Parsing Mildly Context-Sensitive Languages with Thread
Automata

Eric Villemonte de la Clergerie
INRIA, Rocquencourt, B.P. 105, 78153 Le Chesnay (France)
Eric.De_La_Clergerie@inria.fr

Abstract

We introduce simple but powerful automata,
called Thread Automata, to describe a wide
range of parsing strategies for Mildly Context-
Sensitive languages. Thread Automata are com-
pleted by a Dynamic Programming interpreta-
tion ensuring that tabular parsing may be per-
formed with polynomial worst-case complexity.

1 Introduction

Mildly Context-Sensitive [MCS] formalisms
form an (informal) class of formalisms present-
ing interesting linguistic and algorithmic prop-
erties (Weir, 1988). For instance, they include
Tree Adjoining Grammars [TAG| (Joshi, 1987),
and local Multi-Component TAG [MC-TAG]
(Weir, 1988) where parse trees may be derived
by combining elementary parse trees. MCS also
include simple Range Concatenation Grammars
[SRCG] (Boullier, 2000) where constraints on
ranges of the input string specify linguistic con-
stituents. A common characteristic of all these
grammars is their ability to handle interleaved
and discontinuous constituents, which seems im-
portant in order to handle linguistic phenom-
ena such as topicalization, deep extraction, clitic
movements or scrambling.

MCS are also interesting from an algorith-
mic point of view because their associated lan-
guages may be parsed with polynomial worst-
case complexities in both space and time. How-
ever, there is no unified framework to express
and compare parsing algorithms for MCS. Fur-
thermore, a parsing algorithm is often expressed
for some underlying parsing strategy (generally
a bottom-up strategy), making it difficult to
adapt the algorithm for some other strategy.

We introduce, in Section 2, a new kind of
automata, namely thread automata [TA], that
may be used to describe a wide range of parsing

strategies for many MCS formalisms, including
top-down prefix-valid [pv] strategies. As sug-
gested by their name, the underlying intuition
of TA is that several threads may be followed
during parsing, with only one thread active at
any time. A thread may start subthreads, may
terminate, and may be suspended to return con-
trol either to its parent or to one of its direct de-
scendants. Because a thread may be suspended
and resumed several times, we can recognize in-
terleaved discontinuous constituents by assign-
ing a thread to a constituent. We illustrate these
properties by explaining how to build TA encod-
ing top-down pv strategies for TAG (Section 3)
and ordered sRCG (Section 4).

The interest of TA is not only descriptive but
also algorithmic. Indeed, we present, in Sec-
tion 5, a Dynamic Programming interpretation
of TA that ensures polynomial worst-case com-
plexities in time and space, w.r.t. the length n
of the input string.

2 Thread Automata

Formally, a Thread Automaton A is a tuple
WN,X, 8, F,k,K,5,U,0) where

e X (resp. N) denotes a finite set of terminal
(resp. non-terminal) symbols, with initial
and final non-terminals S and F' being two
distinguished non-terminals;

e The triggering function x denotes a partial
function from N to some finite set K and is
used to capture the amount of information
consulted in a thread to trigger the appli-
cation of some kinds of transitions;

e /{ is a finite set of labels used to identify

1This function is not essential but still useful to re-
duce complexity w.r.t. the grammar size, as illustrated
for TAGs (Section 3).

threads. U is also used by the partial func-
tion § to drive computations by specifying
the threads (subthreads or parents) that
may be created or resumed at some point.
§ is defined from N to U+ = U U{L} where
1L &Uu;

e O is a finite set of transitions.

A thread is a pair p:A where p = u1...u, €
U* is a (possibly empty) thread path, and A some
non-terminal symbol from A. The empty path
is denoted by e. We will usually confuse a thread
with its path, speaking of thread p.

A thread store S is a finite set of threads, rep-
resenting a function from dom(S) to N where
dom(S) C U* is closed by prefix (i.e., pu €
dom(S) = p € dom(S)).

A TA configuration is a tuple (I, p,S) where
[denotes the current position in the input
string, p the active thread, and S§ a thread
store with p € dom(S). The initial configu-
ration is cipit = (0,¢,{€:S}) and the final one
Cfinal = (N, u, {e:S,w:F}) where u = 0(S) and n
denotes the length of the input string.

