
Context-Free Grammar Rewriting and the Transfer of Packed Linguistic
Representations

Marc Dymetman
Xerox Research Centre Europe

6, chemin de Maupertuis
38240 Meylan, France

dymetman@xrce.xerox.com

Frédéric Tendeau
Lernout & Hauspie

Koning Albert-I laan 64
B-1780 Wemmel, Belgium
Frederic.Tendeau@lhs.be

Abstract
We propose an algorithm for the transfer of packed linguistic
structures, that is, finite collections of labelled graphs which
share certain subparts. A labelled graph is seen as aword over
a vocabulary of description elements (nodes, arcs, labels), and
a collection of graphs as a set of such words, that is, as alan-
guageover description elements. A packed representation for
the collection of graphs is then viewed as a context-free gram-
mar which generates such a language. We present an algorithm
that uses a conventional set of transfer rules but is capable of
rewriting the CFG representing the source packed structure into
a CFG representing the target packed structure that preserves
the compaction properties of the source CFG.

1 Introduction
There is currently much interest in translation models
that support some amount of ambiguity preservation be-
tween source and target texts, so as to minimize disam-
biguation decisions that the system, or an interactive user,
has to make during the translation process (Kay et al.,
1994).

An important aspect of such models is the ability to
handle, during all the stages of the translation process,
packedlinguistic structures, that is, structures which fac-
torize in a compact fashion all the different readings of
a sentence and obviate the need to list and treat all these
readings in isolation of each other (as is standard in more
traditional models for machine translation).

In the case of parsing, and more specifically, parsing
with unification-based formalisms such as LFG, tech-
niques for producing packed structures have been in
existence for some time (Maxwell and Kaplan, 1991;
Maxwell and Kaplan, 1993; Maxwell and Kaplan, 1996;
Dörre, 1997; Dymetman, 1997). More recently, tech-
niques have been appearing for the generation from
packed structures (Shemtov, 1997), the transfer between
packed structures (Emele and Dorna, 1998; Rayner and
Bouillon, 1995), and the integration of such mechanisms
into the whole translation process (Kay, 1999; Frank,
1999).

This paper focuses on the problem of transfer. The
method proposed is related to those of (Emele and Dorna,
1998) and (Kay, 1999). As in these approaches, we view
packed representations as being descriptions of a finite
collection of directed labelled graphs (similar to the func-
tional structures of LFG), each representing a different
non-ambiguous reading, which share certain subparts.

The representations of (Emele and Dorna, 1998) and
(Kay, 1999) are based on a notion ofpropositional con-
texts (see (Maxwell and Kaplan, 1991)), where each
possible non-ambiguous reading included in the packed
source representation is extracted by selecting the value
(true or false) of a certain number of propositional vari-
ables that index elements of the labelled source graph.
Transfer is then seen as a process of rewriting source
graph elements (e.g, nodes labelled with French lexemes)
into target graph elements (e.g. nodes labelled with En-
glish lexemes), while preserving the propositional con-
texts in which these graph elements were selected.

In contrast, our approach, following (Dymetman,
1997), views a packed representation as being agram-
mar (more specifically, a context-free grammar) over the
vocabulary of graph elements (labelled nodes and edges),
where eachword(in the sense of formal language theory)
generated by the grammar represents one of the possible
non-ambiguous readings of the packed representation. In
other terms, the collection of non-ambiguous graphs be-
longing to the packed representation is seen as alan-
guageover a vocabulary of graph elements, and a packed
representation is seen as a grammar which generates such
a language. Packing comes from the fact that a context-
free grammar is an efficient representation for the lan-
guage it generates. Another essential feature of such a
representation is that it isinteraction-free, that is, each
nondeterministic top-down traversal of the grammar suc-
ceeds without ever backtracking and it results in a certain
reading, without the need for checking the consistency of
a set of associated propositional constraints: the repre-
sentation for the collection of readings is as direct as can
be while permitting a factorization of common parts.

