Fluency and Completeness in
Instance-based Natural Language Generation

Sebastian Varges
LTG and ICCS
varges@cogsci.ed.ac.uk
Division of Informatics
University of Edinburgh

Abstract

A fundamental assumption underlying candidate
ranking in corpus-based approaches to Natural Lan-
guage Generation is the idea that in order to be flu-
ent the output should be as similar to a (human-
authored) corpus as possible. However, the goal of
maximizing fluency can conflict with other goals, like
conveying the maximal amount of input and being
faithful. We employ an instance-based sentence gen-
eration system to investigate how the right balance
between the different goals can be struck and show
empirical results supporting our proposals.

1 Introduction

In recent years, ranking approaches to Natural Lan-
guage Generation (NLG) have become increasingly
popular. They abandon the idea of generation as
a deterministic decision-making process in favour of
approaches that combine overgeneration with rank-
ing at some stage in processing. A major motiva-
tion is the potential reduction of manual develop-
ment costs and increased flexibility and robustness.

Several approaches use ranking models trained on
corpora of human-authored texts to judge the flu-
ency! of the candidates produced by the generation
system. The seminal work of (Langkilde and Knight,
1998) presents a sentence realizer that uses ngram
models trained on a large corpus to rank candidates.
Ratnaparkhi (2000) presents a sentence realizer that
has been trained on a domain-specific corpus aug-
mented with semantic attribute-value pairs. The
goal of the system is to learn attribute ordering and
lexical choice. Bangalore and Rambow (2000) de-
scribe a realizer that uses an ngram model combined
with a tree-based stochastic model. Ranking tech-
niques have also been explored in more restricted
areas like determining the ordering of NP premodi-
fiers (Shaw and Hatzivassiloglou, 1999).

In this paper, we investigate how to deal with
situations in which the goal of maximizing fluency

L A generated sentence is assumed to be ‘fluent’ if it is likely
to belong to a chosen training corpus (corresponding to the
‘prior probability’ in Statistical Machine Translation).

conflicts with other goals like conveying the max-
imal amount of input — completeness according to
(Wedekind, 1988) — and being faithful. A trade-off
between these goals may be necessary if candidates
need to be compared that express different parts of
the input. This in turn may be due to the fact that
the grammar is not able to produce candidates that
convey the entire input, and even if there are such
candidates, there may be other ones that express
slightly less input but are more fluent.

This paper is organized as follows: first, we
present Instance-based Natural Language Genera-
tion, giving examples from an implemented system.
In section 3, we describe the tension between fluency
and completeness, propose two solutions and discuss
under which circumstances they are applicable. Sec-
tion 4 discusses how problems of lack of faithfulness
can arise from the omission of parts of the gener-
ation input and shows two techniques that remedy
the problem. In section 5, we show empirical results
supporting our proposed solutions. Section 6 pro-
vides further discussion, and section 7 concludes the

paper.

2 Instance-based NLG

The Instance-based Natural Language Generation
approach of (Varges and Mellish, 2001) employs
two basic components: a rule system that gen-
erates a number of possible realization candidates
from a meaning representation and an instance-
based ranker that uses examples taken from a train-
ing corpus to score the candidates. In general, it
is assumed that the highest ranked candidate is the
output of the generator. It is also assumed that the
generator’s goal is to produce a single sentence.

The input to the generator is a set of attribute-
value pairs. An example:

0 IN_FULLNAME Bruno DeGol

1 IN_OTHERPOST_NODET | chairman

2 | IN_OTHERCQMP DeGol Brothers Lumber
(1) [37] IN_OTHERCOMP_LOC Gallitzin Pa

4 | POST_INDEF director

5 | COMP_DESCR bank-holding company

6 | BOARD_INCR 11

NP-IN_FULLNAME -=> IN_FULLNAME (Bruno DeGol)
NP-POST_INDEF -=> a POST_INDEF (director)
PP-COMP_DESCR --> of this COMP_DESCR (bank-holding company)
S-BOARD_INCR -=> expanding the board to BOARD_INCR (11)

Sup-IN_FULLNAME -—=> NP-IN_FULLNAME VP-POST_INDEF .