A derivation step c|— ¢ is performed using a
transition 7 € © of the following kind, where
bracketed (resp. non-bracketed) parts denote
contents of non active (resp. active) threads and
kd(A) being a shortcut for (k(A),0(A)):

SWAP B+-(C : Changes the contents of the
active thread, possibly scanning a terminal
on the input string.

(l,p,SUp:B) I+ laf,p, S UP:C)

=
where a; = a if a # €

PUSH b — [b]C : Creates a new subthread,
suspending its parent.

(l,p,SUp:B) (l,pu, S Up:B Upu:C)

=
where k0(B) = (b,u) and pu ¢ dom(S)

POP [B|C —— D : Ends the active thread,
returning control to its parent.

(l,pu, S Up:B U pu:C) (l,p, S Up:C)

=

where 6(C') = L and pu ¢ dom(S)
SPUSH b[C] — [b]D : Resumes a suspended

subthread of the active thread.

(l,p,SUp:BUpu:C) |—
-
(l,pu, S Up:B Upu:D)
where kd(B) = (b, u)

SPOP [B]c —— Dic] : Resumes the parent
thread of the active thread.

(l,pu, S Up:BU pu:C) |—
-
(l,p,SUp:DUpu:C)
where k§(C) = (¢, L)

One may prove that these definitions imply
d(B) = u for POP and SPOP transitions, and
0(C) = L for SPUSH transitions.

The reflexive transitive closure of |- is noted
= and the transitive closure |+ .

Without restriction, a thread may be sus-
pended infinitely many often, to return to its
parent (L-suspension) or to a subthread wv
(v-suspension). We consider TA subclasses,
namely h-TA, where a thread can be -
suspended at most A times. A sufficient con-
dition to ensure that A is an h-TA is to exhibit
some mapping A : ' — {0,... ,h} such that
the following equations hold:

Vb[C] — [BlD € ©, AC) < A(D)
V[Ble— D[d € ©, A(B) < A(D)
¥[Ble— De€®©, AB) < AD)
VB0 €O, AB)<AC)

0-TA are actually equivalent to Push-Down
Automata, because SPUSH and SPOP transi-
tions are no longer used and because we can as-
sume |[U| = 1, without any loss of generality.

Figure 1 sketches how a Thread Automaton
recognize a?b?c? using threads 1 and 1.1 to rec-
ognize two crossing constituents abc (and thread
1.1.1 for the empty constituent eee).

3 TAGs and TA

A Tree Adjoining Grammar G = (N, X,Z, A, S)
(Joshi, 1987) is essentially characterized by ele-
mentary trees in 7 = ZU.A which correspond to
partial parse trees. The label [(v) of a node v is
a non-terminal in A or a terminal in ¥ (only on
leaf nodes). New trees may be derived by substi-
tuting some initial tree o € 7 at aleaf node v, or

111 ...

11L||L|| c ||

| SPOP| | spop| POP|

1---- _a |pUsH | .L.S.PU.SH. l.__C ISPUSH

| SPOP| | SPOP| | POP|

€.k PUSH 1] spusH L SPUSH .
Figure 1: A derivation for a?b?c?

by adjoining some auziliary tree 5 € A at node
v. Figure 2 shows an example of adjoining where
(is inserted at node v with the subtree rooted
at v inserted on the distinguished foot node f
of 8. To simplify this presentation and without
generality loss, we assume that all nodes are ei-
ther marked as non-adjoinable [NA]| or as oblig-
atory adjoinable [OA], leaf nodes being marked
as NA. We suppose the reader familiar with the
details about TAGs.

