Processing Japanese Self-correction
in Speech Dialog Systems

Kotaro Funakoshi, Takenobu Tokunaga and Hozumi Tanaka
Department of Computer Science
Tokyo Institute of Technology
{koh, take, tanaka}@cl.cs.titech.ac.jp

Abstract

Speech dialog systems need to deal with various
kinds of ill-formed speech inputs that appear in
natural human-human dialog. Self-correction (or
speech-repair) is a particularly problematic phe-
nomenon. Although many ways of dealing with self-
correction have been proposed, these have limita-
tions in both detecting and correcting for this phe-
nomenon. In this paper, we propose a method to
overcome these problems in Japanese speech dia-
log. We evaluate the proposed method using our
speech dialog corpus and discuss its limitations and
the work that remains to be done.

1 Introduction

Self-correction, or speech repair, is a major source of
the disfluencies that speech dialog systems have to
resolve. Since Hindle (1983), there have been many
proposals as to how speech dialog systems can deal
with self-correction (Bear et al., 1992; Nakatani and
Hirschberg, 1993; Den, 1997; Nakano and Shimazu,
1998; Core and Schubert, 1999).

Through self-monitoring, human speakers can in-
stantly correct their mistakes during an utterance
(Levelt, 1989). Therefore, we can detect self-
correction with local models such as the Repair
Interval Model (RIM) proposed by Nakatani and
Hirschberg (1993). Most work has used the same
model or models similar to the RIM. The RIM di-
vides the self-correction into three intervals, reparan-
dum (RPD), disfluency (DF), and repair (RP), and
assumes that these three intervals appear in the
order of “ ... RPD DF RP” For example,
“[I want]gpp [ub]pr [I wantlgp a window seat.”
However, human speakers do not always correct er-
rors immediately. Sometimes a moment passes be-
fore we realize that we made an error. Or some-
times we change our intention, or decide to add
more information during utterances. In such cases,
in Japanese, we can correct our utterances at posi-
tions beyond more than one constituent (figure 1).

In figure 1, solid arrows show the dependency be-
tween words !. The dashed arrow shows the corre-

L“ni (to)” is a postposition. The usual Japanese depen-

_ ~

A l l AN | |
mae <— ni akai tama osite ookii tama
front to red ball push big ball

Figure 1: Long-distance self-correction in Japanese
(Push the big red ball ahead)

spondence between two constituents that share the
same semantic role with regard to the verb “osite
(push).” These two constituents refer to the same
object, but describe different information. In this ut-
terance, the speaker corrects “akai tama (red ball)”
(RPD) with “ookii tama (big ball)” (RP) beyond
“osite”. The RIM cannot capture this self-correction
because “osite” is not a DF.

After the detection of self-corrections, which
cause ill-formedness, we have to restore the well-
formedness of utterances. For this purpose, past
work proposed the deletion of detected RPDs. This
method works well in many cases, but sometimes
removes too much or too little information. Core
and Schubert (1999) pointed out this problem, but
provided no procedure to solve it. To resolve this
problem, we have to merge the RPD and the RP
into one constituent.

In this paper, we propose a method to handle
Japanese self-correction on our incremental depen-
dency parser. We extend the model for Japanese
self-correction and propose a method to merge RPD
and RP to solve the problems mentioned above. We
evaluate our method by using our quasi-dialog cor-
pus and discuss its limitations and our future work.
Section 2 describes our parser based on Japanese de-
pendency analysis. Section 3 shows how to deal with
the self-correction on the parser. Section 4 discusses
the evaluation on the corpus. We conclude and look
at our future research direction in section 5.

dency analysis makes “mae (front)” depend on “ni”. In this
paper, however, our analysis makes “n:” depend on “mae”
because postpositions are often omitted in spoken Japanese.

2 Incremental dependency parser

We use an incremental dependency parser because
incremental processing is requisite for current and
future speech dialog systems.

2.1 Dependency parser

We can describe the Japanese syntactic structure in
a regular expression as “(C F*)4”, where C is a
content word and F is a function word. We call
the pattern “(C F*)” bun-setsu 2. A function word
depends on the preceding content word.

