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Abstract

NamedEntity (NE) recognitionis a taskin which
proper nouns and numerical information are ex-

tractedfrom documentsand are classifiedinto cat-
egoriessuchas person,organization,and date. It

is a key technologyof Information Extractionand
Open-DomairQuestionAnswering.First, we shov

thatanNE recognizebasedn SupportvVectorMa-

chineg(SVMs) givesbetterscoreghancorventional
systemsHowever, off-the-shelfSVM classifiersare
too inefficient for this task. Thereforewe presenta
methodthat malkesthe systemsubstantiallyfaster
This approachcan also be appliedto other simi-

lar taskssuchas chunkingand part-of-speechag-
ging. We alsopresentan SVM-basedeatureselec-
tion methodandanefficienttrainingmethod.

1 Intr oduction

NamedEntity (NE) recognitionis a taskin which
propernounsandnumericalinformationin a docu-
mentaredetectedandclassifiednto catgyoriessuch
aspersonprganizationanddate.lt is akey technol-
ogy of Information Extraction and Open-Domain
QuestionAnswering(VoorheesaindHarman 2000).
We arebuilding atrainableOpen-DomairQuestion
AnsweringSystemcalled SAIQA-II. In this paper
we shav that an NE recognizerbasedon Support
Vector Machines(SVMs) gives better scoresthan
corventionalsystems.SVMs have given high per
formancein variousclassificationtasks(Joachims,
1998;KudoandMatsumoto2001).

However, it turned out that off-the-shelf SVM
classifiersare too inefficient for NE recognition.
The recognizerruns at a rate of only 85 bytes/sec
on an Athlon 1.3 GHz Linux PC, while rule-based
systemg(e.g., Isozaki, (2001)) can processseveral
kilobytes in a second. The major reasonis the
inefficiency of SVM classifiers. There are other
reportson the slownessof SVM classifiers. An-
otherSVM-based\E recognize(YamadandMat-

sumoto,2001)is 0.8 sentences/sam a Pentiumilll
933MHz PC.An SVM-baseart-of-speeciiPOS)
tagger(Nakagava et al., 2001)is 20 tokens/semn
anAlpha21164A500MHz processorlt is difficult
to usesuchslow systemsn practicalapplications.

In this paperwe presenamethodthatmakesthe
NE systemsubstantiallyfaster This methodcan
also be appliedto othertasksin naturallanguage
processinguchaschunkingandPOStagging.An-
otherproblemwith SVMs is its incomprehensibil-
ity. It is not clearwhich featuresareimportantor
how they work. Theabove methodis alsousefulfor
finding uselesdeatures We alsomentiona method
to reducetrainingtime.

1.1 Support Vector Machines

Supposewve have a setof training datafor a two-
classproblem: (x1,41),- .-, (xn,yn), Wherex; (€
RP) is a featurevector of the i-th samplein the
training dataandy; € {+1,—1} is the label for
the sample. The goalis to find a decisionfunc-
tion that accuratelypredictsy for unseenx. A
non-linearSVM classifiergivesa decisionfunction
f(x) = sign(g(x)) for aninputvectorx where

J4

g(x) = Z w; K (x,2z;) + b.

Here, f(x) = +1 meansx is a memberof a cer
tain classand f(x) = —1 meansx is nota mem-
ber z;s are called supportvectos and are repre-
sentatves of training examples. ¢ is the number
of supportvectors. Therefore,computationatom-
plexity of g(x) is proportionalto £. Supportvectors
andotherconstantaredeterminedy solvingacer
tain quadraticporogrammingproblem. K (x,z) is a
kernelthatimplicitly mapsvectorsinto a higherdi-
mensionakpace.Typical kernelsusedot products:
K (x,z) = k(x - z). A polynomialkernelof degree
d is givenby k(z) = (1 + z)% We canusevari-
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Figurel: SupportVectorMachine

ouskernels,andthedesignof anappropriate&kernel
for a particularapplicationis animportantresearch
issue.

Figurel shavsalinearly separablease.Thede-
cision hyperplanedefinedby g(x) = 0 separates
positive and negative examplesby the largestmar
gin. Thesolidline indicateghedecisionhyperplane
andtwo paralleldottedlinesindicatethemaigin be-
tweenpositive andnegative examples.Sincesucha
separatindhyperplananay not exist, a positive pa-
rameterC is introducedo allow misclassifications.
SeeVapnik(1995).