Based on this notion, we present an algorithm for
transfer which, starting from a finite set of rewriting
patterns (the transfer lexicon), associates with a given
context-free grammar representing the source packed
structure a context-free grammar representing the tar-
get packed structure. Therefore, the target representa-
tion remains interaction-free and transparently encodes
the target structures; furthermore, under certain natural
“locality” conditions on the rewriting rules (the graph el-
ements in their left-hand sides tend be be “close” from
each other in the source grammar derivations), the target
grammar preserves much of the factorization and com-
paction properties of the source grammar.

The paper is structured in the following way. Sec-

tion 2 explains how ambiguous graphs can be seen as
commutative languages over graph description elements,
and how context-free grammars provide concise specifi-
cations for these languages. Section 3 extends the stan-
dard notion of non-ambiguous transfer to that of am-
biguous transfer. Section 4 presents the basic language-
theoretic formalism needed and introduces some opera-
tors on languages. Section 5 presents the detailed rewrit-
ing algorithm, which applies these operators not directly
to languages, but to the context-free grammars specify-
ing them. Section 6 gives an example of the algorithm in
operation.

2 Ambiguous structures as languages

0: see / saw

1: i 2: light

3: on

4: hill

5: with

6: telescope

7: green1 / green2 arg2

arg2

modmod

modmod

mod

arg2arg1

mod

Figure 1: An informal graphical representation of the 20
possible analyses for “I saw the green light on the hill
with a telescope”.

Let’s consider the sentence “I saw the green light on
the hill with a telescope”. In Fig. 1, we have repre-
sented informally the set of possible analyses for this
sentence. Labels on the nodes correspond to predicate
names (‘on’, ‘hill’, etc). A slash is used to indicate dif-
ferent possible readings for a node; for instance, we as-
sume that the surface form “saw” can correspond to the
verbs “to see” or “to saw”, and that “green” is ambigu-
ous between the color adjective “green1” and the noun
“green2” (grassy lawn). Relations between nodes are in-
dicated by labels on the edges joining two nodes: ‘arg1’
and ‘arg2’ for first and second argument, ‘mod’ for mod-
ifier. The solid edges correspond to relations which are
satisfied in all the readings for the sentence, dotted edges
to relations that are satisfied only for certain readings.
Thus, the preprositional phrase “on the hill” can modify
either “light” or “see/saw”, the phrase “with a telescope”
either “hill”, “light”, or “see/saw”. The informal picture
of Fig. 1 does not make explicit exactly which structures
are actually possible analyses of the sentence. For in-
stance the two crossing edgesmod03 andmod25 (where
indices are used to denote the origin and destination of
the edge) cannot appear together in a reading of the given
sentence. As a consequence only five of the apparent
2� 3 prepositional attachments combinations are possi-
ble, which multiplied by the four possible lexical variants
for “saw” and “green” gives 20 possible readings for the
sentence.

Each of these readings is a graph where nodes 0 and
7 now carry one label, and where one ‘mod’ edge has
been selected for the attachment of nodes 3 and 5. One

way to describe such a graph is by listing a collection of
“description elements” for it, where each such element
is either a labelled node such assee0 or a labelled edge
such asmod27. Using this format, the pragmatically pre-
ferred analysis for our sentence is the setfsee0, arg101,
i1, arg202, light2, mod27, green17, mod23, on3, arg234,
hill4, mod05, with5, arg256, telescope6g.

If we consider the collection of all possible analyses,
we then obtain a collection of sets of description ele-
ments. It is convenient to view such a collection as a
commutative languageover the vocabulary of all possi-
ble description elements; each word in such a language
corresponds to one analysis and is a list of description
elements the order of which is considered irrelevant.

The main advantage of taking this view of ambiguous
structures is that formal language theory provides stan-
dard tools for representing languages compactly. Thus
it is well-known in computational lexicography that a
large list of word strings can be represented efficiently by
means of a finite-state automaton which factorizes com-
mon substrings. Such a representation is both compact
and “explicit”: accessing and using it is as direct as the
flat list of words would be.

