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Abstract

This paper describes algorithms and software developed to characterise and detect generic
intelligent language-like features in an input signal, using Natural Language Learning
techniques: looking for characteristic statistical "language-signatures" in test corpora. As a
first step towards such species-independent language-detection, we present a suite of
programs to analyse digital representations of a range of data, and use the results to
extrapolate whether or not there are language-like structures which distinguish this data from
other sources, such as music, images, and white noise.  We assume that generic species-
independent communication can be detected by concentrating on localised patterns and
rhythms, identifying segments at the level of characters, words and phrases, without
necessarily having to "understand" the content.
We assume that a language-like signal will be encoded symbolically, i.e. some kind of
character-stream.  Our language-detection algorithm for symbolic input uses a number of
statistical clues: data compression ratio, "chunking" to find character bit-length and
boundaries, and matching against a Zipfian type-token distribution for "letters" and "words".
We do not claim extensive (let alone exhaustive) empirical evidence that our language-
detection clues are "correct"; the only real test will come when the Search for Extra-
Terrestrial Intelligence finds true alien signals. If and when true SETI signals are found, the
first step to interpretation is to identify the language-like features, using techniques like the
above. Our current research goal is to apply Natural Language Learning techniques to the
identification of "higher-level" grammatical and semantic structure in a linguistic signal.

Introduction
A useful thought experiment is to imagine
eavesdropping on a signal from outer
space.  How can you decide that it is a
message between intelligent life forms,
without dialogue with the source?  What is
special about the language signal that
separates it from non-language? What
special ’zone’ in the signal universe does
language occupy? Is it, indeed, separable
from other semi-structured sources, such
as DNA and music (fig 1).
Solving this problem might not only be
useful in the event of detecting such
signals from space, but also, by
deliberately ignoring preconceptions based
on human texts, may provide us with some
better understanding of what language
really is.

However, we need to start somewhere, and
our initial investigations - which this paper
summarises - make some basic
assumptions (which we would hope to
relax in later research).  Namely, that
identifiable script will be a serial string,
possessing a hierarchy of elements broadly
equivalent to ‘characters,’ ‘words’, and
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‘spaces’, and possess something akin to
human grammar.

Identifying the ‘Character Set’
In ‘real’ decoding of unknown scripts it is
accepted that identifying the correct set of
discrete symbols is no mean feat
(Chadwick 1967).  To make life simple for
ourselves we assume a digital signal with a
fixed number of bits per character. Very
different techniques are required to deal
with audio or analogue equivalent
waveforms (Elliott & Atwell 99, 00).  We
have reason to believe that the following
method can be modified to relax this
constraint, but this needs to be tested
further.
The task then reduces to trying to identify
the number of bits per character.
Suppose the probability of a bit is PI. Then
the message entropy of a string of length
N will be given by:

E = SUM [PI ln Pi]; i =1,N

If the signal contains merely a set of
random digits, the expected value of this
function will rise monotonically as N
increases. However, if the string contains a
set of symbols of fixed length representing
a character set used for communication, it
is likely to show some decrease in entropy
when analysed in blocks of this length,
because the signal is ‘less random’ when
thus blocked. Of course, we need to
analyse blocks that begin and end at
character boundaries. We simply carry out
the measurements in sliding windows
along the data. In figure 2 below, we see
what happens when we apply this to
samples of 8-bit ASCII text:

We notice a clear drop, as predicted, for a
bit length of 8.Modest progress though it
may be, it is not unreasonable to assume
that the first piece of evidence for the
presence of language-like structure,
would be the identification of a low-
entropy, character set within the signal.

Identifying ‘Words’
Again, work by crytopaleologists suggests
that, once the character set has been found,
the separation into word-like units, is not
trivial and again we cheat, slightly: we
assume that the language possesses
something akin to a ‘space’ character.
Taking our entropy measurement
described above as a way of separating
characters, we now try to identify the one,
which represents ‘space’. It is not
unreasonable to believe that, in a word-
based language, it is likely to be one of the
most frequently used characters.
Using a number of texts in a variety of
languages, we first identified the top three
most used characters. For each of these we
hypothesised in turn that it represented
‘space’. This then allowed us to segment
the signal into words-like units (‘words’
for simplicity). We could then compute the
frequency distribution of words as a
function of word length, for each of the
three candidate ‘space’ characters (fig 3).

It can be seen that one ‘separator’
candidate (unsurprisingly, in fact, the most
frequent character of all) results in a very
varied distribution of word lengths. This is
an interesting distribution, which, on the
right hand side of the peak, approximately
follows the well-known ‘law’ according to
Zipf (Zipf, 1949), which predicts this
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behaviour on the grounds of minimum
effort in a communication act.
To ascertain whether the word-length
frequency distribution holds for language
in general, multiple samples from 20
different languages from Indo-European,
Bantu, Semitic, Finno-Ugrian and Malayo-
Polynesian groups were analysed (fig 4).

Using statistical measures of significance,
it was found that most groups fell well
within 5% limits – only two individual
languages were near exceeding these
limits  – of the proposed Human language
word-length profile shown in fig 5.

