are pre-terminals of length 1;

o If a vertex (A,c) has k descen-
dants, <B1, Cl>7 <B2, CQ>7 ceey <Bk, Ck>,
then ((A),(c)) immediately derives
((Bi,...,Br),{c1,...,ck)) with respect

to some rule {p, cR) € R.

Definition 2.6. A general unification grammar
(over FEATS and ATOMS) is a tuple G =
(R, L, A®) where R is a finite set of rules, each of
which is an MRS of length n > 1; L is a lexicon,
which associates with every terminal a a finite set
of FSs L(a); A® is the start symbol (an FS).

General unification grammar formalism do not
assume the existence of a context-free backbone.
Derivations, pre-terminals, languages and deriva-
tion trees for general unification grammars are de-
fined similarly to skeletal grammars, ignoring all
categories.

3 Off-line-parsability constraints

It is well known that unification based grammar
formalisms are Turing-equivalent in their genera-
tive capacity (Pereira and Warren, 1983; Johnson,
1988, 87-93); determining whether a given string
w is generated by a given grammar (' is equiva-
lent to deciding whether a Turing machine M halts
on an empty input, which is known to be undecid-
able. Therefore, the recognition problem is unde-
cidable in the general case. However, for gram-
mars that satisfy a certain restriction, called off-
line parsability constraint (OLP), decidability of the
recognition problem is guaranteed. In this section
we present some different variants of the OLP con-
straint suggested in the literature. Some of the
constraints (Pereira and Warren, 1983; Kaplan and
Bresnan, 1982; Johnson, 1988; Kuhn, 1999) apply
only to skeletal grammars since they use the term
category which is not well defined for general uni-
fication grammars. Others (Haas, 1989; Shieber,
1992; Torenvliet and Trautwein, 1995; Wintner and
Francez, 1999) are applicable to both skeletal and
general unification grammars.

Some of the constraints impose a restriction on
allowable derivation trees, but provide no explicit
definition of an OLP grammar. Such a definition
can be understood in (at least) two manners:

Definition 3.1 (OLP grammar).

1. A grammar G is OLP iff for every w € L(G)
every derivation tree for w satisfies the OLP
constraint.

2. A grammar G is OLP iff for every w € L(G)
there exists a derivation tree which satisfies the
OLP constraint.

We begin the discussion with OLP constraints for
skeletal grammars. One of the first definitions was
suggested by Pereira and Warren (1983). Their con-
straint was designed for DCGs (a skeletal unifica-
tion grammar formalism which assumes an explicit
context-free backbone) for guaranteeing termina-
tion of general proof procedures of definite clause
sets. Rephrased in terms of skeletal grammars, the
definition is as follows:

Definition 3.2 (Pereira and Warren’s OLP for
skeletal grammars (O L Ppyw)). A grammar is off-
line parsable iff its context-free skeleton is not in-
finitely ambiguous.

The context-free skeleton is obtained by ignoring
all FSs of the grammar rules and considering only
the categories. In Jaeger et al. (2002) we prove
that the depth of every derivation tree generated by
a grammar whose context-free skeleton is finitely
ambiguous is bounded by the number of syntactic
categories times the size of its yield, therefore the
recognition problem is decidable.

Kaplan and Bresnan (1982) suggested a linguis-
ticly motivated OLP constraint which refers to valid
derivations for the lexical functional grammar for-
malism (LFG), a skeletal grammar formalism. They
impose constraints on two kinds of €’s, optionality
and controlled €’s, but as these terms are not for-
mally defined, we use a variant of their constraint,
suggested by Johnson (1988, 95-97), eliminating all
€’s of any kind.

Definition 3.3 (Johnson’s OLP (O L Py)). A con-
stituent structure satisfies the off-line parsability
constraint iff it does not include a non-branching
dominance chain in which the same category ap-
pears twice and the empty string € does not appear
as a lexical form annotation of any (terminal) node.

This constraint bounds the depth of any OLP
derivation tree by a linear function of the size of its
yield, thus ensuring decidability of the recognition
problem.

Johnson’s definition is a restriction on allowable
c-structures rather than on the grammar itself. We
use definition 3.1 for OL Py grammars and refer
only to its second part since it is less restrictive.