Although one might think of using finite-state mod-
els for representing compactly the language associated
with a collection of graphs, they do not seem as relevant
as context-free models for our purposes. The reason is
that the source packed representations are typically ob-
tained as the results of chart-parsing processes. A chart
used in the parsing of a context-free grammar can itself
be viewed as a context-free grammar, which is a spe-
cialization of the original grammar for the string being
parsed, and which directly generates the derivation trees
for this string relative to the original grammar (Billot and
Lang, 1989).1 The generalization of this approach to uni-
fication grammars (of the LFG or DCG type) proposed
in (Dymetman, 1997) shows that, in turn, chart-parsing
with these unification grammars conducts naturally to
packed representations for the parse results very close to
the ones we are about to introduce.

Let’s consider the CFGG0:

S! SAW ON WITH D3
SAW ! D0 arg101 i1 arg202 LIGHT

LIGHT ! GREEN mod27 light2
GREEN! green17 j green27
ON ! on3 arg234 hill4
WITH ! with5 arg256 telescope6
D0! see0 j saw0
D3! mod03 D30 j mod23 D32
D30! mod05 j mod45
D32! mod05 j mod25 j mod45

Nonterminals of that grammar are written in upper-
case, terminals (which are graph description elements) in
lowercase. It can be verified that the language generated
by this grammar is the collection of commutative words

1This context-free grammar has polynomial size relative to the
length of the string. While it is also possible in principle to use a finite-
state model for representing the same set of derivation trees, it can be
shown that such a model may be exponential relative to string length
(remark due to John Maxwell).

corresponding precisely to all the possible analyses for
the sentence.

The fact that there are 20 such words can be es-
tablished by a simple bottom-up computation involving
multiplications and sums. If we callambiguity degree
ad(N) of a nonterminalN the number of words it gen-
erates, then it is obvious that, for instance,ad(D30) = 2,
ad(D3) =2+3, ad(S) = 4�1�1�5 = 20. In fact, it is the mul-
tiplications which appear in such computations which are
responsible for the compactness of the grammar as com-
pared to the direct listing of the words: each time a mul-
tiplication appears, a factorization is being cashed in.2

3 Transfer as language rewriting
When working with non-ambiguous structures, transfer
is a rewriting process which takes as input a source-
language graph and constructs a target-language graph
by applying transfer rules of the formlhs! rhs, where
lhs and rhs are finite sets of description elements for
source graph and target graph respectively. In outline, the
“non-ambiguous” transfer process works in the following
way: for each non-overlapping covering of the source
graph with left-hand sides of transfer rules, the corre-
sponding right-hand sides are produced and taken to-
gether represent a target graph (this is a non-deterministic
function as there can be several such coverings).

In the case of ambiguous structures, the aim of transfer
is to take as input a language of source graphs and to pro-
duce a language of target graphs. The language of target
graphs should be equal to the union of all the graphs that
would have obtained if one had enumerated one-by-one
the source graphs, applied non-ambiguous transfer, and
taken the collection of all target graphs obtained. The
goal of ambiguous transfer is to perform the same task
on the basis of a compact representation for the collec-
tion of source graphs, yielding a compact representation
for the collection of target graphs.

For illustration purposes, we will consider the follow-
ing collection of transfer rules:

see0 ! voir0, saw0 ! scier0,
green17 ! vert7, green27 ! gazon7,
light2, mod27, green17 ! feu2, mod027, vert7,
light2 ! lumière2, etc.

We have only listed a few rules, and have assumed that
the remaining ones are straighforward one-to-one corre-
spondences (11 ! je1, mod03 ! mod’03 [we prime la-
bels such asmod, arg1,...in order to have disjointness of
source and target vocabulary], etc.).3

2As the example shows, context-free representations of ambigu-
ous structures have the important property (related to their interaction-
freeness as described in the introduction) of being easily “countable”.
This is to be contrasted with other possible representations for ambigu-
ous structures, such as ones based on propositional axioms determining
which description elements can be jointly present in a given analysis.
In these representations, the problem of determining whether there ex-
istsonestructure satisfying the specification can be of high complexity,
let alone the problem ofcountingsuch structures.