The parser creates a dependency tree on a stack,
an element of which keeps a subtree of the struc-
ture. The parser maintains multiple stacks simul-
taneously, each of which corresponds to a different
hypothesis.

After the parser receives a word sequence from
the speech recognizer, it pushes words on the stack
incrementally. When a content word is pushed into a
stack, all the succeeding function words are attached
to the content word 2. If two consecutive function
words are not allowed to adjoin, the parser considers
the second function word as a correction of the first
one, and replaces the first word with the second.

When more than one bun-setsu are created on
the stack, the parser pops up the first two elements
of the stack (t2, t1, respectively, in figure 2), then
checks to see if a dependency between rw; and rws
is possible. Here, rw; denotes the root word of the
subtree t;. If a dependency is possible, the parser du-
plicates the stack. The parser restores the original
stack by pushing down the two popped-up elements.
In the new stack, the parser pushes down a new el-
ement containing the dependency of rw; and rws.
To this new stack, the parser recursively applies the
same procedure.

In the example in figure 2, when the verb “osite”
is pushed onto a stack “[(mae-ni)|((akai) tama)>"
4 and no function word follows “osite”, the parser
generates three stacks:

[(mae-ni)|((akai) tama)|(osite)>
[(mae-ni)|(((akai) tama) osite)>
[((mae-ni)((akai) tama) osite)>

The parser assigns a score to each hypothesis and
limits the number of hypotheses. (In this paper, we
do not describe the score computation.)

2.2 Grammar and dictionary

When a content word C; depends on another con-
tent word Cs, we assume that C; takes a semantic

2Bun-setsu means “sentence segment”.

3We assume that speakers never interrupt their speech in
the middle of a bun-setsu.

4« and “>” show the bottom and the top of the stack,
respectively. “|” indicates a boundary of two elements. “()”
indicates a dependency.

o------rwl
akai
Ted i S rw2
mae-ni tama osite
front ball push STACK
tl t2

Figure 2: An example of stacks for “mae ni akai
tama osite” (Push the red ball ahead)

osite VERB IMP+ PUSH+ DEGREE:#STD
<0BJ> 1 * NOUN walwolmol- INSTANCE+
<SBJ> 1 % NOUN wal|galmo|- ANIMATE+ INSTANCE+

<TO> 1 % NOUN nilel- LOCATION+
<FROM> 1 * NOUN kara LOCATION+
<EXT> 1 % ADV - DEGREE: *

Figure 3: Dictionary entry for “osite” (push)

role with regard to C5. Possible semantic roles and
constraints to assign the roles are described in the
dictionary (figure 3).

The first line in figure 3 shows the features of a
verb “osite (push)”;

e a verb (VERB)

e imperative (IMP+)

e action PUSH (PUSH)

e degree of act (DEGREE: #STD).

The following lines show the roles of the verb and the
constraints on each role. For example, the second
line specifies the constraints on a word that will take
the <OBJ> role;

e number of words which will take this role (1)

e direction of dependency, forward or backward
(“*” means “both”)

e part of speech (NOUN)

e postpositions which mark this role (“wa”, “wo”,

“mo” and “— (unmarked)”)

e semantic feature (INSTANCE+).

The parser assigns a role to every dependent ac-
cording to the dictionary. By referring to these roles,
a syntactic tree can be easily transformed into a se-
mantic frame. Moreover, they help the restoration
process for self-corrections.

3 Self-correction

When we applied past work to our corpus (QDC, see
section 4 for details), we encountered two problems
as mentioned in section 1. One was that a model like
the RIM (Nakatani and Hirschberg, 1993) cannot de-
tect long-distance self-corrections like that shown in
figure 1. The other was that the restoration proce-
dure was not sufficient.

In this section, we explain our self-correction clas-
sification, and then show how self-corrections can
be detected and well-formedness restored with the
parser introduced in section 2.

3.1 Self-correction classification

Figure 4 shows the self-correction classification. We
classify self-correction into three classes: addition,
repair, and restart.