The next definition is also based on Kaplan and
Bresnan’s constraint and is also dealing only with
OLP derivations. OLP grammar definitions are ac-
cording to definition 3.1.

X-bar theory grammars (Chomsky, 1975) have a
strong linguistic justification in describing natural
languages. Unfortunately neither Kaplan and Bres-
nan’s nor Johnson’s constraints allow such gram-
mars, since they do not allow derivation trees in
which the same category appears twice in a non-
branching dominance chain. Kuhn (1999) refers to
the problem from a linguist’s point of view. The
purpose of his constraint was to expand the class of
grammars which satisfy Kaplan and Bresnan’s con-
straint in order to allow X-bar derivations. Again,
since there exists no formal definition of the differ-
ent kinds of ¢’s we assume that € does not represent
a lexical item (no ¢-rules).

Definition 3.4 (Kuhn’s OLP (OLPg)). A c-
structure derivation is valid iff no category appears
twice in a non-branching dominance chain with the
same f-annotation.

Kuhn (1999) gives some examples of X-bar the-
ory derivation trees of German and Italian sen-
tences which contain the same category twice in a
non-branching dominance chain with a different f-
annotation. Therefore they are invalid OLP deriva-
tion trees (by both Kaplan and Bresnan’s and John-
son’s constraints), but they satisfy Kuhn’s OLP con-
straint.

According to Kuhn (1999), “The Off-line
parsability condition is a restriction on allowable c-
structures excluding that for a given string, infinitely
many c-structure analyses are possible”. In other
words, Kuhn assumes that OLP is, in fact, a con-
dition that is intended to guarantee finite ambigu-
ity. Kuhn’s definition may allow X-bar derivations,
but it does not ensure finite ambiguity. The fol-
lowing grammar is an LFG grammar generating c-
structures in which the same category appears twice
in a non-branching dominance chain only with a dif-
ferent f-annotation, therefore it satisfies Kuhn’s def-
inition of OLP. But the grammar is infinitely am-

biguous:
P — P ot
(1 subj =1) L(b) = {(P, (1 pred) = ')}
5 [subj : [subj F [pred : ‘b’]]]
P [subj F [pred : ‘b']]
\J
P [pred : ‘b']

Therefore, it is not clear whether the condition
guarantees parsing termination nor decidability of
the recognition problem and we exclude Kuhn’s
definition from further analysis.

The following definitions are applicable to both
skeletal and general unification grammars. The first
constraint was suggested by Haas (1989). Based on
the fact that not every natural unification grammar
has an obvious context-free backbone, Haas sug-
gested a constraint for guaranteeing solvability of
the parsing problem which is applicable to all unifi-
cation grammar formalisms.

Haas’ definition of a derivation tree is slightly
different from the definition given above (defini-
tion 2.5). He allows derivation trees with non-
terminals at their leaves, therefore a tree may rep-
resent a partial derivation.

Definition 3.5 (Haas’ Depth-boundedness (D B)).
A unification grammar is depth-bounded iff for ev-
ery L > 0 there is a D > 0 such that every parse
tree for a sentential form of L symbols has depth
less than D.

According to Haas (1989), “a depth-bounded
grammar cannot build an unbounded amount of
tree structure from a bounded number of symbols”.
Therefore, for each sentential form of length n there
exist a finite number of partial derivation trees, guar-
anteeing parsing termination.

The OL Ppy definition applies only to skeletal
grammars, general unification grammars do not nec-
essarily yield an explicit context-free skeleton. But
the definition can be extended for all unification
grammar formalisms:

Definition 3.6 (Finite ambiguity for unification
grammars (['A)). A unification grammar G is
OLP iff for every string w there exist a finite number
of derivation trees.

Shieber’s OLP definition (Shieber, 1992, 79-82)
is defined in terms of logical constraint based gram-
mar formalisms. His constraint is defined in logi-
cal terms, such as models and operations on models.
We reformulate the definition in terms of FSs.

Definition 3.7 (Shieber’s OLP (O L Ps)). A gram-
mar G is off-line parsable iff there exists a finite-
ranged function F' on FSs such that F(A) C A
for all A and there are no derivation trees admitted
by G' in which a node (A) dominates a node (B),
both are roots of sub-trees with an identical yield
and F'(A) = F(B).