1.2 SVM-basedNE recognition

As faraswe know, thefirst SVM-based\E system
wasproposedy Yamadeetal. (2001)for Japanese.
His systemis anextensionof Kudo’s chunkingsys-
tem(KudoandMatsumoto2001)thatgave thebest
performanceat CONLL-2000sharedtasks.In their
system,every word in a sentencds classifiedse-
guentiallyfrom the beginning or the end of a sen-
tence. However, since Yamadahasnot compared
it with othermethodsunderthe sameconditions,it
is not clearwhetherhis NE systemis betteror not.
Here,we shov that our SVM-basedNE systemis
moreaccuratghancorventionalsystems.Our sys-
temuseshe Viterbi search(Allen, 1995)insteadof
sequentiatietermination.

For training, we use'CRL data’,which waspre-
paredfor IREX (InformationRetrieval and Extrac-
tion Exercisé, SekineandEriguchi(2000)). It has
about19,000NEsin 1,174 articles. We also use
additional data by Isozaki (2001). Both datasets
arebasedon Mainichi Newspapers 1994and1995
CD-ROMs. We uselREX’s formal testdatacalled
GENERAL thathas1,510namedentitiesin 71 ar-
ticles from Mainichi Newspaperof 1999. Systems
are comparedn termsof GENERALs F-measure
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which is the harmonicmeanof ‘recall’ and‘preci-
sion’ andis definedasfollows.

Recall= M/(the numberof correctNES),
Precision= M/(the numberof NEsextractedby a
system),

whereM is thenumberof NEs correctlyextracted
andclassifiedby the system.

We developedan SVM-based\E systemby fol-
lowing our NE systembasedon maximum en-
tropy (ME) modeling (Isozaki, 2001). We sim-
ply replacedthe ME modelwith SVM classifiers.
The above datasetsre processedby a morpholog-
ical analyzerChaSen2.2.7. It tokenizesa sen-
tenceinto wordsandaddsPOStags. ChaSeruses
about 90 POS tags such as conmon- noun and
| ocat i on- name. Sincemostunknovnwordsare
proper nouns, ChaSers parameterdor unknavn
wordsaremodifiedfor betterresults.Then,a char
actertype tag is addedto eachword. It usesl17
charactetypessuchasal | - kanj i andsnal | -

i nt eger . Seelsozaki(2001)for details.

Now, Japanes®&\E recognitionis solved by the
classificationof words(Sekineet al., 1998; Borth-
wick, 1999; Uchimotoet al., 2000). For instance,
the wordsin “PresidentGeoge HerbertBush said
Clintonis ...” are classifiedas follows: “Presi-
dent”= OTHER, “George” = PERSON-BEGIN, “Her-
bert” = PERSON-MIDDLE, “Bush” = PERSON-END,
“said” = OTHER, “Clinton” = PERSON-SINGLE, “is”
= OTHER. In this way, the first word of a persons
nameis labeledasPERSON-BEGIN. Thelastwordis
labeledasPERSON-END. Otherwordsin the name
are PERSON-MIDDLE. If a person$ nameis ex-
pressediy a singleword, it is labeledas PERSON-
SINGLE. If aword doesnot belongto ary named
entities, it is labeledas OTHER. SincelREX de-
fineseight NE classeswordsare classifiedinto 33
(= 8 x 4+ 1) categories.

Each sampleis representedy 15 featuresbe-
causeeachword hasthreefeatures(part-of-speech
tag, charactertype, and the word itself), and two
precedingvordsandtwo succeedingvordsarealso
usedfor context dependenceAlthough infrequent
featuresareusuallyremovedto preventoverfitting,
we useall featuresbecausesVMs arerobust. Each
sampleis representedby a long binary vector i.e.,
a sequencef 0 (false)and 1 (true). For instance,
“Bush” in the abore exampleis representedy a
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vectorx = (z[1],...,z[D]) describedelon. Only
15elementsarel.

