A Generative Probability Model for Unification-Based Grammars

Helmut Schmid
Institute for Computational Linguistics
University of Stuttgart
Azenbergstrake 12, 70174 Stuttgart, Germany
schmid@ims.uni-stuttgart.de

Abstract

A generative probability model for unification-
based grammars is presented in which rule prob-
abilities depend on the feature structure of the
expanded constituent. The presented model is
the first model which requires no normalization
and allows the application of dynamic program-
ming algorithms for disambiguation (Viterbi)
and training (Inside-Outside). Another advan-
tage is the small number of parameters.

1 Introduction

A number of probability models for unification-
based grammar (UG) formalisms have been pro-
posed in the past. Some models use PCFG ap-
proximations (Eisele, 1994; Brew, 1995; Kiefer
et al., 2002), others are based on Random Fields
(Abney, 1997) or the closely related log-linear
models (Johnson et al., 1999; Riezler et al.,
2000; Stefan Riezler and Johnson, 2002). All
these models require a normalization of the
parse probabilities in order to obtain a distri-
bution over all parses which sums to 1. How-
ever, the computation of the normalization con-
stant seems only tractable for conditional mod-
els (Johnson et al., 1999) which define the prob-
ability of parses given their yields. Such models
are useful for syntactic disambiguation, but not
e.g. for language modeling.

This paper presents a generative probability
model which models a stochastic generator for
UGs. The probability of a parse tree is decom-
posed into a product of rule probabilities which
depend on the previously instantiated features
of the expanded constituents. Parse probabili-
ties will sum to 1 unless dead end derivations ex-
ist. So, normalization is not required. The well-
known algorithms for PCFGs (Viterbi, Inside-
Outside) are applicable which facilitates efficient
implementations of the model.

2 Background
2.1 PCFG Approximation Models

PCFG approximation approaches (Eisele, 1994;
Brew, 1995; Kiefer et al., 2002) generalize UGs
to context-free grammars which generate a su-
perset of the parses of the UG. In the simplest
case (Eisele, 1994), the UG rules are generalized
by dropping the feature constraints. The CFG
is turned into a PCFG and trained (e.g. on a
treebank). The trained PCFG is used to assign
probabilities to the analyses of the UG and to
disambiguate between them.

The PCFG defines a probability distribution
over the CFG parses. Since the UG generates
fewer parses than the CFG, the probabilities of
the UG parses will sum to less than 1. In order
to get a probability distribution over UG parses,
the parse probabilities are normalized by divid-
ing by the sum of the probabilities of all UG
parses. However, this sum is not computable for
UGs generating an infinite number of parses.

The PCFG approximation approach faces an-
other problem. Estimation of rule probabilities
with relative frequency estimates is not a con-
sistent training method for renormalized PCFG
approximation models as the following example!
shows. Consider the grammar? in figure 1 whose
context-free backbone is trained on the treebank
in figure 2. The relative frequency estimates of
the probabilities for rules 1 through 5 are 1, 2/3,
1/3, 2/3 and 1/3, respectively. The probability
assigned to the first parse tree in the treebank is
1%2/3%2/3 =4/9 and the probability assigned
to the second parse tree is 1x1/3%1/3 = 1/9. So,

! A similar example was presented in (Abney, 1997).

2This grammar is written in the YAP formalism
(Schmid, 2000). On the right-hand side of feature equa-
tions, capitalized names are variables and lower-case
names are values. The head of a rule is marked with
a backquote.

the first parse tree is four times more likely than
the second according to the probability model,
although its frequency in the treebank is only
twice as high. If parse probabilities are normal-

NP{} -> DT{Number=N;} ‘N{Number=N;}; (1)

"this" : DT {Number=sg;}; (2)
"these" : DT {Number=pl;}; (3)
"man" : N {Number=sg;}; (4)
"men" : N {Number=pl;}; (5)

Figure 1: a simple constraint grammar

ized, the estimated parameters are not even op-
timal: The sum of the probabilities of all valid
parses in the above example is 5/9. The renor-
malized probabilities of the two valid parses are
therefore 1/5 and 4/5 and the probability of the
training corpus is 4/5*4/5*%1/5=16/125=0.128.
If we set e.g. the probability of rules 2 and 4 to
0.6 and the probability of rules 3 and 5 to 0.4,
the normalized probabilities of the two parses
are approx. 0.69 and 0.31 and the likelihood of
the treebank is 0.147, which is higher than the
likelihood with relative frequency estimates.