Figure 2: Tree traversals

As suggested by Figure 2, parsing TAG may
be seen as traversing elementary trees (from left
to right), using standard dotted nodes °v, v,
Ve, and v* to specify which part of a tree has al-
ready been recognized. Using TA, we associate
a thread to each tree traversal. When a sub-
stitution or an adjunction starts, a new thread
is started (with PUSH transitions [SCALL]
or [ACALL]). When a substitution or an ad-
junction is completed, the associated thread
is removed (with POP transitions [SRET] or
[ARET]). More interestingly, the thread at-
tached to an auxiliary tree is 1-suspended to
return to the adjunction node when reaching
the foot node (with SPOP transition [FCALL])
and resumed when coming back from the ad-
junction node to the foot node (with SPUSH
transition [FRET]). Intuitively, a thread may
only be l-suspended once (to handle a foot

node) and at most d direct subthreads of a
thread may be alive at any time, where d de-
notes the maximal depth of elementary trees.

More formally, we build the Thread Automa-
ton Ag = (Ng, X, S,ret, K, K, 0,U,0) :

e Ng ={N® N*|N € N}UD¢g where D¢ de-
notes the minimal set of all dotted nodes for
G modulo the equivalence relation identify-
ing dotted nodes that actually correspond
to a same computation point.2

e £ = {N% N°|IN € N} U {adj,foot} and
U =H{0,...,d} where d = maxe7 depth(t)

e « and 0 are defined as follows, where N =
l(v) and u = depth(v) :

- rO(*v) = (N u)
A ko) = (adjw)
Subst | kd(ev) = (N®, u)
foot kd(of) = (fo ot , L)

e O includes the following transitions,® to
handle

— a terminal node v with [(v) = a
a
o/ Ve

(SCAN)

— a substitution node v and an initial
tree o with [(v) =1l(rq) = N

(SCALL) N*® +— [N*]N?®
(SSEL) N1,
(SPUB) ro® et
(SRET) [ev|ret — v

— an adjunction node v and an auxiliary

tree § with I[(v) = l(rg) = N

(ACALL) N®+— [N*]N®
(ASEL) N%— °*rg
(APUB) r3® —ret
(ARET) [Ve|ret — v°®

%for instance, v* = °*u if p is the rightmost brother
of v and v = *uif p is the leftmost son of v.

3These transitions also illustrate the role of the trig-
ger function x. For instance, without , [FCALL] be-
comes [°v]of —— ov[of] referring to nodes from two
different trees and leading to complexity in O(|G|?), in-
stead of O(|G|) otherwise. We express with « that the
triggering info for [FCALL] is to reach a foot node, its
name being not pertinent.

— afoot node f and an adjunction node v

(FCALL)
(FRET)

[*v]foot — v]foot]

adj[of] — [adj] fe

The automaton Ag encodes a top-down pv
parsing strategy for G. It also belongs to the
1-TA subclass (at most one L-suspension), be-
cause of the mapping A defined by A(*v) =
M%) = Mve) = Mv®) = 0 if v is strictly
on the left of a spine (or in an initial tree);
A(%v) = AMv®) = AMre) = AMv®) =1if vis
strictly on the right of a spine; A(*v) = A\(v®) =
0 and A(ve) = A(v®) = 1 if v is on a spine;
A(N®) = A(N?®) =0 if N is a non-terminal; and
A(ret) = 1.

By assigning a thread to a set of elementary
trees and slightly extending the definition of 4,
one can describe parsing strategies for tree-local
or set-local Multi-Component TAG (Villemonte
de la Clergerie, 2002).

4 Ordered simple RCG

Figure 3 illustrates the ordered simple RCG
[0sRCG] clause v : A(X1 X2 X3Xy, X5X6) —
B(X1, X3, X5)C(X2, Xy, Xg) where range vari-
ables X; are instantiated by ranges of the input
string. A discontinuous constituent A is built
from two discontinuous constituents B and C
that interleave their ranges. The two parts of A
are separated by a hole range H, inherited from
some ancestor or sibling of A. OsRCG may typ-
ically be used to describe such phenomena of
complex constituent interleaving. Actually, os-
RCG, like simple RCG, are equivalent to Linear
Context-Free Rewriting systems (Weir, 1992), a
very general class of MCS.

\
\

AL

SN
/
ALAALLAA

Figure 3: OsRCG clause v

More formally, a 0sRCG G = (N, X, V,C, S)
is a RCG (Boullier, 2000) such that each clause
~v € C is of the form Ay — Ay,... , A, with :

1. The head literal A9 = Ny(af,...,amn
where Ny is a non-terminal in N, aj =
Qf.1-.. Q. f,, and oy ; is a terminal in ¥ or
a range variable in V. We note ranges(y) =
{kilk=1,... mAi=1,..., f;}, lexically
ordered.