z[1]=0 /1 Currentwordis not*‘Alice’
z[2]=1 /'l Currentwordis ‘Bush’

z[3] =0 /1 Currentwordis not ‘Charlie’
z[15029] =1 // CurréntPOSis apropernoun
2[15030] =0 // CurrentPOSis notaverb
z[39181] =0 // Previouswordis not‘Henry’
z[39182] =11/

Previouswordis ‘Herbert’

Here, we have to considerthe following prob-
lems. First, SVMs cansolwe only atwo-classprob-
lem. Therefore we have to reducethe above multi-
classproblemto a group of two-classproblems.
Second,we have to considerconsisteng among
word classesn a sentence. For instance,a word
classifiedas PERSON-BEGIN should be followed
by PERSON-MIDDLE Or PERSON-END. It implies
thatthe systemhasto determinethe bestcombina-
tions of word classedrom numerouspossibilities.
Here,we solve theseproblemsby combiningexist-
ing methods.

Thereare a few approacheso extend SVMs to
cover n-classproblems.Here,we emplgy the “one
classversusall others”approachThatis, eachclas-
sifier f.(x) is trainedto distinguishmembersof a
classc from non-membersin this method,two or
more classifiersmay give +1 to an unseernvector
or no classifiermaygive +1. Onecommonway to
avoid suchsituationss to comparey.(x) valuesand
to choosetheclassindex c of thelargestg.(x).

Theconsisteng problemis solvedby the Viterbi
search. Since SVMs do not output probabilities,
we use the SVM+sigmoid method (Platt, 2000).
Thatis, we usea sigmoidfunctions(z) = 1/(1 +
exp(—pfz)) to mapg.(x) to aprobability-like value.
The output of the Viterbi searchis adjustedby
a postprocessofor wrong word boundaries. The
adjustmentrules are also statistically determined
(Isozaki,2001).

1.3 Comparisonof NE recognizers

We usea fixed value 3 = 100. F-measuresre
not very sensitve to 5 unlessg is too small. When
weusedl,038,98@rainingvectors GENERAL sF-
measuravas 89.64%for 8 = 0.1 and90.03%for
6 = 100. We employ the quadratickernel(d = 2)
becausé givesthebestresults.Polynomialkernels
of dggreel, 2, and 3 resultedin 83.03%,88.31%,
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Figure2: F-measuresf NE systems

and 87.04% respectrely when we used 569,994
trainingvectors.

Figure 2 comparesNE recognizersin terms of
GENERALs F-measures:SVM’ in the figure in-
dicated--measuresf our systemrainedby Kudo’s
TinySVM-0.02 with C = 0.1. It attained85.04%
whenwe usedonly CRL data. ‘ME’ indicatesour
ME systemand ‘RG+DT’ indicatesa rule-based
machinelearningsystem(lsozaki,2001). Accord-
ing to thisgraph,'SVM’ is betterthanthe othersys-
tems.

However, SVM classifiersare too slow. Fa-
mous SVM-Light 3.50 (Joachims,1999) took 1.2
daysto classify569,994vectorsderivedfrom 2 MB
documents. Thatis, it runs at only 19 bytes/sec.
TinySVM's classifierseemsbestoptimizedamong
publicly availableSVM toolkits, but it still worksat
only 92 bytes/sec.

2 Efficient Classifiers

In this section,we investigatethe causeof this in-
efficiency and proposea solution. All experiments
are conductedor training dataof 569,994vectors.
Thetotalsizeof theoriginal newsarticleswas2 MB
andthe numberof NEswas 39,022. Accordingto
the definition of g(x), a classifierhasto process
supportvectorsfor eachx. Tablel shavs ¢sfor dif-
ferentword classesAccordingto this table,classi-
fication of oneword requiresx’s dot productswith
228,306supportvectorsin 33classifiersTherefore,
the classifiersare very slonv. We have never seen
suchlarge s in SVM literatureon patternrecogni-
tion. Thereasorfor thelarge/sis word featureslin
otherdomainssuchascharacterecognitiondimen-

Shttp://cl.aist-nara.ac.jp/ taku-ku/sofne/TinySVM



sion D is usuallyfixed. However, in theNE task,D
increasesnonotonicallywith respecto the size of
the training data. SinceSVMs learncombinations
of features/ tendsto be very large. This tendenyg
will hold for othertasksof naturallanguagepro-
cessingloo.