NP-IN_FULLNAME -—> NP-IN_FULLNAME NP-IN_OTHERPOST_NODET ,

VP-POST_INDEF -—>
S-POST_INDEF

was

>

named S-POST_INDEF ,
NP-POST_INDEF PP-COMP_DESCR

S-BOARD_INCR

Figure 1: Input rules (top) and phrasal rules (bottom) for treebank sentence (slot fillers in brackets)

This attribute-value representation is part of the se-
mantic markup that has been manually applied to a
corpus of texts on management successions as they
can be found in the Who’s News section of the Wall
Street Journal. The original corpus sentence is part
of the Penn treebank II:

(2) Bruno DeGol, chairman of DeGol Brothers Lumber,
Gallitzin, Pa., was named a director of this bank-holding
company, expanding the board to 11 members.

The semantic markup is based on a flat annotation
scheme that assigns semantic roles to data that is ex-
pected to be the input to the generator. This implies
that content selection has already taken place. The
level of semantic representation is similar to that
of many Information Extraction applications. Tags
(used as attributes in the generation input) can only
mark contiguous strings which are used as ‘values’
or ‘slot fillers’ in the generation input. Determin-
ers are not part of the marked string and there-
fore are not expected to be part of the slot fillers.
However, they are indicated by the annotation tags
(eg.: IN_OTHERPOST_NODET), allowing the system to re-
quire certain determiners even if they are not adja-
cent to the slot filler (e.g.: a [IN_AGE 59]-year-old
[IN_OTHERPOST_INDEF director])

The treebank structure for sentence (2), in com-
bination with the semantic tags is used to automati-
cally derive a context-free grammar (see (Varges and
Mellish, 2001) for a description of the grammar con-
struction algorithm). Some of the rules extracted
are shown in figure 1. There are two different kinds
of rules: ‘input rules’ that consume input tags di-
rectly, and ‘phrasal rules’ that combine the result
of input rules and other phrasal rules. Categories
of rule left-hand sides are formed by concatenating
the syntactic category of the treebank parse with the
first tag found on the rule right-hand sides.

We divided the annotated treebank of 144 sen-
tences into training and test set. For a training set of
104 annotated treebank sentences, the system con-
structs 155 different input rules and 240 different
phrasal rules. These are expressed as productions
in a production system which organizes them into a
Rete network (Forgy, 1982). Compared to standard
chart algorithms, Rete networks have the advantage

of avoiding repeated matches when rules have some
right-hand side elements in common. This is par-
ticularly useful when large numbers of rules are de-
rived automatically. Our Rete-based generator basi-
cally works like a bottom-up chart generator except
that active edges (partially activated productions)
are not part of the chart but rather part of the Rete
network.

When input (1) is given to a rule system contain-
ing the rules in figure 1, the rule system is able to
produce the sentence in (2) as a template into which
the slot fillers can be inserted:

(3) IN_FULLNAME , IN_OTHERPOST_NODET of IN_OTHERCOMP ,
IN_OTHERCOMP_LOC , was named a POST_INDEF of this
COMP_DESCR , expanding the board to BOARD_INCR mem-
bers .

The grammar interpreter is able to generate 9713
candidates overall for input (1). Many of these have
errors and are expected to be ranked low.

The training set sentences are not only used
for grammar rule construction but also as nearest-
neighbours in the instance-based ranker. To this
end, candidates as well as instances, i.e. anno-
tated sentences of the training set, are represented as
ngrams derived from template-like representations
as in (3), yielding trigrams like {‘named a POST_INDEF’,
‘a POST_INDEF of’}, for example. As a result of this
choice of representation, only tags and words out-
side tagged areas are visible to the ranker. Slot fillers
do not influence the result of ranking. We use tri-
grams rather than bigram terms since the context
provided by bigrams seems too limited. This is be-
cause punctuation is treated just like words, result-
ing in a contextual ‘boundary’ for bigram terms (a
bigram-based ranker has no means to relate words
to the left and the right of a comma, for example).

Pseudo-document vectors are constructed for the
trigram terms derived from both training set in-
stances (at compile-time) and edges (at run-time),
and the score of an edge with respect to some in-
stance is determined by the cosine distance between
the two vectors. This is a common distance met-
ric in Information Retrieval. The ngram terms are
weighted according to the tf - idf term weighting
scheme. A template like (3), if generated, is a per-

fect match for the corresponding instance, yielding
a maximal cosine score of 1.0. Depending on the
number and weight of matching terms in relation to
non-matching terms, many similarity scores will be
lower.