NP NP NP
/IN /IN /IN

DT N DT N DT N
2 14 13 15 2 14
this man these men this man

Figure 2: parse trees labeled with rules numbers

2.2 Log-Linear Models

The parameter estimation problem can be
solved by turning the PCFG into a log-linear
model. The features of the log-linear model are
the grammar rules and the feature weights corre-
spond to the logs of the rule probabilities. Equa-
tion 1 shows the relation between the models3.

1
P(T) = EHp('r)f(r’T) (PCFQ)
_ L > e meger)

Z

1
= 3 e VilT) X (log-linear m.)

3Z is the normalization constant and f(r,T) is the
frequency of rule r in parse T'.

Log-linear models are more general, however.
They allow other properties than grammar rules
and impose no restrictions on the weights.
(Johnson et al., 1999) presented a computation-
ally tractable gradient ascent training algorithm
which maximizes the conditional probability of a
parse given its yield. They also proposed a sim-
ulated annealing training algorithm which max-
imizes correct disambiguation rather than con-
ditional probabilities.

Log-Linear models face an efficiency problem
if the features are not locally defined. Gram-
mar rules are local features, whereas features
like right-branching structure or parallel
structure and some other features used with
log-linear models are not (see e.g. (Riezler et al.,
2000)). Non-local features prevent the applica-
tion of efficient dynamic programming methods
for the computation of the most probable parses.
Enumerating all analyses and scoring them in-
dividually, on the other hand, has a worst-case
complexity which is exponential in the size of
the parse forest and is therefore impractical
for broad-coverage parsing of unrestricted text
where sentences often have thousands of differ-
ent analyses.

3 A Generative Probability Model

This section describes a new approach to proba-
bilistic unification-based parsing which directly
models a stochastic generator for UGs. The rule
probabilities depend on the feature structure of
the expanded constituent.

3.1 Generation with UGs

The generation of a parse tree consists of a se-
quence of rule applications. Each rule depends
on the preceding rules. If e.g. the phrase this
man is produced with the grammar given in
fig. 1, the generator starts with an NP node and
expands it to DT N using rule 1. According to
the feature constraints, the Number features of
the two daughter nodes are unified. DT is now
expanded to this and the value of the Number
feature becomes sg. Simultaneously, the Number
feature of the N node gets the same value. In the
next step, the generator can only choose a sin-
gular noun to expand the N node. So, the last
action of the generator depends on the value of
the Number feature. By assigning probabilities
to the possible actions (i.e. grammar rules) of
the generator, a probability model for parses is

NP NP NP NP

/N 2 /N AL N
DT N DTsg Nsg DTsg Nsg

\ \ \

this this man

Figure 3: generation of the string this man (DTsg
is an abbreviation for a node of category DT with
the Number feature value sg.)

obtained. If only successful rules have a posi-
tive probability, the sum of all parse probabili-
ties will be 1. Whether a rule is applicable or
not depends on the feature structure of the ex-
panded node. Therefore, the rule probabilities
are conditioned on the expansion feature struc-
tures.

3.2 The Probability Model

For UGs with a unique start symbol*, a parse
tree is unambiguously defined by the sequence of
grammar rules ry,...,7, and the generation or-
der. Assuming some fixed generation order, the
probability of a parse is given by P(r1,...,7r,) =
[Ti=, p(rilr1,- .., mi—1). Assuming that the prob-
ability of a rule depends only on the category
¢; and the feature structure f; of the expanded
constituent, the probability of a parse is given
by P(T) = ITiy p(rilei, fi).°

According to this model, the probability P(T)
of the phrase this man is decomposed into the
product of P(NP—DT N|NP), P(DT—this|DT)
and P(N—man|Nsg). The relative frequency
estimates obtained from the treebank in fig. 2
containing two parses for this man and one for
these men are

P(NP - DIT'N|NP) = 1
P(DT — this | DT) = 2/3
P(DT — these | DT) = 1/3
)
)

P(N — man | Nsg 1
P(N — men | Npl 1

The probability of this man is therefore 2/3
and the probability of these men is 1/3. These
probabilities are identical to the relative fre-
quencies in the treebank and they sum to 1.

“For other grammars we add start symbol probabili-
ties.

5The model puts rule sequences 71, ..., ri—1 yielding
the same expansion context (c;, f;) into an equivalence
class. Hence it might be considered as a special case of
history-based parsing (see e.g. (Magerman, 1994)).