The constraint is intended to bound the depth of
every derivation tree by the range of F’ times the
size of its yield. Thus the recognition problem is
decidable.

Johnson’s OLP constraint is too restrictive, since
it excludes all repetitive unary branching chains and
¢- rules, furthermore, it is applicable only to skele-
tal grammars. Therefore, Torenvliet and Trautwein
(1995) have suggested a more liberal constraint,
which is applicable to all unification grammar for-
malisms.

Definition 3.8 (Honest parsability constraint
(H P)). A grammar G satisfies the Honest Parsabil-
ity Constraint (HPC) iff there exists a polynomial p
s.t. for each w € L(G) there exists a derivation
with at most p(|w|) steps.

The definition guarantees that for every string of
the grammar’s language there exists at least one
polynomial depth (in the size of the derived string)
derivation tree. Furthermore, the definition allows
X-bar theory derivation trees, since a category may
appear twice in a non-branching dominance chain as
long as the depth of the tree is bounded by a poly-
nomial function of its yield.

4 OLP Analysis

In this section we first give some grammar examples
and mention their OLP properties, then compare the
different variants of OLP definitions using these ex-
amples. The examples use a straightforward encod-
ing of lists as FSs, where an empty list is denoted
by (), and (head | tail) represents a list whose first
item is head, followed by tazl.

Figure 1 lists an example unification grammar
generating the language {b}*. A string of N oc-
currences of b has exactly one parse tree and its
depth is 2N. Therefore, Gy is 'A and HP. GGy is
neither DB nor O L Ps; it may generate arbitrarily
deep derivation trees (containing lists of increasing
length) whose frontier consists of only one symbol,
and thus there exists no finite-ranged function map-
ping each FS on such a derivation to a finite set of
FSs.

CAT: p CAT : p
WORD " | worp : (1)
R = b
CAT : p CAT : gq
WORD : WORD :
CAT : q CAT : g] CAT : g
WORD : {f|[1]) 7 | worD : WORD : {f)

Figure 1: A unification grammar, G1, L(G1) = {b}*.

Figure 2 lists an example unification grammar
generating the language {b}. There exist infinitely
many derivation trees, of arbitrary depths, for the
string b, therefore, G5 is neither DB nor I'A nor
OLPs. (G5 1s H P; there exists a derivation tree for
b of depth 2.

Figure 3 lists an example unification grammar
generating the language {b}*. A string of N occur-

AS = CAT: s
WORD : {5)
CAT: s CAT: p A
WORD: (s) | ~ 7 |WORD: (1)
-CAT P CAT: p
WORD 7 |worp: (t|[1])
R =
CAT: p CAT q
WORD : 7 | WoRD :
CAT: ¢ CAT : q
worp: (1 |[1]) | 77 | worp)

£(b) = { [\CVIZ)TR:D: ((Jt)

Figure 2: A unification grammar, G2, L(G2) = {b}.

rences of b has exactly one parse tree. The feature
DEPTH represents the current depth of the derivation
tree; at each derivation step an item is added to the
DEPTH list. The feature TEMP represents the num-
ber of derivation steps before generating the next b
symbol. Every application of the second rule dou-
bles the depth of TEMP list (with respect to its length
after the previous application of the rule). Thus the
number of derivation steps for generating each b is
always twice the number of steps for generating its
predecessor, and for every sentential form of length
N any partial derivation tree’s depth is bounded by
an exponential function of N (approximately 2V).
Therefore (G5 is F'A and D B but neither O L Ps nor
HP.

CAT : s
Af = [DEPTH: ()]

TEMP : ()
[caT: s CAT: p)
DEPTH : ()| — | DEPTH : (1)
| TEMP : () TEMP : ()
CCAT: p CAT: p AT 1
DEPTH : — | pEPTH: ([1]) {LEX : t}
= | TEMP : () TEMP : :
- [CAT : p CAT : p
DEPTH : — | pEPTH: ([1])
L TEmP : (f]2]) TEMP :
[car:p AT 1
DEPTH: []| — [: }
LEX : 1
TEMP : ())

cor={[s1]}

Figure 3: A unification grammar, G, L(Gs) = {b}+.