Candidate production and ranking are interleaved
so that the search for candidates can be restricted
as soon as a first candidate has been produced. (We
treat all edges of syntactic category S as candidates
for the moment.) This is done by employing an A*-
style search algorithm which computes the best pos-
sible score (the expectation) for all edges. The ex-
pectation is the score that an edge may obtain if it
is combined with other edges that contain exactly
those terms that are still missing in the edge w.r.t.
to a specific instance. Therefore, there are gener-
ally as many expectations for some edge as there
are instances in the instance base. If an edge has
no expectation that is greater than the actual co-
sine score of an already existing candidate, it can
safely be dropped since it will never become a bet-
ter sentence than has been obtained already. Thus,
the score of already produced candidates serves as
a threshold for the expectation of edges. Search is
most efficient if the expectation is also used to de-
termine the agenda ordering.

3 Fluency and completeness

A fundamental assumption in instance-based NLG is
the idea that in order to be fluent the output should
be as similar to human-authored corpus sentences as
possible. Consider the following example sentence
taken from the test set and the corresponding input:

(4) James L. Pate, 54-year-old executive vice president, was
named a director of this oil concern, expanding the
board to 14 members.

0 | IN_FULLNAME James L Pate

1 IN_AGE 54

2 | IN_OTHERPOST_NODET | executive vice president
3 POST_INDEF director

4 | COMP_DESCR oil concern

5 BOARD_INCR 14

From input (4) the grammar rules produce three
candidates that have a cosine score of 1.0 with some
instance of the training set, i.e. those instances have
exactly the same template representation as one of
the candidates:

(5) James L Pate was named a director of this oil concern .
(coverage 3/6)

(6) James L Pate was elected a director of this oil concern
, increasing the number of seats to 14 . (coverage 4/6)

(7) James L Pate , 54 years old , was elected a director of
this oil concern , expanding the board to 14 members .
(coverage 5/6)

Overall, 7074 candidates can be produced for in-
put (4) including those that have a lower rank. A*-
based pruning keeps this number down to 11. Can-
didate (5) realizes half the input, (6) realizes 4 out of
6 attribute-value pairs and (7) 5 out of 6. Thus, the
candidates exhibit a lack of completeness with re-
spect to the input: The instance-based ranker tends
to choose small subsets of the input semantics that
have been expressed by some training set instance.
In principle, being similar to the corpus sentences
is a desirable property and a general characteristic
of corpus-based approaches — the goal is to mimic
some aspects of the corpus. However, only max-
imizing this similarity can be a problem. Candi-
dates (5-7) could in fact be generated by a system
that simply has a complex template corresponding
to each instance. In other words, the creativity of
the rule-based grammar has not been exploited by
the instance-based generator. The grammar rules
might be able to generate previously unseen candi-
dates that better express the input. However, these
are not preferred by the ranker. (Furthermore, if
grammar interpreter and ranker are interleaved as
in our approach, one tends to end up with only very
short candidates that have a high score since these
can be used by the A*-search algorithm to prune
away longer but lower scoring candidates.)

One obvious first attempt to address this prob-
lem is to extend the definition of a ‘candidate’ from
any edge of syntactic category S to also require the
complete realization of the input. This yields the fol-
lowing best candidate for input (4) (tags are shown
as well):

(8) [IN_FULLNAME James L Pate], [IN.AGE 54] years old,
[IN_OTHERPOST_NODET executive vice president], was
elected a [POST_INDEF director]| of this [COMP_DESCR oil
concern], expanding the board to [BOARD_INCR 14] mem-
bers .

This sentence has a cosine score of 0.95 and has
therefore previously lost out against its shorter but
higher scoring competitors (5-7). However, it can-
not generally be assumed that the generator is al-
ways able to express the entire input semantics in
one sentence although in this case we were lucky.
For example, there are 5 tags in the test set that
do not occur in the training set (overall, there are
74 different tags in the corpus annotation). Further-
more, there is no guarantee that a given combination
of tags known to the grammar can be expressed in
a single sentence. This is part of a general prob-
lem that has been described as the “generation gap”
(Meteer, 1990). The fundamental question is how
a generation input can be constructed by some ex-
ternal component without knowing exactly what the
grammar is able to express.