Addition Addition includes simple repetition.
There is an addition constraint that an RPD and
an RP must be able to refer to the same object or
the same manner. The RIM can detect only adja-
cent additions. Therefore, we introduce a new class —
long-distance. Most work has treated both addition
and repair in the same way. However, since there is
a difference in usage, we distinguish between them.

Repair An explicit repair is accompanied by an
editing term, such as “gomen (sorry)”, “tigau (no)”,
and so on. An implicit repair is not.

A repair is further classified into adjacent and
long-distance. However, implicit long-distance re-
pair is generally not acceptable in Japanese.

Restart A restart occurs when a speaker inter-
rupts the current utterance and begins a new one.
There are explicit and implicit restarts. An implicit
restart is generally difficult to detect without using
prosodic information, gesture, etc. Furthermore, it
is difficult to distinguish an explicit restart from an
explicit repair. However, once a restart is detected,
the ill-formedness can be easily corrected by simply
removing the words before the editing term.

In this paper, we focus on addition and repair and
do not discuss restart any further.

Hesitation Most of the methods that have been
reported handle hesitation in the resolution of self-
correction. They rely on partial matching between
the word fragment and the following word to detect
hesitations. However, we cannot reasonably assume
that current speech recognizers can recognize a word
fragment as a correct word. Moreover, this does not
work if the following word is a different word re-
gardless of recognition results. Therefore, we do not
handle hesitations with self-corrections. Instead, we
provide word skipping to deal with hesitation and
speech recognizer misrecognition. This is done be-
fore each dependency analysis, but we will not give
a detailed explanation here of word skipping.

3.2 Processing addition and repair

Some methods such as (Bear et al., 1992) process
self-corrections sentence by sentence. However, such
approaches are not suitable for use with incremen-
tal parsing (Nakano and Shimazu, 1998). To deal
with self-corrections incrementally, we embed the
self-correction process in the parser like (Hindle,

1. addition

(a) adjacent “[akai tama wo] (red ball) [ookii tama
wo] (big ball) osite (push)”

(b) long-distance “[akai tama wo] (red ball) osite
(push) [ookii tama wo] (big ball)”
2. repair
(a) explicit
i. adjacent “[akai tama wo] (red ball) gomen
(sorry) [aoi tama wo] (blue ball) osite (push)”
ii. long-distance “[akai tama wo] (red ball) os-
ite (push) gomen (sorry) [aoi tama wo] (blue
ball)”
(b) implicit
i. adjacent “[akai tama wo] (red ball) [aoi tama
wo] (blue ball) osite (push)”
ii. *long-distance “[akai tama wo] (red ball) os-
ite (push) [aoi tama wo] (blue ball)”
3. restart

(a) explicit “[akai tama wo] (red ball) gomen (sorry)
[uma wa mae ni itte] (Horse, go ahead)”

(b) implicit “[akai tama wo] (red ball) [uma wa mae
ni itte] (Horse, go ahead)”

Figure 4: Classification of Japanese self-correction

1983); that is, after each dependency analysis, self-
correction is checked for and restoration is done if
necessary. The parser considers the stack’s top el-
ement t» as an RP, and the second element ¢; (or
part of t1) as an RPD (see figure 2).

First, we explain how to handle long-distance self-
corrections. From examination of our corpora and
our linguistic introspection, we assume that long-
distance self-corrections always take the following
pattern:

..RPD ...verb DFRP

Also, the RPD necessarily depends on the verb. As
a result, the RPD and the RP of long-distance self-
corrections must be the pairs of noun phrases or ad-
verbial phrases.

There are two ways to treat long-distance self-
corrections. One is to assume that the RP back-
ward depends on the verb (as in figure 1); that is,
by assuming that a long-distance self-correction is
a combination of inversion and self-correction. The
other is to assume that the RP forward depends on
the omitted verb; that is,

..RPD ...verb DF RP (verb)

In this case, supplementing the omitted verb re-
duces the above structure to the conventional RIM
structure “...RPD DF RP” This interpreta-
tion has an advantage in that we can handle various
self-corrections uniformly by supplementing omitted
verbs. However, we use the former interpretation

1. Pop the element of the stack as t». Pop the next
element as ¢1. If ¢; is an editing term, pop the third
element as #1 and set the flag indicating explicitness.
The root word of ¢; is rw: and that of ¢» is rw-.