Inter-relations among the OLP definitions

Below we make a comparison of all given OLP def-
initions; such relationships were not investigated in
the past. We begin by considering skeletal gram-
mars.

Johnson’s condition is the only one omitting all
€’s, thus none of the others implies O L Py.

OLPjy — HP: The depth of any OL Pj deriva-
tion tree is bounded by a linear function of its yield,
therefore for every string there exists a derivation
tree of at most a polynomial depth, and an O L Py
grammar is H P.

OLP; — OLPpw,DB,FA,OLPs: The gram-
mar of figure 2 is an O L Py grammar (viewing CAT
as the category) but it does not satisfy the other con-
straints.

OLPpw - DB,FA,OLPs,HP: By Jaeger et
al. (2002), the depth of any derivation tree
(partial/non-partial) admitted by an O L Ppy, gram-
mar is bounded by a linear function of the size of
its yield, thus an OL Ppy grammar satisfies all
the other constraints. A grammar satisfying the
constraints may still have an infinitely ambiguous
context-free backbone.

We continue the analysis by comparing the def-
initions which are applicable to general unification
grammars.

DB - FA: A DB grammar is also F'A; it
can only generate derivation trees whose depth is
bounded by a function of their yield, and there ex-
ist only a finite number of derivation trees up to a
certain depth. By figure 1, an FFA grammar is not
necessarily DB.

DB — OLPs: None of the conditions implies
the other. The grammar of figure 3 is DB but not
OLPs. A grammar whose language consists of
only one word, and its derivation is of a constant
depth, may still contain a redundant rule generating
arbitrarily deep trees whose frontier is of length 1.
Thus it is O L Pg but not D B.

DB,FA — HP: DB means that every derivation
tree is bounded by some function of its yield. H P
means that for every string there exist at least one
derivation tree of a polynomial depth of its yield.
The grammar of figure 3 is DB and F’'A, but since
every derivation tree’s depth is exponential in the
size of its yield, itis not H P. The grammar of figure
2 is H P, but since it is infinitely ambiguous, it is
neither 'A nor D B.

FAHP — OLPs: The depth of any derivation
tree admitted by an O L Pg grammar is bounded by

a linear function of its yield. Thus an O L Ps gram-
mar is F'A and H P. By figure 1, an F'A and H P
grammar is not necessarily O L Ps.

Figure 4 depicts the inter-relations hierarchy dia-
gram of the OLP definitions, separated for skeletal
and general unification grammars. The arrows rep-
resent the implications discussed above.

skeletal grammars.

DB —> FA HP
A

(| (N

OLPPW —_—>> OLPS OLPJ

general unification grammars.

DB —> FA HP

(N

OLPs
Figure 4: Inter-relations Hierarchy diagram.

5 Undecidability proofs

For the definitions which are applicable only to
skeletal grammars it is easy to verify whether a
grammar satisfies the constraint. The definitions
that apply to arbitrary unification grammars are
harder to check. In this section we give sketches of
proofs of undecidability of three of the OLP defini-
tions: Finite Ambiguity (/’A), Depth-Boundedness
(D B) and Shieber’s OLP (O L Ps).

Theorem 1. Finite ambiguity is undecidable.

Proof sketch. In order to show that finite ambiguity
is undecidable, we use a reduction from the mem-
bership problem, which is known to be undecidable
(Johnson, 1988). We assume that there exists an al-
gorithm, Ar 4, for deciding FA and show how it
can be used to decide whether w € L(G).

Given a string w and a grammar G, construct
G', by adding the rule A®> — A® to G'’s set of rules.
Apply Apa to G', G'is FAon w iff w ¢ L(G). If
w € L(G) then w € L(G"), therefore by applying
the rule A®* — A? infinitely many times, there exist
an infinite number of derivation trees for w admitted
byG'. Ifw ¢ L(G) thenw ¢ L(G"), no application
of the additional rule would generate any derivation
tree for w, and G is finitely ambiguous.