3.1 Combining cosine score and coverage

Here, we are not trying to decide whether or not the
generation gap can be bridged but rather address
the practical question how we can influence the cov-
erage of the input semantics in an instance-based
approach to candidate ranking without hard-wiring
a completeness constraint. Our first proposal is to
use a linear combination of the cosine score and a
coverage score to compute a new edge score:

[\ € {0...1}]

9) (1=X)-cos(E,I)+ \- 2emel

[Seminput|

The cosine between edge E and some instance I (to
the left of 9) is combined with a coverage score which
is computed by dividing the size of the semantics of
E by the size of the input.? In principle, the cover-
age score can take into account different weights for
parts of the semantic input. A high value of A places
more emphasis on completeness, a low value yields
candidates that more closely resemble instances.

Choosing different values for A results in candi-
dates of different sentence lengths and input cov-
erages. Generating the complete candidate (8) for
input (4) requires a A of at least 0.2. The nearest-
neighbour of (8) is a training set template that lacks
the IN_OTHERPOST_NODET tag:

(10) [IN_FULLNAME William C. Ballard Jr.], [IN_AGE 48]
years old, was elected a [POST_INDEF director] of this
[COMP_DESCR distilled beverages concern], expanding the
board to [BOARD_INCR 11] members.

The linear combination of cosine score and
coverage score effectively ‘squeezes’ the missing
IN_OTHERPOST_NODET tag into the nearest-neighbour
template.?

There are always certain values of A at which the
system ‘switches’ between different best candidates.
One can only obtain short candidates (5,6) if A=0.0.
In our experience, the switching points and number
of best candidates for different settings of A can vary
greatly for different inputs. For example, the system
finds only two best candidates for a longer input of
10 tags:

(11) X >= 0.05: Michael Henderson , 51 -year-old group
chief executive , was named chairman of this metals and
industrial materials maker , succeeding Ian Butler , 64
. (coverage: 7/10)

(12) X < 0.05: Michael Henderson was named chairman of
this metals and industrial materials maker . (coverage:
3/10)

2When we talk about the ‘length’ of an edge in this paper,
we are referring to the size of the semantic set. This broadly
correlates with the length of the surface string (see section 5).

3However, it should be noted that the system does not
directly adapt templates to new inputs but rather uses gram-
mar rules derived from an analysis of the instances to produce
the output candidates.

One cannot know ahead of time how many differ-
ent candidates there are for all values of A\, where the
switching points are, or whether increasing A would
result in larger coverage.

On the other hand, it seems possible to choose a
‘reasonable’ setting for A (0.2, for example) if the
goal is simply to express as much input as possible
without compromising fluency (i.e. similarity be-
tween candidate and nearest-neighbour) too much.
In fact, the use of a linear combination suggests that
there is a trade-off between fluency and completeness
in the sense that the cosine decreases as the coverage
weight A increases. This is indeed what we find (see
section 5).

3.2 Generating candidates into several
ranked lists

We would like to take a step back at this point and
ask what we actually expect the output of a real-
izer to be in the context of an overgeneration ap-
proach. For text generation, or any input for which
we are unsure whether it can really be expressed in
a single sentence, there is a possibility that we do
not want to express a maximal number of tags in
the first sentence since we do not know whether the
remaining semantics can be expressed in the follow-
up sentences. We would rather aim at generating a
globally best text than a locally best first sentence.

We therefore propose that a realizer used in the
context of a text generation system produce several
ranked candidate lists, each one for a different subset
of the input semantics. Follow-up sentences would
be generated for the remaining semantics of these
candidate lists which again return a set of ranked
lists. The ranked lists could be organized in a lattice
or similar data structure. The text generator would
then choose a path though this data structure.

In this paper, we concentrate on sentence realiza-
tion but believe that maintaining several dynami-
cally created candidate lists for different semantic
indices are a useful output of a sentence realizer if it
is unclear how much semantics should be expressed
in the individual sentences.

As an example, we take again input (4). The
system dynamically creates 12 ranked lists (‘bins’)
according to the semantic indices of the candidates
that have been produced (the indices can be found
in first column of input 4). In addition to bins that
contain (5-7) as their best candidate, the following
sentences are the best candidates in their respective
bin:

(13) sem=0 2 3 4 5: James L Pate, executive vice president,

was elected a director of this oil concern, increasing the
number of seats to 14 . (cos=0.96, cov=>5/6)

(14) sem=0 1 2 3 4 5: James L Pate, 54 years old, executive
vice president, was elected a director of this oil con-
cern, expanding the board to 14 members . (c0os=0.95,
cov=6/6)

(15) sem=01 3 4: James L Pate, 54 years old, was named
a director of this oil concern . (cos=0.73, cov=4/6)