Note that the generation order has direct in-
fluence on the probability model. If the N node
is expanded before the DT node, a different de-
composition P(NP—DT N|NP) P(N—man|N)
P(DT—this|DTsg) results. The Number feature
of the noun is undefined when it is expanded
whereas the Number feature of the determiner is
sg.

Because of the influence of the generation or-
der on the expansion context and therefore on
the structure of the probability model, the gen-
eration order has to be chosen carefully. Assum-
ing a head-first depth-first left-to-right genera-
tion order, the head of a rule should be defined
such that the number of instantiated features is
minimized, even if this definition diverges from
a more linguistically motivated definition.

3.3 Computation of Parse Probabilities

The probability of a parse is the product of
the rule probabilities given their expansion con-
texts. Expansion contexts are computed by run-
ning a generator which stores a copy of the cur-
rent feature structure of each expanded node.
Appendix A presents an algorithm for the ef-
ficient annotation of parse forests with expan-
sion feature structures. Nodes with more than
one expansion context are split. Annotated
parse forests permit the computation of Inside,
Outside and Viterbi probabilities with dynamic
programming because expansion contexts are
strictly local features. Algorithms for the com-
putation of Viterbi and Inside-Outside probabil-
ities are given e.g. in (Rooth and Schmid, 2001).
Their time complexity is linear in the size of the
parse forest.

3.4 Parameter Estimation

Parameters are either estimated with relative
frequency estimates from treebanks or using
the Inside-Outside algorithm on unlabeled data.
However, there are three open questions: (i) The
number of expansion contexts may be infinite.
How are the parameters estimated? (ii) How are
the parameters smoothed such that the proba-
bility of each consistent parse tree is positive?
(iii) The generator may end up in a state where
some non-terminal node cannot be expanded.
How are such “dead end derivations” dealt with?

The first problem is solved by estimating
parameters only for expansion contexts which
show up in the training data. Rule probabilities

for other expansion contexts are estimated on
the fly during parsing either by a uniform dis-
tribution over all matching grammar rules (i.e.
rules unifiable with the feature structure of the
expanded node) or by the averaged probabil-
ity distribution (APD) of all expansion contexts
with the same set of matching rules.

The second problem is solved by smoothing
the rule probabilities such that every matching
rule has a positive probability. Backoff smooth-
ing with the APD distribution and a uniform
distribution could be used here.

3.4.1 Unproductive Expansion Contexts

The third problem is the most difficult one. Not
every expansion context is productive, i.e. is
part of a successful derivation. If unproductive
expansion contexts are generated with a positive
probability, the probabilities of the consistent
parses will not sum to 1 any more.

There are two types of unproductive expan-
sion contexts. The first case is exemplified by
the grammar in figure 4 which generates NP ar-
guments and adds their feature structures to a
subcat list sc8. The first rule can be used recur-

V {sc=Rest;} -> ‘V {sc=[X|Rest];} NP {}=X;

"v'" ¢ {sc=[NP{},NP{},NP{}];};
Figure 4: sample grammar with subcat features

sively again and again without causing a con-
straint violation, but the derivation will only
succeed if a lexical rule with a matching sub-
cat feature exists. A loss of probability mass
to such dead end derivations is avoided by as-
signing zero probabilities to rules which generate
nodes with unproductive expansion context. In
the above example, the probability of the first
rule should be zero for expansion contexts with
three or more elements on the subcat list.

The grammar in figute 5 is an example for
the second type of unproductive contexts. After
applying the first rule and the third lexical rule,
generation ends in a state where the Number fea-
ture of the DT node is instantiated with the value
pl, and no rule matches anymore. Here it is not
possible to assign a zero probability to the first

5The first rule unifies the feature structure of the NP
node with the first element of the subcat list of the verb
by means of the variable X. A subcat list consisting of
all the other elements is passed on to the mother node
by means of the variable Rest.

NP {} -> DT {Number=V;} ‘N {Number=V;};
NP {} -> ‘N {Number=V;};

"a" : DT {Number=sg;};
"book" : N {Number=sg;};
"books" : N {Number=pl;};

Figure 5: grammar causing dead ends of type I1

lexical rule for the given expansion context be-
cause this rule is successfully applied in the same
expansion context in a derivation starting with
the second grammar rule. Whether the first lex-
ical rule is successfully applicable or not depends
on external information which is not represented
in the local feature structure. The dead end dis-
appears if the missing external information is
added by modifying the first grammar rule as
shown in fig. 6. The dead end also disappears
if the generation order is changed such that the
DT node is expanded first, or if a lexical rule for
a plural determiner is added.