3In practice, real transfer rules are not specialized for specific nodes,
but are patterns containing variables instead of numbers; in order to ob-

4 Formal aspects
The commutative monoid over an alphabetA is denoted
by C(A�), and its words are represented by vectors of
N
A, indexed byA and with entries inN . For eachw 2

N
A, the component indexed bya 2 A is denoted by

w[a] and tells how manya’s occur inw. The product
(concatenation) ofw1 andw2 in C(A�) is the vectorw 2
N
A s.t. 8a 2 A: w[a] = w1[a] + w2[a]. A language of

the commutative monoid is a subset ofC(A�).
The subword relation is denoted by�. For a language

L, we write:v�L iff there existsw 2 L s.t.v�w.
The rewriting is performed from a source languageLS

over an alphabet�S to a target languageLT over an al-
phabet�T (disjoint from�S) w.r.t. a set of rewriting
rulesR � �S

+ � �T
� (rules have the form�!�). We

assume in the sequel that anya 2 �S appears at most
once in any left-hand side of each rule ofR and also at
most once in any word ofLS . This property is preserved
by all the rewritings that we are going to introduce.

Let’s defineLHS(�!�) = �. ForR � R, we define
LeftSet(R) = fa 2 �S j 9r 2 R s:t: a�LHS(r)g.

The rewriting is a function�R takingLS and yielding
LT , defined as:

�R(LS) = f�1� � ��p j 9w 2 LS ; w = �1� � ��p ^
�1!�1 2 R ^ ::: ^ �p!�p 2 Rg:

5 Algorithm
In order to implement the function�R, it is useful to
introduce rewriting functions��!� and�a. They apply
to any languageL overC(��), where� = �S [�T .
They are defined as:
��!�(L) = f�w j �w 2 Lg
�a(L) = fw 2 L j w[a] = 0g.

The ��!� functions are applied so that source sym-
bols are guaranteed to be removed one by one fromLS :
we consider�S is totally ordered by< and we write
�S = [a1; a2; :::; aN], with ai < ai+1; then consider the
partition ofR: R1, R2, ...,RN s.t. R1 contains allR
rules witha1 in LHS,R2 contains allR rules witha2 but
nota1 in LHS, etc,RN contains allR rules with onlyaN
in LHS. Then we define a third rewriting function�Ri

:
�Ri

(L) = �ai(L) [
S
r2Ri

�r(L).

Lemma. LT can be obtained fromLS by applying the
Ri iteratively in the following manner:

�RN
(�RN�1

(� � ��R1
(LS)� � �)) = LT :

PROOF SKETCH. For1 � j � N , we define
Lj = f�1� � ��px j 9w 2 LS ; x 2 �S

�; p � 0; w =
�1� � ��px;8k � p �k!�k 2 [i�jRi;8i � j ai 6�xg.

It is clear thatLN = LT . Furthermore, we haveL1 =
�R1

(LS), and it is easy to show that, for2 � n � N ,
Ln = �Rn

(Ln�1). From this we have immediately
LN = �RN

(�RN�1
(� � ��R1

(LS)� � �)) = LT .

In order to obtainLT , we will start fromLS and ac-
tually apply the�Ri

’s not on languages directly but on

tain ground rules as the ones we are considering, a simple preprocessing
step is necessary.

the grammars that define them. This computation is per-
formed by the algorithm that we now present.

LetLS be defined by the CFGG0 = (�,N 0, P0, S0).
ForA 2 N 0, the set of all rules havingA as LHS is no-
tatedA!

P
A!�2P0

�. This additive notation is a for-
mal represention ofA!�1 j �2 j ... HenceA!0 means
that no rule definesA.