Since the membership problem is undecidable, it
is undecidable whether there exist only a finite num-
ber of derivation trees for a string w admitted by G.
Hence finite ambiguity is undecidable.

Theorem 2. Depth-boundedness is undecidable.

Proof sketch. In order to prove undecidability of
depth-boundedness, we use a reduction from the
Turing machines halting problem, which is known to
be undecidable (Hopcroft and Ullman, 1979, 183-
185). We assume that there exists an algorithm,
App, for deciding D B and show how it can be used
to decide whether a Turing machine M terminates
on the empty input e.

Johnson (1988) suggested a transformation from
the Turing machines halting problem to unification
grammars. The transformation generates a gram-
mar, G pr, which consists of unit-rules only, and can
generate at most one complete derivation tree. As-
sume the existence of an algorithm App. Apply
App to Gy If Gag is DB then the grammar gen-
erates a complete derivation tree, therefore its lan-
guage is non empty and M terminates on the empty
input. Otherwise, L(G) = (0 and M does not termi-
nate on the empty input. Thus, we have decided the
Turing machines halting problem.

Theorem 3. O L Ps is undecidable.

Proof sketch. In order to prove undecidability of
OLPs, we use a combination of the undecidability
proofs of DB and F A. Given a Turing machine M,
construct Gy using Johnson’s reduction, then con-
struct G'y; by adding A* — A® to G pr. Assume the
existence of an algorithm Ag, deciding OL Ps. G,
is OLPs iff M does not terminate on the empty in-
put. Thus, by applying Ag on G';, we have decided
the Turing machines halting problem.

6 Conclusions

In this paper we compare several variants of the
OLP constraint for the first time. We give sketches
of proofs of undecidability of three OLP conditions,
full proofs along with undecidability proofs of other
conditions are given in Jaeger et al. (2002). In
Jaeger et al. (2002) we also give a novel OLP con-
straint as well as an algorithm for deciding whether
a grammar satisfies it. The constraint is applicable
to all unification grammar formalisms. It is more
liberal than the existing constraints that are limited
to skeletal grammars only, yet, unlike all definitions
that are applicable to general unification grammars,
it can be tested efficiently.

Acknowledgements

The work of Nissim Francez was partially funded
by the vice-president’s fund for the promotion of

research at the Technion. The work of Shuly Wint-
ner was supported by the Israeli Science Foundation
(grant no. 136/1).

References

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press.

Noam Chomsky. 1975. Remarks on nominaliza-
tion. In Donald Davidson and Gilbert H. Har-
man, editors, The Logic of Grammar, pages 262—
289. Dickenson Publishing Co., Encino, Califor-
nia.

Nissim Francez and Shuly Wintner. In preperation.
Feature structure based linguistic formalisms.

Andrew Haas. 1989. A parsing algorithm for
unification grammar. Computational Linguistics,
15(4):219-232.

J. Hopcroft and J. Ullman. 1979. Introduction to
automata theory languages and computation.

Efrat Jaeger, Nissim Francez, and Shuly Wint-
ner. 2002. Unification grammars and off-line
parsability. Technical report, Technion, Israel In-
stitute of Technology.

Mark Johnson. 1988. Attribute-Value Logic and the
Theory of Grammar. CSLI Lecture Notes. CSLI.

Ronald M. Kaplan and Joan Bresnan. 1982.
Lexical-functional grammar: A formal system
for grammatical representation. The MIT Press,
page 266.

Jonas Kuhn. 1999. Towards a simple architecture
for the structure-function mapping. Proceedings
of the LFG99 Conference.

Fernando C. N. Pereira and David H. D. Warren.
1983. Parsing as deduction. Proceedings of ACL
-21.

Stuart M. Shieber. 1992. Constraint-based gram-
mar formalisms. MIT Press.

Leen Torenvliet and Marten Trautwein. 1995. A
note on the complexity of restricted attribute-
value grammars. ILLC Research Report and
Technical Notes Series C1-95-02, University of
Amsterdam, Amsterdam.

Shuly Wintner and Nissim Francez. 1999. Off-line
parsability and the well-foundedness of subsump-
tion. Journal of Logic, Language and Informa-
tion, 8(1):1-16, January.

	Table of Content
	Topics
	Authors