NP {} -> DT {Number=sg;} ‘N {Number=sg;};
Figure 6: modified NP rule

In order to obtain a probability distribution
over parses, it is necessary to reduce the proba-
bility loss due to dead end derivation to 0. Dead
ends of the first type are the smaller problem.
Unsmoothed parameter estimates always assign
a zero probability to such derivations because
the problematic combinations of grammar rules
and expansion contexts never appear in training
data. If parameters are smoothed such that all
matching rules have a positive probability, the
probability of dead end derivations of the first
type will decrease as the amount of training data
increases approaching 0 asymptotically.

Dead ends of the second type always have a
positive probability. The resulting probability
loss can only be minimized by detecting and
modifying the problematic rules.

3.4.2 Grammar Checking

A simple algorithm for detecting dead ends and
for estimating (an upper bound of) the proba-
bility loss is the following;:

CHECK _ GRAMMAR(G, N)
1 pyr <0
2p_«0
3 for N iterations

do create random derivation D with G
if D is a dead end derivation
then report a warning
p- «p-+p(D)
else pi < py+p(D)

0o ~J O U i

This algorithm detects dead end derivations
of type II, and p_p;er provides an estimate for
the probability mass lost to dead end derivations
of type II. 1 — p4 is an upper bound for the
probability mass lost to all dead end derivations.
This algorithm is not efficient, of course, and a

chart-based algorithm should be used instead.

3.5 Comparison With PCFGs

If the number of expansion contexts is finite, it
is possible to enumerate them and to detect all
dead ends. Dead ends of type I are eliminated by
assigning a zero probability to the problematic
rule. Dead ends of type II have to be eliminated
by modifying the grammar rules.

Grammars with a finite number of expansion
contexts generate context-free languages and
could be compiled into context-free grammars.
So, the probabilistic UG could be replaced by a
PCFG. We will show now with an example that
the probabilistic UG has far fewer parameters
than the PCFG.

Consider again the grammar in fig 4. If we
add a lexicon entry for a transitive and a ditran-
sitive verb and expand the V node before the NP
node, the probability model for the UG has 4
different expansion contexts corresponding to a
V node with 0, 1, 2 or 3 NPs on the subcat list.
All NP features are undefined. There are two
expansion contexts with one positive rule prob-
ability (V node with 0 or 3 NPs on the subcat
list) and two contexts with two positive proba-
bilities (V node with 1 or 2 NPs). Overall there
are only two free parameters to be estimated.

Assuming that NPs have number (2 possible
values), gender (3 values) and case features (4
values), the context-free grammar has 24 rules
for V nodes with an empty subcat list, 24+24*24
rules for V nodes with one NP, 24*2424*24*24
rules for V nodes with two NPs, and 24*24*24
rules for V nodes with three NPs. Altogether,
there are 28249 rules and 13823 free parame-
ters, which is a huge difference to the two free
parameters of the probabilistic UG.

Is the probabilistic UG too simple? The

model basically assigns probabilities to subcat
lists of different length. However, in a more elab-
orated grammar, the probabilities of the verbal
lexicon entries allow the model to distinguish
how likely a particular subcat frame is for dif-
ferent verbs. Not captured by the model are de-
pendencies between a verb and the agreement
features of the arguments which are not explic-
itly defined in the lexicon entry. Lexical de-
pendencies between words are also ignored in
the model, but (Schmid, 2002) proposes a gen-
eral method for the lexicalization of probabilistic
grammars which could be used here.

3.6 Applicability

The presented model requires that a parse is
unambiguously defined by a given sequence of
grammar rules (assuming some fixed generation
order). This poses problems if the grammar for-
malism is not rule-based (like HPSG) or if the
result of a rule application is not uniquely de-
fined (as with functional uncertainty in LFG).
A compilation of such grammars into grammars
in a more basic grammar formalism might be
necessary in order to apply the model.

4 Comparison With Previous Work

Like PCFG approximations approaches, the pre-
sented model assigns probabilities exclusively to
grammar rules, but the probabilities depend on
the expansion contexts rather than on a fixed
set of features compiled into a PCFG. Also, the
number of parameters is smaller than in compa-
rable PCFG and the training algorithm is con-
sistent unless the grammar contains dead ends
of type II (see section 3.4.2).