2. The body literal A; = N;(Yj1,... ,Yj.mj)
where N; is a non-terminal and Yj; is a
range variable.

3. Each range variable X of v has exactly two
occurrences, one in the head literal (X =
ak;) and one in some body literal (X =
Y;1). We note k.i >, j.l.

4. If a range variable X precedes a range vari-
able Y (as argument) in some body literal,
then X also precedes Y (as argument) in
the head literal (total range ordering), i.e.

Py AT By gl L= <o

We assume that each non-terminal N € N
has a fixed arity a(N). An instantiation o from

range variables X to ranges o(X) = [l,r[of
the input string must satisfy (a) a concatena-
tion constraint @ = ajae with o(a) = [l,]

if o(ay) = [l,r] and o(a2) = [r,s[; and (b)
a literal A = N(aq,...,q4)) With o(4) =
(o(a1),... ,0(aquy) if its arguments «; are all
satisfied. A literal A is derivable for o if there
exists a clause v : Ag — A1,...,A,, such that
o(A) = 0(Ay), o satisfies 4; i > 0, and all A;
are derivable.

We define the number f,j of uncompleted
constituents at A;, i.e. started before A; but
not yet finished, by |{j'|3r1 < re < r3, 71 >
J AN > j 1 AT > j’.mj/}| .

Because the ranges occurring in a clause are
ordered, it is relatively easy to describe a TA en-
coding a top-down left-to-right pv parsing strat-
egy by traversing each range k.i in order, execut-
ing the action attached at k.i: create or resume
a thread for some sub-constituent A;, or resume
the parent thread at holes. We build the Tread
Automaton Ag = (Ng, X, S,ret, k,K,6,U,O)
such that:

o Ng = N U {ret} U {vro, Wily € C, ki €
ranges(7)}, where 7 ; are new symbols, de-
noting computation points and similar to
dotted rules.

e K =NU{void} and U = {0,... ,d}, where
d = max, ; #,j denotes the maximal num-
ber of uncompleted body literals at some
point in a clause.

® ”5(7%.@') = (Njaﬁ'yj) if ki +1 Dy J- 1
k0(Vki) = (void, tj) if ki + 11>, j.l and
I > 1; ké(vki) = (void, L) if ki is a L-
point (i.e., k.j € ranges(y) = j < 1).

For each clause v, © includes the following
transitions:

(SEL) ’}/: Nol—)’)/l_o
(PUB) Ay ;——ret if k.i is the last range of .

(SCAN) ’yk_ialﬂ;l’yk_i_i_l if AL 441 is a terminal.

(CALL) N; — [N;]|N; for all non-terminals
Nj, started at x4, i.e. when k.i+ 11>, j.1.

(RET) [yg.i]ret — ~vgip1 if agiq1 s the last
argument of some body literal in ~.

(HOLE) void[yk;] +—— [void]ygi1.0 if ki is a
L -point, but not the last one.

(COMP) [yg.iJvoid — 7k i+1[void] if a1 is
a range variable, not occurring as the last
argument of a body literal.

Ag is an h-TA with h = a — 1 with a =
maxyen a(N) denoting the maximal arity of a
non terminal.

5 Dynamic Programming
interpretation

Directly applying transitions upon configura-
tions would lead to exponential time complex-
ity and even looping in many cases. Instead,
we design a Dynamic Programming |[DP| inter-
pretation of TA that allows us to build tabu-
lar parsers running in polynomial complexity.
We first identify a class of derivations, called
escaped Context-Free derivations, that may be
represented in a compact way using items. Then
we show how these items may be combined to-
gether and with transitions to retrieve all possi-
ble derivations.

5.1 Escaped Context-Free derivations

An escaped Context-Free [xCF] derivation D
resumes all information relative to the active
thread 7 of a given configuration, namely its
starting point, its current ending point, and

when it was suspended to return to its parent
thread (_L-suspension) or to some uncompleted
subthread 7v (v-suspension). For instance, Fig-
ure 4 shows an xCF derivation with @ = pu
created at S, with a 1-suspension between C
and D, two v-suspensions (AB and GH), and a
w-suspension (EF).