2. The case that rw; and rws belong to the same part
of speech (adjacent):

(a) If rwi and rw- satisfy the replacement condi-
tions, return that rws is a candidate of self-
correction to rwi. Go to 4.

3. The case that rw; and rwy belong to a different
part of speech (long-distance):

(a) If rw; is not a verb, return that rws is not a
self-correction to rw: and go to 4.

(b) If rws is neither a noun nor an adverb, return
that rw> is not a self-correction to rw; and go
to 4.

(c) If there is any content word d; “* depending on
rw; that satisfies the replacement conditions
with rws, return that rws is a self-correction
candidate to d“!. However, if it is not ex-
plicit, rwe and d;"* have to indicate the same
object or the same manner. Then go to 4.

4. Push back the popped elements and exit.

Figure 5: Detection algorithm of addition and repair

because supplementing verbs has a high processing
cost and the former seems more natural.

Detection Figure 5 shows an algorithm to detect
addition and repair in our parser that was described
in section 2. This algorithm is based on the classifi-
cation in figure 4.

The replacement conditions given in figure 5 are
the constraints that rw; or d;"' (a content word
depending on rw;) and rw, must satisfy. Figure 6
shows an example of the replacement conditions for
nouns. This is almost the same as Class (I) of Clas-
sification (A) in (Nakano and Shimazu, 1998). We
show how the replacement conditions work with the
following utterance .

mae-ni itte
(front-to) (go)

kamera-ha
(camera-topic)

mae-wo
(front-obj)

The possibility of a self-correction between “kamera-
ha” and “mae-wo” is not detected because it does
not satisfy any condition listed in figure 6. However,
the possibility of a self-correction between “mae-wo”
and “mae-ni” is detected because it satisfies the sec-
ond condition in figure 6. Here, “ha” is a postposi-
tion indicating the topic (in this case the subjective
case as well) and “wo” indicates the objective case.

5«Lkamera-ha” shows that a postposition “ha” is attached
to a content word “kamera”.

L] Fl = F2

e Ni = N> and > ;ﬁ nil

e Ny~ N> and F = nil
F; is a function word and N; is a noun, and F;
depends on N;. “N; = N3” means that N7 and N»
are the same word. “N; ~ N>” means that N and

N> belong to the same semantic class. “Fy = nil”
means that N; does not have any function word.

Figure 6: Replacement conditions for noun phrases

Restoration In the past, detected RPDs have
simply been removed from hypotheses. Core and
Schubert (1999) illustrated the problem of this ap-
proach with an example: “have the engine take the
oranges to Elmira, um, I mean, take them to Corn-
ing.” They claimed that removing the RPD lost the
referent of “them.” Their answer to this problem
was to pass the RPDs with hypotheses to the se-
mantic analysis. However, they did not provide any
specific idea as to how the semantic analysis should
handle the RPDs. Moreover, discarding the relation
between an RPD and an RP at the syntactic analysis
stage makes hypotheses difficult to score.

In our method, the parser processes a self-
correction as soon as it is detected. Also, the parser
does not identify the type of self-correction after
restoration because a self-correction, especially at
the beginning of an utterance, can be interpreted
in several ways. For example, we can interpret the
utterance, “I, I go there”, as a repetition (addition),
a restart, or a hesitation or misrecognition of the
speech recognizer. However, every interpretation
generates the same result: “I go there.” Therefore,
our parser keeps one hypothesis for several inter-
pretations and does not keep redundant hypotheses
which waste resources.

When subtree t; (RPD) is replaced by subtree o
(RP), the parser merges the two subtrees. More
specifically, the parser transfers information from
t1 to t2 by copying missing words in ¢,, unless this
causes a contradiction.