(16) sem=0 2 3 4: James L Pate, executive vice president,
was named a director of this oil concern . (cos=0.70,
cov=4/6)

(17) sem=0 1 2 3 4: James L Pate, 54 years old, executive
vice president, was named a director of this oil concern
. (cos=0.61, cov=>5/6)

(18) sem=0 1 3: James L Pate, 54, was elected a director .
(c0s=0.47, cov=3/6)

(19) sem=01 2 3: James L Pate, executive vice president,
54, was elected a director . (cos=0.43, cov=4/6)

(20) sem=0 2 3: James L Pate, executive vice president, was
elected a director . (cos=0.39, cov=3/6)

Behind every shown candidate there is a list of
lower ranked candidates that express the same se-
mantics (which are not shown). The number of bins
depends on the size of the input and the combina-
tions of tags that can be produced by the grammar.
For example, the input of 10 tags that yields (11)
and (12) results in 50 different bins.

Generating candidates into different bins also
solves another problem of being too similar to the
corpus: if there is a good match for a long candi-
date, the system might not be able to find a shorter,
lower scoring one.

3.3 Effects on A*-search algorithm

A linear combination of cosine and coverage score
affects the computation of the expectation: we need
to be optimistic about the coverage score (as we
are about candidate-instance similarity) and assume
that the expectation for the coverage score is always
maximal (1.0). We have to make this assumption
since we do not know what combinations of tags are
licensed by the grammar — again a manifestation of
the fundamental problem of expressibility. The com-
bined expectation therefore is higher than the cosine
alone, making it easier for edges to pass the thresh-
old set by the cosine of already existing candidates.
This extends the search space but does not lead to
problems in practice except for extreme values of A
(see below).

The use of multiple rankings allows candidates
only to compete within their bins. Since there are
fewer candidates in each separate bin than overall,
less pruning takes place. Again, this does not pose
a serious practical problem.

4 Faithfulness problems

Realizing the generation input only partially can re-
sult in non-intended interpretations. An example of
a faithfulness error due to the omission of certain
tags:

(21) George L Manzanec, senior vice president, was named a
group vice president of this natural-gas-pipeline concern.

(22) George L Manzanec, senior vice president of Texas
Eastern Corp., was elected a group vice president of this
natural-gas-pipeline concern .

Only the second realization is faithful to the in-
put since Manzanec is senior vice president at an-
other company, not the natural-gas-pipeline concern
as (21) implies.

Solutions to this faithfulness problem need to con-
sider that the only semantic information available to
the system is the annotation of the corpus sentences.
We do not have a deep semantic model that is able to
reason about possible interpretations of candidates.

4.1 Cooccurrence constraints

One approach to address this problem is to man-
ually specify hard cooccurrence constraints on se-
mantic tags that effectively act as additional filters
on candidates. For example, they can state that
both 1N OTHERCOMP and IN_OTHERPOST-NODET need to be
expressed together. Tag coocurrence constraints can
be applied to two or more tags which can be regarded
as single tags that are allowed to be realized discon-
tinuously.

An efficient implementation of tag cooccurrence
constraints is possible by only checking for those se-
mantic indices that are actually present in the input.
The constraints are specialized to semantic indices
when the input is given to generator. This means
that constraints that do not apply (since not all tags
that need to cooccur are present in the input) need
never be checked during generation. For example,
consider the following constraints:

coocurrenceCst (["IN_OTHERCOMP","IN_OTHERPOST_NODET"])

coocurrenceCst (["IN_OTHERCOMP","IN_OTHERPOST_DEF"])

coocurrenceCst (["INPERSON_PREVIOUSCOMP",
"INPERSON_PREVIQUSPOST_NODET"])

When input (1) is given to the generator, only
the first constraint is translated into requiring either
both indices 1 and 2 or none of these. The other con-
straints do not apply, avoiding unnecessary overhead
when individual candidates are checked.

4.2 Improving the annotation scheme

A related faithfulness problem can be traced back to
an ambiguity in the annotation scheme. In the fol-
lowing example, the best candidate places the post
of the incoming person at the main company:*

(23) William J Russo was named senior vice president pub-
lic affairs and advertising, of this financial and travel
services concern .

4The main company is assumed to have been introduced
into the discourse context already, usually by a headline to
the article about the management succession.

