A Description Language for Syntactically Annotated Corpora

Esther Konig and Wolfgang Lezius
IMS, University of Stuttgart, Germany
www.ims.uni-stuttgart.de/projekte/TIGER

Abstract

This paper introduces a description language
for syntactically annotated corpora which al-
lows for encoding both the syntactic annota-
tion to a corpus and the queries to a syntac-
tically annotated corpus.

In terms of descriptive adequacy and com-
putational efficiency, the description lan-
guage is a compromise between script-like
corpus query languages and high-level, typed
unification-based grammar formalisms.

1 Introduction

Syntactically annotated corpora like the
Penn Treebank (Marcus et al., 1993), the
NeGra corpus (Skut et al., 1998) or the sta-
tistically disambiguated parses in (Beil et
al., 1999) provide a wealth of information,
which can only be exploited with an ade-
quate query language. For example, one
might want to retrieve verbs with their sen-
tential complements, or specific fronting or
extraposition phenomena. So far, queries to
a treebank have been formulated in script-
ing languages like tgrep, Perl or others. Re-
cently, some powerful query languages have
been developed: an example of a high-
level, constraint-based language is described
in (Duchier and Niehren, 1999). (Bird et al.,
2000) propose a query language for the gen-
eral concept of annotation graphs. A graph-
ical query notation for trees is under devel-
opment in the ICE project (UCL, 2000).

In the current paper, we present a pro-
posal for a graph description language which
is meant to fulfill two conflicting require-
ments: On the one hand, the language
should be close to traditional linguistic de-

scriptions languages, i.e. to grammar for-
malisms, as a basis for modular, under-
standable code, even for complex corpus
queries. On the other hand, the language
should not preclude efficient query evalua-
tion. Our answer is to profit from the re-
search on typed, feature-based/constraint-
based grammar formalisms (e.g. (Carpenter,
1992), (Copestake, 1999), (Dorre and Dorna,
1993), (Dorre et al., 1996), (Emele and Za-
jac, 1990), (Hohfeld and Smolka, 1988)), and
to pick those ingredients which are known to
be computationally 'tractable’ in some sense.

2 The Query Language
2.1 The right kind of graphs

If syntactic analysis is meant to provide
for a basis of semantic interpretation, the
predicate-argument structure of a sentence
must be recoverable from its syntactic ana-
lysis. Nonlocal dependencies like topicaliza-
tion, right extraposition, tell us that trees
are not expressive enough. We need a way
to connect an extraposed constituent with its
syntactic resp. semantic head. This can be
done either by introducing empty leaf nodes
plus a means for node coreference (like in
the Penn Treebank) or by admitting cross-
ing edges. In our project, the latter solution
has been chosen (Skut et al., 1997), partly
for the reason that it is simpler to annotate
(no decision on the right place of a trace has
to be taken). We call this extension of trees
with crossing edges syntaz graphs. An exam-
ple is shown in Fig. 1.

In order to discuss the details of the lan-
guage, we will make reference to the simpler
syntax graph in Fig. 2.



g¥o)

SB H

K
&
[+°]
@ AVP
Die Tagung hat mehr Teilnehmer als je zuvor
ART NN VVFIN PIAT NN KOKOM ADV ADV
Def.Fem.Nom.Sg Fem.Nom.Sg.* 3.AKK.PI o Masc.Akk.PI.* - - -

Figure 1: A syntax graph with crossing edges (“the conference has more participants than

ever before”)

6,
ein Mann lauft
ART NN VVFIN

Figure 2: A simple syntax graph (“a man
runs”)

2.2 Nodes: feature records

Syntactic phrases and lexical entries usu-
ally come with a bundle of morphosyntac-
tic information like part-of-speech, case, gen-
der, and number. In computational linguis-
tics, feature structures are used for that pur-
pose. Since we need only a way to repre-
sent morphosyntactic information (not syn-
tactic or semantic structures) themselves, we
restrict ourselves to feature records, i.e. flat
feature structures whose feature values are
constants. We admit Boolean formulas, for

the feature values, as well as for the feature-
value pairs themselves.

For example, all proper nouns ("NE") and
nouns ("NN") can be retrieved by

[pOS= "NE" | "NN"]

As usual, structural identity can be ex-
pressed by the use of logical variables. How-
ever, variables must not occur in the scope
of negation, since this would introduce the
computational overhead of inequality con-
straints.

The values of a feature with ’infinite’ range
like word or lemma can be referred to by reg-
ular expressions, e.g. the nouns ("NN") with
initial M can be retrieved by

[word = /"M.*/ & pos="NN"]

The /-symbols mark a regular expression.