Here, we focus on the quadmatic kernel k(z) =
(1 + z)? thatyielded the bestscorein the above
experiments. Supposex = (z[1],...,z[D]) has
only m (=15) non-zeroelements. The dot prod-
uct of x andz; = (z][1],...,%[D]) is given by
P, z[h)zi[h]. Hence

D
(14+x-2;)? —1+2Z$[h zi[h]+ Za: |2i[h])?
h=1 h=1
We canrewrite g(x) asfollows.

D
g(x) = Wo+ Y (Wilh]z[h] + W[h]z[h]*)
b1 D
+ >0 > Wslh, kla[hlz[k],
h=1 k=h+1
where
Wo = b+ X wi
Wilh] = 23 wizlhl,
Walh] = i wizlh)?,
Walh, k] = 235, wiz[h)zik]-

For binaryvectors,jt canbesimplifiedas

=Wo+ > (Wilhl+ > Wslh,k]),
h:z[h]=1 k k>h,zk]=1
where
Wikl = Wilhl+Wylh] = 3> w;,
i:zi[h]:l
Wilh,k] = 2 wi

1:2;[h]=zi[k]=1

Now, g(x) canbe given by summingup W{[h]
for every non-zeroelementz[h] and Wi[h, k] for
every non-zeropair z[h]z[k]. Accordingly we only
needto add1 + m + m(m — 1)/2 (=121) con-
stantsto get g(x). Therefore,we can expectthis
methodto be muchfasterthana naive implementa-
tion thatcomputegensof thousandsf dot products
atruntime. We callthismethod XQK’ (eXpandhe
QuadraticKernel).

Table 1 comparesTinySVM and XQK in terms
of CPUtimetakento apply 33 classifierdo process
the training data. Classesare sortedby ¢. Small
numbersin parenthesesndicate the initialization
time for readingsupportvectors{z;} andallocat-
ing memory XQK requiresa longerinitialization
time in orderto preparel¥; andWs. For instance,
TinySVM took 11,490.26secondg3.2hours)in to-
tal for applying OTHER's classifierto all vectorsin
the training data. Its initialization phasetook 2.13
secondsand all vectorsin the training datawere
classifiedin 11,488.13(= 11,490.26 — 2.13) sec-
onds.Ontheotherhand XQK took 225.28seconds
in total andits initialization phaseook 174.17sec-
onds. Therefore 569,994vectorswereclassifiedin
51.11secondsTheinitialization time canbedisre-
gardedbecausave canreusethe above coeficents.
Consequently XQK is 224.8 (=11,488.13/51.11)
timesfasterthan TinySVM for OTHER. TinySVM
took 6 hoursto processll theword classeswhereas
XQK took only 17 minutes. XQK is 102 times
fasterthanSVM-Light 3.50whichtook 1.2 days.

3 Removal of uselesdeatures

XQK makes the classifiers fastey but mem-
ory requirementincreasesfrom O(X% , m;) to
O(3% mi(m;+1)/2) wherem, (=15)is thenum-
berof non-zeroelementsn z;. Thereforeremoval
of uselessfeatureswould be beneficial. Cornven-
tional SVMsdonottell ushow anindividualfeature
worksbecauseveightsaregivennotto featuresbut
to K (x,z;). However, the above weights(1W] and
W3) clarify how a featureor a featurepair works.
We canusethis fact for featureselectionafter the
training.

We simplify f(x) by remoing all features
h that satisfy max(|W’[h]|, maxy |Ws[h,k]|,
maxy |[Ws[k, h]|)) < 6. The largestf that does
not changethe numberof misclassificationgor the
training datais found by using the binary search
for eachword class. We call this method‘XQK-
FS’ (XQK with FeatureSelection). This approx-
imation slightly degradedGENERAL s F-measure
from 88.31%to 88.03%.

Table 2 shaws the reductionof featuresthat ap-
pearin supportvectors. Classesare sortedby the
numbersof original features.For instance OTHER
has56,220featuresn its supportvectors. Accord-
ing to the binary search,its performancedid not
changeeven whenthe numberof featureswas re-
ducedto 21,852atfd = 0.02676.