For example, from the two dependency trees t;
and t» of the following utterance,

[sono akai usiro no tamaly, gomen [aoi tamals, - . ..
that red back of ball sorry blue ball

ti: ((sono) (akai) (usiro-no) tama)
<IND> <COL> <LOC>
to: ((aoi) tama)
<COL>

the parser generates t,. <X> indicates a semantic
role has been given to the word just above <X>.

th: ((sono)
<IND>

(usiro-no) tama)

<LOC>

(aoi)
<COL>

The parser creates a correspondence between words
in ¢t; and t3 by matching words and roles.

Let subtree t; with a root word rw; be re-
placed by subtree t5 with a root word rws. Here,
di*,...,d"1 are the m words depending on rwy,
and di“?,...,dI"2 are the n words depending on
rwe. In figure 7, we show the algorithm of the
function dmerge(rwy, rws) which copies the missing
words from ¢; to t5. This algorithm is designed to
satisfy three assumptions concerning human recog-
nition of self-correction.

Assumption 1 If there is a one-to-one correspon-
dence between d; "' and d’"? with respect to their
word form, then d; ! can be recognized as replace-
able by d;"?, even though the role of d;** with re-
gard to rw; differs from the role of d;** with regard
to rws.

Assumption 2 If there is a one-to-one correspon-
dence between d;"" and d;"* with respect to their
semantic role, then d;"' can be recognized as re-
placeable by d}**, even though ;' and d;"* are
different words.

Assumption 3 Only if there is no discrepancy be-
tween assumptions 1 and 2, d;"" can be recognized
as replaceable by d;"?.

Agsumption 1 corresponds to step 1 in figure 7
and assumption 2 corresponds to step 2.

Because of assumption 1 and step 4 in figure 7,
from t; and ¢y of the next utterance,

[are migi kara osite];, gomen [migi ni osite]s,

that right from push sorry right to push
ti: ((are) (migi-kara) osite)
<0BJ> <FROM>
to: ((migi-ni) osite)
<TO0>

we can make the correct subtree t}, instead of the
wrong subtree t5.

th: ((are) (migi-ni) osite)
<0BJ> <TO>

th: ((are) (migi-kara) (migi-ni) osite)
<0BJ> <FROM> <TO>

Because of assumption 2 and step 4 in figure 7,
from t; and ¢, of the following utterance,

[tukue no mae ni osite]y, gomen [usiro ni osite]y,
desk of front to push sorry back to push

t1: (((tukue-no) mae-ni) osite)
<GEN> <T0>

to: ((usiro-ni) osite)
<TO>

dmerge(rwi, rw2): copies missing words from subtree ¢,
with root word rw; to subtree t> with root word rws

1. Find the correspondence between d;“' and d;“?
with respect to their word form, where i = 1...m
and j=1...n.

2. Find the correspondence between d;' and d;"*
with respect to their role, where ¢ = 1...m and
j=1...n.

3. Pick up the pairs of one-to-one correspondence
found in steps 1 and 2, and apply dmerge to them
recursively. However, these correspondences have
to be coherent between steps 1 and 2.

4. copy to rw2 any d; " for which no correspondence
is found in steps 1 and 2.

5. If the semantic class of rws subsumes that of rwi,
replace rws with rw;.

Figure 7: Merge algorithm

we can make the correct subtree t}.

th: (((tukue-no)
<GEN>

usiro-ni) osite)

<T0>

The third assumption (and the condition of step 3
concerning coherency in figure 7) means that even
a human cannot make a unique interpretation if
the word correspondence between t; and t; is am-
biguous. However, the third assumption seems too
strong. This algorithm thus needs further investiga-
tion and refinement.

In this algorithm, we use roles instead of postposi-
tions to create correspondence between words. Since
postpositions are often omitted in spoken Japanese,
our method is more robust than using postpositions
directly. Moreover, in the case of constituents in
which dependency is not explicitly marked by post-
positions, such as adjective-noun, noun-noun con-
structions, our method has an advantage in that the
parser does not need extra computation to find the
correspondence.

The problem of pronouns in RPs, as pointed out
by (Core and Schubert, 1999), is resolved in step 5
in figure 7.