First �R1
is applied onG0, which buildsG1 =

(�;N 1;P1; S1), then�R2
is applied onG1 to produce

G2 and so forth. Each time, new non-terminals are in-
troduced: of the form(A)Ri

, (A)�!� or (A)a, where
A 2 N i�1, � 2 �S

+, � 2 �T
�, anda 2 �S . Each one

is defined by a formal sum as we saw above.
The order of symbols in the RHSs of grammar rules

is irrelevant since we consider commutative languages.
Hence the RHSs of grammar rules can be denoted byx�
s.t. x 2 C(��) and� 2 C(N �), whereN is the set of
all non-terminals considered.

The algorithm consists of the procedure and functions
described below and uses an agenda which contains new
non-terminals to be defined inGi. The agenda is handled
with a table: each non-terminal is treated once.

procedure main is
for i 2 f1; :::; Ng do

InitializeP i with P i�1;
if Ri 6= ; then

Initialize Agenda with (Si�1)Ri
;

repeat
removeNonTerm from Agenda;
caseNonTerm is

when (A)Ri
: add toP i

(A)Ri
!
P

A!�2Pi�1
�Ri

(�);
when (A)�!�: add toPi

(A)�!�!
P

A!�2Pi�1
��!�(�);

when (A)a: add toPi

(A)a!
P

A!�2Pi�1
�a(�);

end case;
until Agenda is empty
ReduceGi whose axiom isSi = (Si�1)Ri

;
/* remove non-terminals that are non-productive
(L(A) = ;) or inaccessible fromSi.*/

end for;
end procedure;

function �Ri
(x�) is// � = A1� � �Ak

if 9j 2 f1; :::; kg s.t.8a 2 LeftSet(Ri); a�L(Aj)
// if all rewritings inRi can only affectAj

then add(Aj)Ri
to Agenda;

return xA1� � �Aj�1(Aj)Ri
Aj+1� � �Ak; (1)

else return�ai(x�) +
P

r2Ri
�r(x�); (2)

end function;

function �a(x�) is// � = A1� � �Ak

if 9j 2 f1; :::; kg s.t.a�L(Aj)
then /* j is unique, see below*/ add (Aj)a to Agenda;

return xA1� � �Aj�1(Aj)aAj+1� � �Ak ; (3)
else ifa�x then return 0;

else returnx�;
end function;

function ��!�(x�) is// � = A1� � �Ak

// � is searched withinxA1� � �Ak

if 9j 2 f1; :::; kg s.t.8a��; a�L(Aj) // if � falls
// entirely withinL(Aj) then the rewriting applies only toAj

then add(Aj)�!� to Agenda;
return xA1� � �Aj�1(Aj)�!�Aj+1� � �Ak; (4)

else// � is searched within several symbols
Consider� = y w1 w2� � �wk s.t.
– the longest common subword ofx and� is y,
– 8a�wj ; a�L(Aj) // wj isAj contribution to�
if such decomposition of� exists// that is, it is

// entirely covered byx and someAj ’s
then /* it is unique: see below*/ add toAgenda

all (Aj)wj!� s.t.wj 6= �; // all those that contribute
return x=y (

Q
wj 6=�

(Aj)wj!�) (
Q

wj=�
Aj) �;(5)

// The rewriting is actually applied:y is deleted fromx;
// each contributing (i.e. non�) wj is to be deleted
// (i.e. rewritten to� in Aj); non-contributingAj ’s
// remain untouched; and� is inserted.
else// � cannot be produced byx�

return 0; // No rewriting is applicable
end function;

Unicity of j in�a, and unicity of the sequence in��!�:
considerA!xXY
 2 Pi�1; as each source symbol oc-
curs at most once in every word ofL(Si�1), the same
holds forL(A) hence the sets of source symbols occur-
ring inL(X) andL(Y) are disjoint.

6 Example
Consider�S = [i1, green17, green27, see0, ...] so thatR
is partitioned inR1 = fi1!je1g,R2 = fgreen17!vert7,
green17 mod27 light2!feu2 mod27 vert7g, etc. Each
otherRi contains a single rule.