Formally, D is characterized by (d;)i—o..2m+1
where d; are sequences of transitions leading to
configurations ¢; = (l;, p;, S;), such that:

= cobo |
Cinit d(] Co dl Cl...Com d2m+1 Com+1

and

1. A new subthread @ = pou of the ac-
tive thread py is created at ¢y (7 &
dom(Sp)), active at comt1 (Pomt1 =
), and alive between ¢y and copmi1
(col= (1,p,S) |- com41 = m € dom(S)).

2. Each derivation co; | (I,p,S) = ¢2i11, 1 =
0...m, is performed on thread p = 7 or on
subthreads p = m¢ no longer alive at ¢p,41
(p & dom(Sam1))-

3. Each derivation 622‘,1|i <l,p, S> |i C2i, 1=
1...m, suspends pg;—1 = 7 and gives con-
trol to either ancestors (_L-suspend) or de-
scendants alive at cop,+1 (v-suspend).

(L-susp)
(v-susp)

7 not prefix of p
p=Tvqg N\ TV E dOHl(S2m+1)

5.2 Items

An item is a trace of a xCF derivation where
we remove as much as possible useless informa-
tion in order to increase computation sharing.
In particular, we do not keep full configurations
¢ = (l,p,S Up:A) but only micro-configuration
¢ = (I, A) or k-micro-configuration ¢ = (I,a)"
where a = k(A). We will often simplify (/,a)"”
into (I, a).

Given an xCF derivation D, its projection D
is defined by an item of the form

" /C/Camm1

where C = vy : S1...v; : S;...Um 2 Sy, S5 =
Goisi"cz”, and v; = v € UL if 022‘—1’%% c9; 1S a
v-suspension.

For instance, the item s/v : ab, L : ed,w :
ef,v: gh/I is associated to the xCF derivation
of Fig. 4.

Figure 4: From a xCF derivation to item s/v : ab, L : cd,w : ef,v: gh/I

5.3 Application rules

Combining transitions and items to build new
items will generally involve two items [and J,
I being related to a parent thread and J to some
sub-thread u. Furthermore, either I prepares an
extension of its son J by filling its | -suspensions
(down extension, Figure 5) or J prepares an ex-
tension of its parent I by filling its u-suspensions
(up extension, Figure 6). To define formally
these extensions, we need some auxiliary defi-
nitions.

Figure 6: up extension J /™1

Given an item I = (I, a) /u;:5;/ (r, B), we de-
fine I* = (r,B), 6(I) = 0(B), and its index
set ind(1) = {u € Ut|u = 5(I) A Fi,u = u;}.
For u € ind(I), we define its u-complement
I/u = uZ-I:SZ-I .. quSZk where {il < ... < ’Lk} =
{ijlu; # u} and i; < ij41; it u-subsegment
I|u = Sh . Slk where {Z'l < ... < Zk} = {z|ul =
u} and i; < 4;41; and its u-line I_,,, by

Iy= Iy (r,xB)
I*)J_ = <l,a) I|J_ <7“, HB>

uel

otherwise

We can now define the up and down exten-
sion predicates when 0(/) = v and 6(J) = L:

J/uI<:>def J*,J_:I_VMJ.
INuwJ =rdef [ouw=J-1 I

Using these predicates, we easily specify how
to combine transitions and items, as shown in

Figure 7. The case of a SPOP transition is illus-
trated in Figure 8: combining I = s/u : ab/C,
J=ua/l :be/d, and 7 : [C]d — E]d] returns
the item s/u : ab,u : ¢d/E that extends I.

Figure 8: Applying a SPOP transition 7

5.4 Some results

The DP interpretation is sound (for each deriv-
able item I, there exists a derivable configura-
tion ¢ such that ¢ = 1°)* and complete (for each
derivable configuration ¢, there exists a deriv-
able item I such that ¢ = I°®).