4 Evaluation

The QDC (quasi-dialog corpus) ¢ has 15 dialogs
and 532 utterances between a user and three vir-
tual agents simulated by humans. This corpus was
collected in the following setting. A user could com-
mand two agents to arrange objects in a virtual
world. The remaining agent was a camera which
presented a world view to the user. The camera
agent itself could not handle objects; it could only

6The QDC is open to the public at http://tanaka-
www.cs.titech.ac.jp/pub/qdc/ .

change the user’s view according to orders given by
the user.

We manually applied our proposed method to the
QDC. In the QDC, we found 71 self-corrections, ex-
cluding hesitations, and we judged that 16 of these
were not properly solved by our method. Although
our parser produces scored N-best hypotheses, we
counted only the first hypotheses as the answer.

Because this corpus is small and we applied our
method manually, we do not discuss quantitative
evaluation. Instead, we will show examples 7 that
our method could not handle properly.

Type 1: Separated RPD and RP

This type of error is classified into class (II) of clas-
sification (A) in (Nakano and Shimazu, 1998). This
is another case where RPD and RP are separated.
This occurs at the beginning of utterances.

- = <

A . ~ [v ¥
kuroi mae< ni kuroi tama osite
black front to black ball push

Figure 8: Example of a type 1 error

Since our model allows only a verb between the
RPD and the RP (see section 3.2) and “mae ni”
is not a verb, this example cannot be handled by
our method. In particular, “mae ni” blocks the first
“kuroi” from the second “kuroi” and they are never
next to each other on the stack. Our method thus
cannot detect this self-correction. Although we can-
not find a correspondence between an RPD and an
RP in such cases, we can usually obtain a proper hy-
pothesis through word skipping. Moreover, if we can
handle restart properly, many cases will be solved
without problem.

Type 2: Information lost through word
replacement

There was one instance of this type. In the method
proposed in this paper, we save information by copy-
ing missing words from an RPD to an RP. However,
this method loses important information in cases
such as the following.

= - %
a0 < wo burokku <«wo osite
blue obj block obj push

Figure 9: Example of a type 2 error

The speaker first mentioned a blue object by using
a noun “ao (blue)”, and referred to it again with a
noun “burokku (block).” In most cases, no problem
arises if a noun is replaced by a more specific noun.

"These examples are simplified for explanation.

In this case, though, the user referred to the same
object twice in terms of a different aspect — color
and object type. Simple replacement of nouns in
such cases causes the loss of important information.
To deal with such a case, we need more semantic
operations with ontological knowledge.

Type 3: Requiring deep semantic analysis
There were nine instances of this type.

| S L A e 1
kamera<-no mae< ni osite mae<no atari< ni
camera of front to push front of Vvicinity to

Figure 10: Example of a type 3 error (1)

In the example in figure 10, our method creates
a correspondence between “mae ni” and “atari ni”
and copies “kamera no” to “atari ni.” However, it
should be attached to “mae no” instead of “atari
ni.” Our restoration algorithm (figure 7) works word
by word, but it should have worked on a larger unit
in this case.

»~ . v
akal gomen ‘midori < no tama
red sorry green of ball

Figure 11: Example of a type 3 error (2)

In the example in figure 11, our method (as well
as other methods that handle self-corrections at
the surface level) fails to detect the self-correction
concerning color because of the difference in the
parts of speech between “akai” and “midori no.”
In Japanese, there is an adjective corresponding to
“red”, but no one corresponding to “green”. Instead
we use the noun phrase “midori no (of green).”

Type 4: Head omission

Two examples of this type were found, and both
were almost the same expressions used by the same
person. In the example in figure 12, the last phrase
“kamera no (of the camera)” would depend on the
second phrase “migi ni (to the right of).” However,
it cannot depend on “migi” because this would cause
cross-dependency (the bold solid arrow in figure 12).