2.3 Node relations

Since graphs are two-dimensional objects, we
need one basic node relation for each di-
mension, direct precedence . for the hor-
izontal dimension and direct dominance >
for the vertical dimension (the precedence of
two inner nodes is defined as the precedence



of their leftmost terminal successors (Lezius
and Konig, 2000a)) Some convenient derived
node relations are the following:

>* dominance (minimum path length 1)
>n dominance in n steps (n > 0)

>m,n dominance between m and n steps
(0<m < n)
>@1 leftmost terminal successor

("left corner’)

>@r rightmost terminal successor

(’right corner’)

.* precedence (minimum number of inter-
vals: 1)

.n precedence with n intervals (n > 0)

.m,n precedence between m and n intervals
(0<m < n)

$ siblings

$.* siblings with precedence

2.4 Graph descriptions

We admit restricted Boolean expressions
over node relations, i.e. conjunction and dis-
junction, but no negation. For example, the
queries

#n1l: [word="ein" & pos="ART"] &
#n2: [word="Mann" & pos="NN"] &
#nl . #n2

and

#n1:[cat="NP"] >"NK" [pos="ART"]
& #n1 >"NK" [word="Mann']

are both satisfied by the NP-constituent
in Fig. 2. #n1, #n2 are variables. The sym-
bol "NK" is an edge label. Edges can be la-
belled in order to indicate the syntactic re-
lation between two nodes.

2.5 Types

For the purpose of conceptual clarity, the
user can define type hierarchies. ’Subtypes’
may also be constants e.g. like in the case of
part-of-speech symbols. Here is an excerpt
from the type hierarchy for the STTS tagset:

nominal := noun,properNoun,pronoun.
noun := "NN".

properNoun := "NE".

pronoun :=

"PPPER", "PPOS","PRELS",

This hierarchy can be used to formulate
queries in a more concise manner:

[pos=nominal] .* [pos="VVFIN"]

2.6 Templates

E.g. for a concrete lexicon acquisition task,
one might have to define a collection of in-
terdependent, complex queries. In order
to keep the resulting code tractable and
reusable, queries can be organised into tem-
plates (or macros). Templates can take log-
ical variables as arguments and may refer to
other templates, as long as there is no (em-
bedded) self-reference. Logically, templates
are off-line-compilable Horn formula.

Here are some examples for template def-
initions. A simple notion of VerbPhrase is
being defined with reference to a notion of
PrepPhrase.

PrepPhrase( #n0: [cat="PP"]
> #n1:[pos="APPR"] &
#n0
> #n2:[pos="NE"] &
#nl.#n2 ) ;

VerbPhrase( #n0: [cat="VP"]
> #n1:[pos="VVFIN"] &
#n0 > #n2 &
#nl.#n2 ) <-
PrepPhrase (#n2) ;



3 The Corpus Annotation
Language
3.1 Corpus annotation vs. queries

Actually, the query language is rather a de-
scription language which can be used also
for encoding the syntactic annotation of a
corpus. In the current project, a syntac-
tically disambiguated corpus is being pro-
duced. This means, that, for corpus anno-
tation, only a sublanguage of the proposed
language is admissible with the following re-
strictions:

e The graph constraints may only include
the basic node relations (>, .).

e The only logical connective on all struc-
tural levels is the conjunction opera-
tor &.

e Regular expressions are not admitted.
e Types and templates are not admitted.

The automatically generated corpus anno-
tation code (generated from the output of
the graphical annotation interface) for Fig. 2
looks as follows, with some additional mark-
up for ease of processing.

<sentence id="1" root="5">

"1": [word="ein" & pos="ART"] &

"2": [word="Mann" & pos="NN"] &

"3": [word="1l&duft" & pos="VVFIN"]
"an: [cat="NP"] &

"5":[cat="S"] &

("1" . ||2||) & (||2|| . ||3||) &

(||5|| >"gRB" u4||) & (||5u >UHD" ||3||) &
(u4u SUNK" "1") & (u4u >SUNK" u2||)

3.2 An XML representation

When designing the architecture of our sys-
tem, we had to deal with the problem of var-
ious different formats for the representation
of syntactically annotated corpora: Penn
Treebank, NeGra (Skut et al., 1997), Tip-
ster, Susanne, several formats for chunked
texts and the proposed description language.
Thus, we have developed an XML based for-
mat which guarantees maximum portabil-
ity (Mengel and Lezius, 2000). An online
conversion tool (NeGra, Penn Treebank —
XML) is available on our project homepage.

4 Formal Semantics

Compared to most other corpus description
and corpus query languages, our graph de-
scription language comes with a formal and
a clear-cut operational semantics, which has
been described in a technical report (Lez-
ius and Konig, 2000a). The semantics has
been compiled from the corresponding parts
of formal semantics of the typed, unification-
based grammar formalisms and constraint-
based logic programming languages which
have been cited above. Due to the fact
that the corpus and the query are repre-
sented in the same description language, one
can define a consequence relation between
the corpus and the query. Essentially, the
annotated corpus corresponds to a Prolog
database, and the corpus query to a Prolog
query. A query result is a syntax graph from
the corpus.