Tablel: Reductionof CPUtime (in secondshy XQK

word class 12 TinySVM (init) XQK (init) speedup || SVM-Light
OTHER 64,970 11,488.132.13) 51.11(174.17) 224.8 29,986.52
ARTIFACT-MIDDLE 14,171| 1,372.850.51) 41.32 (14.98) 33.2 6,666.26
LOCATION-SINGLE 13,019| 1,209.290.47) 38.24 (11.41) 31.6 6,100.54
ORGANIZ..-MIDDLE 12,050 987.39(0.44) 37.93 (11.70) 26.0 5,570.82
TOTAL 228,306| 21,754.239.83) | 1,019.20(281.28) 21.3| 104,466.31
Table2: Reductionof featuresy XQK-FS
word class numberof features numberof non-zeroweights | seconds
OTHER 56,220 21,852(38.9%) | 1,512,827~ 892,228(59.0%) 42.31
ARTIFIFACT-MIDDLE 22,090— 4,410(20.0%) 473,923~ 164,632(34.7%) 30.47
LOCATION-SINGLE 17,169— 3,382(19.7%) 366,961~ 123,80833.7%) 27.72
ORGANIZ..-MIDDLE 17,123— 9,959(58.2%) 372,784~ 263,69570.7%) 31.02
ORGANIZ..-END 15,214— 3,073(20.2%) 324,514 112,307(34.6%) 26.87
TOTAL 307,721 75,455(24.5%) | 6,669,664 2,650,681(39.7%)| 763.10

Thetotalnumberof featuresvasreducedyy 75%
andthat of weightswasreducedby 60%. The ta-
ble also shavs CPU time for classificationby the
selectedfeatures. XQK-FS is 28.5 (=21754.23/
763.10)times fasterthan TinySVM. Although the
reductionof featuress significant,the reductionof
CPUtimeis moderatebecausanostof thereduced
featuresare infrequentones. However, simplere-
duction of infrequentfeatureswithout considering
weightsdamageshe systems performanceFor in-
stance,when we removed 5,066 featuresthat ap-
pearedfour timesor lessin the training data, the
modified classifierfor ORGANIZATION-END mis-
classified103training examples whereaghe origi-
nalclassifiermisclassifiednly 19examples Onthe
otherhand XQK-FSremoved12,141featureswith-
outanincreasdn misclassificationgor thetraining
data.

XQK canbe easily extendedto a more general
quadratickernel k(x) = (co + c1z)? andto non-
binary sparsevectors. XQK-FS canbe usedto se-
lectusefulfeaturesefore training by otherkernels.
As mentionedabove, we conductedan experiment
for the cubickernel(d = 3) by usingall features.
Whenwe trainedthe cubickernelclassifiersoy us-
ing only featuresselectedby XQK-FS, TinySVM'’s
classificationtime was reducedby 40% because

wasreducedby 38%. GENERAL s F-measuravas
slightly improved from 87.04%to 87.10%. On
the other hand, when we trained the cubic ker
nel classifiersby usingonly featureshat appeared
threetimes or more (without consideringweights),
TinySVM's classificatiortime wasreducedoy only
14% and the F-measurewas slightly degradedto
86.85%. Therefore we expect XQK-FS to be use-
ful asa featureselectionmethodfor otherkernels
whensuchkernelsgive muchbetterresultsthanthe
quadratidkernel.

4 Reductionof training time

Since training of 33 classifiersalso takes a long
time, it is difficult to try variouscombination®f pa-
rametersandfeatures.Here,we presenta solution
for this problem.In thetrainingtime, calculationof
k(xq - x1),k(xq - X2),...,k(xq - xy) for various
XS is dominant. Corventional systemssave time
by cachingthe results. By analyzingTinySVM'’s
classifierwe foundthatthey canbecalculatednore
efficiently.