A cosine coverage length (words) e] t Fluency | Syntax | Sem. || correct

av. av. | stdev || % compl. || av. | stdev secs || errors | errors | errors || cands.
0.0 0.97 0.63 | 0.19 10.0 16.8 4.2 1315 | 6.9 0 0 3 92.5 %
0.2 0.97 0.68 | 0.18 12.5 17.8 4.2 1338 | 8.8 0 0 3 92.5 %
0.4 0.93 0.75 | 0.18 25.0 19.9 5.7 1259 | 10.6 3 0 b) 80.0 %
0.6 0.81 0.87 | 0.17 47.5 22.2 5.7 1338 | 11.8 10 2 b) 62.5 %
0.8 0.69 092 | 0.13 70.0 23.8 5.3 1530 | 12.3 12 4 5 57.5 %
1.0 0.69 092 | 0.13 70.0 23.8 5.3 976 | 13.1 12 4 5 57.5 %

Figure 2: Evaluation results for instance-based generator using linear combination

However, the original sentence specifies that the
post is located at a subsidiary (we only show the
annotation of the relevant parts of the sentence):

(24) William J. Russo was named senior vice president, pub-
lic affairs and advertising, for this [COMP_DESCR financial
and travel services concern]’s [COMP_SUBSIDIARY Ameri-
can Express Bank Ltd.] [COMP_SUBSIDIARY_DESCR_NODET
subsidiary].

The annotation does not clearly specify the loca-
tion of the post, and in a sense the ranker does
not choose an “unfaithful” candidate. The problem
can be solved by marking the post location explic-
itly, for example by adding ‘*’ to each tag specify-
ing the location of the main post. If this is done
consistently for the entire corpus, the system will be
able to clearly distinguish between coMp_DESCR — as we
will find it in the revised annotation of (24) — and
coMp_DESCR* for corpus sentences like (2). This exam-
ple demonstrates that we can influence the output
of the generation system by changing the annotation
that forms the basis of the ranker (and the grammar,
of course).

5 Evaluation

We evaluated our system along several dimensions
which can be divided into those that require human
judgement, and those that do not. With respect to
the linear combination, the trade-off between cosine
and coverage as well as different candidate lengths
(in terms of surface words and semantic tags) and
basic efficiency metrics can be measured automati-
cally. On the other hand, the reduction of faithful-
ness errors and other problems of the output need
to be observed by human judges.

We divided the annotated corpus into a random
selection of 104 articles for training and 40 for test-
ing. Figure 2 shows average cosine and coverage val-
ues for 6 settings of A. The results clearly indicate
a trade-off between the two. As intended by the use
of the linear combination, coverage and average sen-
tence length in words grow as A increases. For higher
values of A, the average candidate length approaches
the one of the original test set sentences (average
length in words: 26.1; standard deviation 7.4). The
number of complete candidates (‘% compl.’) in-
creases from 10% for A=0 to 70% for A=0.8.

Figure 2 also shows the results of the manual eval-
uation of the system output for which we employed
two human judges. Semantic errors include faithful-
ness errors and other semantic problems. We distin-
guish syntax errors from fluency errors. Some exam-
ples:

(25) Fluency: Francis D. John, 85 years old, president, was
elected to

(26) Syntax: This bank holding company said its board
elected John W. Day.

(27) Semantics: ... was named vice president,..., the new
post/both new posts ...

We observed an increase in the number of fluency
and syntactic errors for lower average cosine scores —
confirming our basic assumption that cosine similar-
ity is a good indicator of fluency. As a result of tag
cooccurrence constraints and improved annotation,
the number of faithfulness errors is relatively small,
even for short candidates. An unmodified version of
the system yields 7 faithfulness errors due to omis-
sions of tags for A=0.2 (versus 3 faithfulness errors
for the new system). The overall number of correct
sentences is maximal for A=0.0 and A=0.2 and de-
creases when more weight is given to completeness.
Although the number of test set inputs is small, the
results seem to indicate the validity of our approach.

The column headed by |e| shows the average num-
ber of edges per test set input; column # shows the
average run-time. Obviously, the latter is influenced
by the programming language (Java) and the ma-
chines available (Sun Enterprise 220). For high val-
ues of A (>0.8), the A*-search algorithm tends to
search for ever larger candidates so that we need to
apply a time limit (60 seconds).