5 Implementation

One might argue that commercial and re-
search implementations for structurally an-
notated texts are already available, i.e.
XML-retrieval systems, c.f. (LTG, 1999).
However, we intend to solve problems
which are specific to natural language de-
scriptions: non-embedding (non-tree-like)
structural annotations - crossing edges,
and, on the long-term, retrieval of co-
indexed substructures (co-reference phenom-
ena). A domain-specific implementation of
the search engine gives the basis for opti-
mizations wrt. linguistic applications (Lezius
and Konig, 2000b).

Before queries can be evaluated on a new
corpus (encoded in the NeGra, Penn Tree-
bank or XML format), a preprocessing tool
has to convert it into the format of the de-
scription language. Subsequently, the cor-
pus is indexed in order to guarantee efficient
lookups during the query evaluation. The
query processor to date is capable of evaluat-
ing basic queries (cf. Sect. 2.2-2.4). To sup-
port all popular platforms, the tool is imple-
mented in Java. There is a servlet available
on the project web page which illustrates the
current stage of the implementation.



Conclusion

Syntactic corpus annotations, complex cor-
pus queries and computational grammars
have one common point: they are descrip-
tions of natural language grammars. Our
claim is that corpus query languages should
be close to traditional grammar formalisms
in order to make complicated information ex-
traction tasks easier to encode. The level of
processing efficiency of scripting languages
can still be reached if one restricts oneself to
‘off-line’ compilable language elements only.

References

Franz Beil, Glenn Carroll, Detlef Prescher,
Stefan Riezler, and Mats Rooth. 1999.
Inside-outside estimation of a lexicalized
pcfg for german. In Proceedings of the
37th Annual Meeting of the ACL, Mary-
land.

Steven Bird, Peter Buneman, and Tan
Wang-Chiew. 2000. Towards a query lan-
guage for annotation graphs. In Proceed-
ings of the LREC 2000, Athens, Greece.

Bob Carpenter. 1992. The Logic of Typed
Feature Structures. Tracts in Theoretical
Computer Science. Cambridge University
Press, Cambridge.

Ann Copestake, 1999. The (new) LKB sys-
tem. www-csli.stanford.edu, /~aac/doch-
2.pdf.

Jochen Dorre and Michael Dorna. 1993.
CUF - a formalism for linguistic knowl-
edge representation. Deliverable R.1.2A,
DYANA 2, August.

Jochen Dorre, Dov M. Gabbay, and Es-
ther Konig. 1996. Fibred semantics for
feature-based grammar logic. Journal of
Logic, Language, and Information. Spe-
cial Issue on Language and Proof Theory,
5:387-422.

Denys Duchier and Joachim Niehren. 1999.
Solving dominance constraints with finite
set, constraint programming. Technical
report, Universitidt des Saarlandes, Pro-
gramming Systems Lab.

Martin Emele and Rémi Zajac. 1990. A
fixed-point semantics for feature type
systems. In Proceedings of the 2nd

International Workshop on Conditional
and Typed Rewriting Systems, Montreal,
Canada.

Markus Hohfeld and Gert Smolka. 1988.
Definite relations over constraint lan-
guages. LILOG-Report 53, IBM Deutsch-
land, Stuttgart, Baden-Wiirttemberg, Oc-
tober.

Wolfgang Lezius and Esther Konig. 2000a.
The TIGER language - a description lan-
guage for syntax graphs. Internal report,
IMS, University of Stuttgart.

Wolfgang Lezius and Esther Konig. 2000b.
Towards a search engine for syntactically
annotated corpora. In Proceedings of the
KONVENS 2000, Ilmenau, Germany.

LTG Language Technology Group, Ed-
inburgh, 1999. LT XML wersion 1.1.
User documentation and reference guide.
www.ltg.ed.ac.uk, software/xml.

Mitchell Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguis-
tics.

Andreas Mengel and Wolfgang Lezius. 2000.
An XML-based representation format for
syntactically annotated corpora. In Pro-
ceedings of the LREC 2000, Athens,
Greece.

Wojciech Skut, Brigitte Krenn, Thorsten
Brants, and Hans Uszkoreit. 1997. An
annotation scheme for free word order
languages. In Proceedings of the 5th
Conference on Applied Natural Language
Processing (ANLP), Washington, D.C.,
March.

Wojciech Skut, Thorsten Brants, Brigitte
Krenn, and Hans Uszkoreit. 1998. A lin-
guistically interpreted corpus of german
newspaper text. In ESSLI 1998, Work-
shop on Recent Advances in Corpus An-
notation.

UCL University College London, 2000. ICE
(International Corpus of English).