Zipf’s law is a strong indication of
language-like behaviour.  It can be used
to segment the signal provided a ‘space’
character exists.
However, we should not assume Zipf to be
an infallible language detector. Other
natural phenomena such as molecular
distribution in yeast DNA possess
characteristics of power laws.  Analyses of
protein length distributions also display
Poisson distributions where the number of
proteins is plotted against the lengths of
amino acids (Jenson 1998).

Identifying ‘Phrases’
Although alien brains may be more or less
powerful than ours (Norris 1999), it is
reasonable to assume that all intelligent
problem solvers are subject to the same
ultimate constraints of computational
power and storage and their symbol
systems will reflect this.
Thus, language must use small sets of
rules to generate a vast world of
implications and consequences.  Perhaps
its most important single device is the use
of embedded clauses and phrases (Minsky
1984), with which to represent an
expression or description, however
complex, as a single component of another
description.
In serial languages, this appears to be
achieved by clustering words into ‘chunks’
(phrases, sentences) of information, which
are more-or-less consistent and self-
contained elements of thought.
Furthermore, in human language at least,
these ‘chunks’ tend to consist of content
terms, which describe what the chunk is
‘about’ and functional terms, which
attribute references and context by which
the content terms convey their information
unambiguously. ‘King’ is usually a
content term; ‘of’ and ‘the’ are functional.
We use ‘term’ rather than word, because
many languages make far less use of full
words for functional operations than does
English: in Latin the transformation ‘rex’
(‘king’) to ‘regis’ (of the king) is one such
example.
 Functional terms in a language tend to be
short, probably attributable to the principle
of least effort, as they are used frequently.
A further distinguishing characteristic of
functional and content terms is that
different texts will often vary in their
content but tend to share a common
linguistic structure and therefore make
similar use of functional terms. That is, the
probability distribution of content terms
will vary from text to text, but the
distribution of function terms will not.
Using English text, which had been
enciphered using a simple substitution
cipher (to avoid cheating), we identified
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across a variety of texts, the most common
words, with least inter-text variation.
These we call ‘candidate function words’.
Now, suppose these words occurred at
random in the signal: we would expect to
see the spacing between them to be merely
a function of their individual probabilities
of occurrence. Analysing this statistically
(as a Poisson distribution) or simply
simulate it practically, we find that there
are a non-insignificant number of cases
wherein there are very large gaps (of the
order of several tens of words) between
successive occurrences. Compare this with
the results from our analysis (fig 6).

Initial findings show that the frequency
distribution of these lengths of text – our
candidate phrases – follow a Zipfian
distribution curve and rarely exceed
lengths of more than eight.
We might conclude from this, that our
brains tend to ‘chunk’ linguistic
information into phrase-like structures of
the order of seven or so word units long.
Interestingly enough, this fits in well with
human cognition theory (Ally & Bacon
1991), which states that our short-term
mental capacity operates well only up to 7
(+ or - 2) pieces of information, but any
causal connection between this and our
results must be considered highly
speculative at this stage!

Directions for Future Research
We are familiar with parts of speech
(commonly, ‘nouns’, verbs’ etc) in
language. Identification of patterns
indicative of these would be further
evidence of language-like characteristics

and, by allowing us to group together the
numerous word tokens in any language
into smaller, more manageable collections
would facilitate statistical analysis.  Some
attempts have been made in the past to use
n-gram probabilities in order to define
word classes or ‘parts of speech’
(Charniak 1993).
In our own work we have begun the
development of tools that measure the
correlation profile between pairs of words,
as a precursor to deducing general
principles for ‘typing’ and clustering into
syntactico-semantic classes.

The figure 7 above shows the results for
the relationship between a pair of
unknown (because of the substitution
cipher approach) content and functional
words, so identified by looking at their
cross-corpus statistics as described above.
It can be seen that the functional word has
a very high probability of preceding the
content word but has no instance of
directly following it.  At least
metaphorically, the graph can be
considered to show the ‘binding force’
between the two words varying with their
separation. We are looking at how this
metaphor might be used in order to
describe language as a molecular structure,
whose ‘inter-molecular forces’ can be
related to part-of-speech interaction and
the development of potential semantic
categories for the unknown language.
So far we have mainly been working with
English, but we have begun to look at
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languages which represent their functional
relationships by internal changes to words
or by the addition of prefixes or suffixes.
Although the process for separating into
functional and content terms is more
complex, we believe the fundamental
results should be consistent. This will be
one test of the theories presented above.
In general, we realise that testing our
language detection algorithms will be a
significant issue.  We do not have
examples that we know to be definitely
from non-human, but intelligent origins,
and we need to look extensively at signals
of non-intelligent origin which may mimic
some of the language characteristics
described above. This will form a
significant part of our future work and we
welcome discussion and suggestions.

Conclusion
Language in its written format has proved
to be a rich source for a variety of
statistical analyses - some more conclusive
than others - which when combined, give a
comprehensive algorithm for identifying
the presence of language-like systems.
Analysis stages include compression,
entropy profile, type-token distribution,
word-length Zipfian analysis, finding a
frequency distribution signature by
successive chunking, stemming, cohesion
analysis, phrase-length frequency
distribution and pattern comparison across
samples.
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