For sparsevectors,most SVM classifiers(e.qg.,
SVM-Light) use a sparsedot product algorithm
(Platt, 1999)that comparesion-zeroelementsf x
andthoseof z; to getk(x - z;) in g(x). However, x
is commonto all dotproductsn k(x-z1), ..., k(x-



z¢). Thereforewe canimplementa fasterclassifier
thatcalculategshemconcurrently TinySVM’s clas-
sifier preparesalist f i 2si [h] thatcontainsall z;s
whoseh-th coordinatesare not zero. In addition,
counterdor x - zy,...,x - z; arepreparececause
dot productsof binary vectorsare integers. Then,
for eachnon-zeraz[h], thecountersareincremented
for all z; € fi 2si [h]. By checkingonly members
of fi 2si [h] for non-zeroz[h], the classifieris not
botheredby fruitlesscases:z[h] = 0, z;[h] # 0 or
z[h] # 0,z;[h] = 0. Therefore, TinySVM’s clas-
sifier is fasterthanotherclassifiers.This methodis
applicableto ary kernelsbasedon dot products.

For the training phase we canbuild i 2si [A]
thatcontainsall x;s whoseh-th coordinatesrenot
zero.Then,k(x, - x1),...,k(x, - xn) canbe effi-
ciently calculatedbecausex, is common.Thisim-
provementis effective especiallywhenthe cacheis
small and/orthe training datais large. Whenwe
useda 200 MB cache,the improved systemtook
only 13 hoursfor training by the CRL data, while
TinySVM and SVM-Light took 30 hoursand 46
hours respectiely for the samecachesize. Al-
thoughwe have examinedother SVM toolkits, we
couldnotfind ary systemthatuseshis approachin
thetrainingphase.

5 Discussion

The abore methodscan also be appliedto other
tasksin naturallanguagegprocessinguchaschunk-
ing andPOStaggingbecausehe quadratickernels
give goodresults.

Utsuro et al. (2001) report that a combination
of two NE recognizersattainedF = 84.07%, but
wrongword boundarycasesareexcluded.Our sys-
temattainedd5.04%andword boundariegareauto-
matically adjusted. Yamada(Yamadaet al., 2001)
alsoreportsthatd = 2 is best. Although his sys-
tem attainedF = 83.7%for 5-fold cross-alidation
of the CRL data(Yamadaand Matsumoto,2001),
our systemattained86.8%. Since we followed
Isozakis implementation(lsozaki, 2001), our sys-
tem is differentfrom Yamadas systemin the fol-
lowing points: 1) adjustmenbf word boundaries?)
ChaSers parametergor unknovn words, 3) char
actertypes,4) useof the Viterbi search.

For efficient classificationBurgesandSchblkopf
(1997) proposean approximationrmethodthat uses
“reduced set vectors” insteadof supportvectors.
Sincethe size of the reducedsetvectorsis smaller
than £, classifiersbecomemore efficient, but the

computationatostto determinethe vectorsis very
large. Osunaand Girosi (1999) proposetwo meth-
ods. Thefirst methodapproximateg(x) by support
vectorregressionput this methodis applicableonly
whenC is large enough.The secondmethodrefor-
mulatesthe training phase. Our approachis sim-
plerthanthesemethodsDownsetal. (Downsetal.,
2001)try to reducethe numberof supportvectors
by usinglineardependence.

We can also reducethe run-time compleity of
a multi-classproblem by cascadingSVMs in the
form of a binarytree(Schwenler, 2001)or a direct
agyclic graph(Plattetal., 2000). YamadaandMat-
sumoto(2001) appliedsucha methodto their NE
systemandreducedts CPUtime by 39%. This ap-
proachcanbe combinedwith our SVM classifers.

NE recognitioncan be regardedas a variable-
length multi-classproblem. For this kind of prob-
lem, probability-basedernelsare studiedfor more
theoreticallywell-founded methods(Jaaklkla and
Haussler 1998; Tsudaet al., 2001; Shimodairaet
al.,2001).

6 Conclusions

Our SVM-based NE recognizer attained F =

90.03%. This is the bestscore,asfar aswe know.

Sinceit wastoo slow, we madeSVMs faster The
improvedclassifieris 21 timesfasterthanTinySVM

and 102 times fasterthan SVM-Light. The im-

proved training programis 2.3 times fasterthan
TinySVM and 3.5 times fasterthan SVM-Light.

We alsopresentecn SVM-basedfeatureselection
methodthatremoved 75% of features. Thesemeth-
odscanalsobeappliedto othertaskssuchaschunk-
ing andPOStagging.
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