As in Goodman’s model (1997), the probabil-
ities depend on the previously instantiated fea-
tures. However, Goodman’s model assigns prob-
abilities to feature values rather than grammar
rules and the probabilities depend on fully in-
stantiated feature structures.

5 Summary

A generative probability model for unification-
based grammars was presented in which rule
probabilities depend on the feature structures of
the expanded nodes. The model requires no nor-
malization and yields a probability distribution
if all expansion contexts are productive. FEffi-
cient dynamic programming algorithms for dis-
ambiguation (Viterbi) and unsupervised train-

ing (Inside-Outside) are available and treebank
training requires only relative frequency esti-
mates. The training algorithms are consistent
unless dead end derivations of a certain type ap-
pear. An algorithm was described which detects
unproductive contexts and computes an upper
bound for the probability mass lost to dead end
derivations. The proposed model has a small
number of parameters because many features
are not instantiated in the expansion feature
structures. In particular, it has fewer param-
eters than comparable PCFGs.

A Annotation with Expansion
Context

A parse forest (see also Billot and Lang (1989))
in labeled grammar notation is a tuple P =
<NP, EP, Rp, SP, Mp) where <Np, ZP, RP, Sp)
is a context free grammar (consisting of non-
terminals Np, terminals Y p, rules Rp, and start
symbols Sp) and Mp is a function which maps
elements of Rp to grammar rules in an under-
lying unification grammar. The grammar rules
are represented as feature structures with mul-
tiple roots. The elements of Np are pairs (c, f)
consisting of a category c and a feature structure
f- The elements of ¥ p are words. The functions
lhs and rhs map rules to their left hand and right
hand sides, respectively.

The following algorithm annotates a parse for-
est with expansion contexts and returns the an-
notated parse forest.

ANNOTATE(P)
1 initialize Pr as an empty parse forest
2 initialize P’ as an empty parse forest
3 initialize array L[Np U Xp| < {}
4 for v in Sp
5 do Process(v, T, P, Pr,P', L, F)
6 return P’

PROCESS(v, fm, P, Pr,P',L, F)
1 if 3’ € L[] s.th. F[u'] = fry
2 then return
Jifveip
4 then v + NEWT(P',v)
5 L[v] < Liv] U {v'}
6 return
7 v' < NEWNT(Pr)

8 L[v] + Lv]U{v'}

9 for r in Rp s.th. lhs(r) = v
10 do f + UNIFYM(F[v], Mp(r))
11 ProcessD(r,v', (), f, P, Pr,P',L, F)

ProcessD(r,v,d, f,P,Pr,P',L, F)
1 | < LENGTH(d) + 1 if | > LENGTH(rhs(r))

2 then f,, « MOTHERFS(f)
3 if ' € L[v] s.th. F[v'] = fim
4 then App(r,v',d, P')
5 else v + NEWNT(P’)
6 L[v] < L{v] U {v'}
7 Fe['UI] = fm
8 F[v'] = F[v]
9 ApD(r,v',d, P")
10 else
11 vq < Daughter(r,1);
12 fa < Daughter FS(f,n);
13 ProcEss(vg, fq, P, Pr,P', L, F, F,)
14 for v}, € L{v,]
15 do f' + UNIFYD(F,[v4], f,1)
16 d < APPEND(d,v})
17 ProcessD(r,v,d', f')

The function ANNOTATE initializes data
structures, calls the function PROCESS with
each root node of the parse forest and returns
the resulting annotated parse forest P'. L is
used to link nodes to their annotated counter-
parts in another parse forest. The expansion fea-
ture structures are stored in F. F, holds the fea-
ture structures of the nodes after the dominated
subtree has been processed (post-expansion fea-
ture structures). Nodes annotated only with ex-
pansion feature structures but not with post-
expansion feature structures are stored in the
temporary parse forest Pr.

PROCESS annotates the subtree headed by the
argument node. It checks, at first, whether it
was called before with the same node and fea-
ture structure. If so, nothing has to be done.
Otherwise PROCESS checks whether the argu-
ment node is a terminal node. If so, a new ter-
minal node is created in the result parse forest
and linked to the argument node. If the argu-
ment node is not a terminal node, a new non-
terminal node is created in the temporary parse
forest and linked to the argument node. PRO-
CESS then iterates over all analyses of the argu-
ment node. It retrieves the grammar rule of the
analysis (which is represented as a feature struc-

ture) and unifies the expansion feature structure
of the argument node non-destructively with the
mother feature structure of the grammar rule.
The result is passed to the function PROCESSD.