The termination of the DP interpretation is
ensured for A-TA, with naive worst-case com-
plexities O(n?*2%) for space and O(n3+2%) for
time, where s, bounded by h + dh, denotes
the maximal number of suspensions occurring
in items. Indeed, the number of |-suspensions
and of subthreads being bounded, the number
of distinct items is also bounded. Space com-
plexity comes from the number of possible dis-
tinct positions occurring in items. Time com-
plexity is given by the number of distinct posi-
tions that are consulted when applying the ap-
plication rules.

For h = 0, we retrieve the worst-case complex-
ities for CFG, namely O(n?) in space and O(n?)
in time. For TAG (h = 1), we get O(n**2%) in
space and O(n°t2?) in time, where d denotes
the maximal depth of elementary trees. These
complexities are not optimal but correspond to
those mentioned in (Eric Villemonte de la Clerg-
erie, 2001) for a very similar parsing algorithm
for TAG, based on 2-Stack Automata [2SA], and
which seems to be efficient in practice for lin-
guistic grammars.

4assigning the initial item (0, L) //(0,.5) t0 Cinit-

B-%C (l,a) /C/(r,B)

(SWAP) {(I,a) /C/{r +|a],C)
br— [b]C I
(PUSH) (r,b) /] {r,C)
J
BIC — D f
(l,a) /C/(r,B)
(POP) {0.a) /1,u] (5. D)
) —) () /€] (5O
(SPUSH) {1,a)/C, L (5,0) (rb)] (r, D)
J
(SPOP) Bler— P (1,a) /C/ (r, B)'

(l,a) /C,u: {r,b) (s,c) / (s, D)

ar=aif a#e

{ I* = (r, B) AN kd(B) = (b,u)
u ¢ ind (1)
J /"I
{ kO(B) = (b,u)
J*=(s,C) ANind(J) C {L}
I\u
{ = (r, B) Ard(B) = (b,u)
5(C) = (¢, 1)
J /I
kd(B) = (b,u)

J*=(5,C) Nkd(C) = (¢, L)

Figure 7: Application rules

These worst-case complexities are upper esti-
mations. A finer analysis gives, in many cases,
complexities as low as O(n?*) for space and
O(n3%#) for time (Villemonte de la Clergerie,
2002).

6 Conclusion

The Thread Automata presented in this pa-
per generalize and simplify various kinds of au-
tomata that have been previously proposed to
parse MCS languages such as 2SA for TAGs.
They may be used for a wide range of languages
and parsing strategies. Their DP interpreta-
tion provides a uniform method to build tabular
parsers for these languages, running in polyno-
mial time, independently of the underlying pars-
ing strategies.

We should implement the DP interpretation
for TA in a near future, extending TA to handle
logic arguments.

We would also like (a) to compare the formal
power of TA w.r.t. other automata formalisms
such as Tree-Walking Transducers (Weir, 1992)
and (b) to investigate the descriptive power of
TA for other linguistic formalisms. For instance,
it does not seem possible to use TA in their cur-
rent form to recognize the MIX language of
strings having an equal number of each letter
of some alphabet. The MIX language is an ex-

treme case of scrambling but is conjectured not
to be a MCS language.

References

Pierre Boullier. 2000. Range concatenation
grammars. In Proceedings of the Sixth In-
ternational Workshop on Parsing Technolo-
gies (IWPT2000), pages 53—64, Trento, Italy,
February.

Aravind K. Joshi. 1987. An introduction to
tree adjoining grammars. In Alexis Manaster-
Ramer, editor, Mathematics of Language,
pages 87-115. John Benjamins Publishing
Co., Amsterdam/Philadelphia.

Eric Villemonte de la Clergerie. 2001. Refining
tabular parsers for TAGs. In Proceedings of
NAACL’01, June.

Eric Villemonte de la Clergerie. 2002. Pars-
ing MCS languages with thread automata. In
Proc. of TAG+6, May.

David Weir. 1988. Characterizing Mildly
Context-Sensitive Grammar Formalisms.
Ph.D. thesis, University of Pennsylvania.

David Weir. 1992. Linear context-free rewriting
systems and deterministic tree-walking trans-
ducers. In Proc. of ACL’92.

	Table of Content
	Topics
	Authors