For reasons of space we cannot give detailed ef-
ficiency figures for generation into multiple ranked
lists. The average number of bins for 4 input tags is
4.6, resulting in the generation of 133 candidates per
input (without bins and A=0.6, the system produces
137 candidates on average). The average number of
bins for inputs of size 7 increases to 18.7, resulting
in 469 candidates per input on average (in contrast
to 473 for generation without bins and A=0.6).

6 Discussion

Ranking models for NLG that are based on corpus
similarity alone (even if the corpus contains addi-
tional syntactic or semantic information) make the
assumption that all candidates are (equally) com-
plete and (equally) faithful. If this assumption is
relaxed — as we have done in this paper — the possi-
bility of a trade-off between fluency and other goals
arises. This does not depend on search strategy or
generation architecture and also applies to systems
in which grammar interpreter and ranker are non-
interleaved.

In instance-based ranking, the tendency towards
replicating training set sentences is easily observ-
able because the original examples are available as
nearest-neighbours which can be imitated directly.
In statistical approaches, the corpus material is gen-
erally not accessible. However, in case statistical
NLG systems do not ensure completeness, they can
face similar problems of comparing candidates. For
example, ngram models tend to prefer sequences of
words that are much shorter than any corpus sen-
tence. (Knight and Hatzivassiloglou, 1995) describe
a function which increases with sentence length to
counter this behaviour. Avoiding to minimise sen-
tence length can be seen as an indirect way to ap-
proximate a completeness criterion.

The A*-search algorithm can be extended so that
n best candidates are found. This can be imple-
mented by keeping the threshold as low as the score
of the nth candidate in the ranked list, or at 0.0 as
long as there are less than n candidates. Keeping
n best candidates in each bin when generating into
multiple ranked lists might be useful if macroscopic
properties are scored in text generation (Oberlander
and Brew, 2000). For example, one might want to
approximate a certain global distribution of verbs
in the text, and this might require the system to
choose candidates that are non-optimal according to
the sentence-based nearest-neighbour ranker. Simi-
larly, issues of discourse coherence in multi-sentence
generation may require a re-ranking of the locally
best sentences. Alternatively, discourse coherence
could be ensured by means of grammar constraints.
In other words, additional knowledge needed to be
added to either the ranker or the rule-based part
of the hybrid generation system. However, this is
beyond the scope of the present paper.

7 Conclusion

We have described the tension between the goals of
fluency and completeness in Natural Language Gen-
eration and presented two techniques to deal with it.
These were implemented in an instance-based gener-
ation system. Using a linear combination of cosine
and coverage score allows one to trade candidate-
instance similarity against candidate-input similar-

ity (in semantic terms). Maintaining multiple can-
didate lists circumvents the problem of choosing a
candidate that expresses the right portion of the in-
put altogether by delaying the final decision until a
larger context is known. We also demonstrated that
faithfulness problems can arise if parts of the gener-
ation input are omitted, and proposed tag cooccur-
rence constraints as well as refining the annotation
scheme as potential solutions.

References

Srinivas Bangalore and Owen Rambow. 2000. Ex-
ploiting a Probabilistic Hierarchical Model for
Generation. In COLING-00.

Charles L. Forgy. 1982. Rete: A Fast Algorithm for
the Many Pattern/ Many Object Pattern Match
Problem. Artificial Intelligence, pages 17-37.

Kevin Knight and Vasileios Hatzivassiloglou. 1995.
Two-level, Many-paths Generation. In ACL-95.

Irene Langkilde and Kevin Knight. 1998. Gen-
eration that Exploits Corpus-based Statistical
Knowledge. In COLING/ACL-98.

M. W. Meteer. 1990. The Generation Gap — The
Problem of Expressibility in Text-Planning. Ph.D.
thesis, University of Massachusetts, Amherst,
MA, USA.

Jon Oberlander and Chris Brew. 2000. Stochastic
Text Generation. In Philosophical Transactions
of the Royal Society of London, Series A, volume
358, pages 1373-1385.

Adwait Ratnaparkhi. 2000. Trainable Methods
for Surface Natural Language Generation. In
NAACL-00.

James Shaw and Vasileios Hatzivassiloglou. 1999.
Ordering among Premodifiers. In Proceedings of
ACL-99.

Sebastian Varges and Chris Mellish. 2001. Instance-
based Natural Language Generation. In NAACL-
01.

Jiirgen Wedekind. 1988. Generation as Structure
Driven Derivation. In COLING-88.

	Table of Content
	Topics
	Authors