= — 4 —

I V[a- viy 0 =¥l
yukkuri migi < ni osite kamera<-no (migi)
sowly right to push camera of right

Figure 12: Example of a type 4 error

To resolve this self-correction as a long-distance
addition, we have to complement the omitted head
noun “migi” at the end of the utterance.

| W

\\ ;

kamera migi« kara utusite < kureru migi < ni mawarikonde < kureru

camera right from shoot

canyou? right to

go around can you?

Figure 13: Example of a type 5 error

Type 5: Superficial self-correction

We found one instance of this type. In figure 13,
the first utterance directs the camera to shoot the
object mentioned before® from its right side. The
second utterance directs the camera to go around to
the right of the object. The first impression is that
this is a simple self-correction of clauses. However,
the second instruction is an elaboration of the first
one; namely, it instructs the camera to go around
to the right side of the object to shoot it. To dis-
tinguish such an utterance from self-corrections, we
need to parallelize the intention understanding with
the syntactic analysis.

5 Conclusion

In this paper, we have expanded the conventional
model of self-correction and have proposed a method
to restore well-formedness without information loss.
A parser incorporating this method can handle a
wider variety of expressions. While the parser it-
self might encounter difficulties if applied directly to
other languages, such as English, the basic principles
of the restoration process are applicable to languages
other than Japanese.

We evaluated the proposed method when applied
to our quasi-dialog corpus and identified unresolved
problems. As future work, we intend to evaluate our
method in an actual speech dialog system.

Our method uses only syntactic and semantic in-
formation to detect self-corrections. We can find
most self-correction candidates with these types of
information. However, we need more information
to evaluate the validity of each candidate. In our
method, the more words a hypothesis contains, the
higher the score assigned to the hypothesis. This
policy causes a problem. For example, if the parser
receives the sentence in figure 14 containing a self-
correction of “akai”, it produces at least the follow-
ing three hypotheses.

A: ((((akai) isu-no) mae-no) tama)
the ball at the front of the red chair

B: ((akai) ((isu-no) mae-no) tama)
the red ball at the front of the chair

C: ((akai) (((akai) isu-no) mae-no) tama)
the red ball at the front of the red chair

Although the parser should rank these hypothesis in
the order of A, B, C, it actually ranks them in the

8This is a zero pronoun.

N .1 A Al
akai é{<a1 iSU <« N0 mae « no tama
red red chair of front of ball

Figure 14: Example of a problematic sentence in
scoring

order of C, A, B, because hypothesis C contains the
most words. However, the policy that causes this
problem is needed to prevent the parser from re-
moving too much information. If we give preference
to any self-correction candidate, the parser will rank
the following (wrong) hypothesis above hypotheses
A, B, and C.

((akai) (mae-no) tama)
the red ball at the front (of you)

To resolve this problem, we have to utilize acoustic-
prosodic information, as in (Bear et al., 1992;
Nakatani and Hirschberg, 1993), for scoring to boost
the ranks of hypotheses where self-corrections are re-
stored. This will be especially critical for restarts,
because restarts usually disregard many words.

References

J. Bear, J. Downing, and E. Shriberg. 1992. Inte-
grating multiple knowledge sources for detection
and correction of repairs in human-computer di-
alog. In Proceedings of 30th Annual Meeting of
ACL, pages 56-63.

M. G. Core and L. K. Schubert. 1999. A syntac-
tic framework for speech repairs and other dis-
ruptions. In Proceedings of 87th Annual Meeting
of ACL, pages 413-420.

Y. Den. 1997. A uniform approach to spoken lan-
guage analysis (in Japanese). Journal of Natural
Language Processing, 4(1):23-40.

D. Hindle. 1983. Deterministic parsing of syntac-
tic non-fluencies. In Proceedings of 21st Annual
Meeting of ACL, pages 123-128.

W. J. M. Levelt. 1989. Speaking. The MIT Press.

M. Nakano and A. Shimazu. 1998. Parsing utter-
ances including self-repairs (in Japanese). IPSJ
Journal, 39(6):1935-1943.

C. Nakatani and J. Hirschberg. 1993. A speech-first
model for repair identification and correction. In
Proceedings of 31th Annual Meeting of ACL, pages
200-207.

	Table of Content
	Topics
	Authors