PROCESSD checks whether all daughter nodes
have been processed by comparing the length of
the daughter list d (which is 0 in the first re-
cursion) with the length of the right hand side
of the rule. If both lengths are identical, the
mother node feature structure is retrieved from
the argument feature structure. If an equivalent
node’ has previously been inserted in the re-
sult parse tree, a new analysis with the daughter
nodes listed in d is added to this node by calling
the function Add. If no equivalent node exists,
a new non-terminal v’ is created and linked to
the argument node v. The expansion feature
structure and the post-expansion feature struc-
ture are stored in F[v'] and F,[v'], respectively.
Finally, the new analysis is added to v'.

If some daughter nodes are left for processing,
PROCESSD retrieves the next daughter node of
the argument rule according to the generation
order. It also retrieves the corresponding daugh-
ter feature structure from the argument feature
structure and calls PROCESS with these argu-
ments. Afterwards, it iterates over all the an-
notated nodes which have been linked to the
daughter node by PROCESS. For each node,
PROCEsSsSD unifies the post-expansion feature
structure with the corresponding daughter node
feature structure of the argument feature struc-
ture, appends the node to the list of daughter
nodes and calls PROCESS.

References

Steven Abney. 1997. Stochastic attribute-
value grammars. Computational Linguistics,
23(4):597-618, December.

Sylvie Billot and Bernard Lang. 1989. The
structure of shared forests in ambiguous
parsing. In Proceedings of the 27th Annual
Meeting of the ACL, University of British
Columbia, Vancouver, B.C., Canada.

Chris Brew. 1995. Stochastic HPSG. In Pro-
ceedings of the 7th Conference of the Furopean
Chapter of the Association for Computational
Linguistics, Dublin.

"“Equivalent” means same feature structure, same ex-
pansion feature structure and same post-expansion fea-
ture structure.

Andreas Fisele. 1994. Towards probabilistic ex-
tensions of constraint-based grammars. In
Jochen Dérre, editor, Computational Aspects
of constraint-based linguistic Description II,
pages 3-21. Institute for Computational Lin-
guistics (IMS-CL), Stuttgart. DYANA-2 De-
liverable R1.2.B.

Joshua Goodman. 1997. Probabilistic feature
grammars. In Proceedings of the 5th Inter-
national Workshop on Parsing Technologies
(IWPT °97), pages 89-100, Cambridge, Ma.
Massachusetts Institute of Technology.

Mark Johnson, Stuart Geman, Stephen Canon,
Chiyi Chi, and Stefan Riezler. 1999. Estima-
tors for stochastic “unification-based” gram-
mars. In Proceedings of the 37th Annual
Meeting of the ACL, College Park, MD.

Bernd Kiefer, Hans-Ulrich Krieger, and Detlef
Prescher. 2002. A novel disambiguation
method for unification-based grammars us-
ing probabilistic context-free approximations.
internal report, Language Technology Lab,
DFKI GmbH, Saarbriicken, Germany.

David M. Magerman. 1994. Natural Language
Processing as Statistical Pattern Recognition.
Ph.D. thesis, Stanford University.

Stefan Riezler, Detlef Prescher, Jonas Kuhn,
and Mark Johnson. 2000. Lexicalized
stochastic modeling of constraint-based gram-
mars using log-linear measures and EM train-
ing. In Proceedings of the 38th Annual Meet-
ing of the ACL, Hong Kong.

Mats Rooth and Helmut Schmid. 2001. Parse
forest computation of expected governors. In
Proceedings of the 40th Annual Meeting of the
ACL, pages 458-465, Philadelphia, PA.

Helmut Schmid. 2000. YAP: Parsing and Dis-
ambiguation With Feature-Based Grammars.
Ph.D. thesis, Institute for Computational Lin-
guistics, University of Stuttgart, Germany.

Helmut Schmid. 2002. Lexicalization of proba-
bilistic grammars. In Proceedings of the 19th
International Conference on Computational
Linguaistics, Taipei, Taiwan.

Ronald M. Kaplan Richard Crouch John T.
Maxwell III Stefan Riezler, Tracy H. King
and Mark Johnson. 2002. Parsing the wall
street journal using a lexical-functional gram-
mar and discriminative estimation techniques.

	Table of Content
	Topics
	Authors