The first iteration of the algorithm computes the gram-
marG1 = �R1

(G0). The result is:

(S0)R1
!(SAW)R1

ON WITH D3,
(SAW)R1

!D0 arg101 arg202 LIGHT je1,
LIGHT ! GREEN mod27 light2,
GREEN! green17 j green27,
ON ! on3 arg234 hill4,
WITH ! with5 arg256 telescope6, etc.

We see that the only nonterminals which have been rede-
fined areS = S0 and SAW. The computation of (S0)R1

has been done through step (1) in the algorithm. This is
because the terminals in left-hand sides ofR1, namely
the single terminali1, are all “concentrated” on the sin-
gle nonterminal SAW on the right-hand side ofS0. This
leads in turn to a requirement for a definition of (SAW)R1

,
which is fulfilled by step (5) in the algorithm, at which
time the rewriting ofi1 into je1 is performed.

For any group of rulesRi, as long as all terminals in
the left-hand sides of rules ofRi are thus concentrated on
at most one nonterminal in a right-hand side, no expan-
sion of rules is necessary. It is only when the terminals
start to be distributed on several RHS terminals or non-
terminals that an expansion is required.

This situation is illustrated by the second iteration
which mapsG1 intoG2 = �R2

(G1). The result is:

((S0)R1
)R2

!((SAW)R1
)R2

ON WITH D3,
((SAW)R1

)R2
!D0 arg101 arg202 (LIGHT)R2

je1,
(LIGHT)R2

!(GREEN)green17
mod27 light2,

j (GREEN)green17!vert7 mod27 light2,
j (GREEN)green17!� feu2 mod027 vert7,

(GREEN)green17
! green27 ON ! on3 arg234 hill4,

(GREEN)green17!vert7!vert7 WITH ! with5 arg256 telescope6,
(GREEN)green17!� ! �, etc.

This time, the terminals in left-hand sides ofR2 are
green17, mod27 and light2. We first need to compute
((S0)R1

)R2
. Again, our three terminals are all con-

centrated on (SAW)R1
. We thus only have to define

((SAW)R1
)R2

. Once again, the three terminals are con-
centrated on LIGHT, and we have to define (LIGHT)R2

.
At this point, something interesting happens. It is not

the case any more that one nonterminal on the right-
hand side of the rule defining LIGHT concentrates all
our terminals. In fact, GREEN only “touches”green17,
but not the other two terminals. The algorithm then
has recourse to step (2), which leads it to define three
rules for (LIGHT)R2

, involving recursive calls to�green17
,

�green17!vert7 ,�green17mod27 light2!feu2mod0
27

vert7 . The first
of these calls involves step (3), the second, step (4), and
the third, step (5), leading to the three expansions shown
for (LIGHT)R2

, and eventually to the definitions for the
three variants of the nonterminal GREEN.

The remaining iterations of the rewriting procedures
are of the same type as the first iteration. They lead fi-
nally to a target grammar of the form:

S0!SAW
0 ON

0 WITH
0 D30 SAW

0!D00 arg1001 arg2002 LIGHT
0 je1

LIGHT
0 !GREEN

0 mod027 lumière2
j GREEN

00 mod027 lumière2
j feu2 mod027 vert7

GREEN
0 ! gazon7 WITH

0 ! avec5 arg2056 lunette6
GREEN

00 ! vert7 ON
0 ! sur3 arg2034 colline4

D300 ! mod005 j mod045 D30 ! mod003 D300 j mod023 D320

D00 ! voir0 j scier0 D320 ! mod005 j mod025 j mod045

which is only slightly less compact than the source gram-
mar. It can be checked that this grammar enumerates 30
target graphs, the difference of 10 with the source gram-
mar being due to the addition of the French variant “feu
vert” along with “lumière verte” for translating “green
light”.

7 Conclusion
We have presented a model and an algorithm for the
transfer of packed linguistic representations based on
the view that: (1) packed representations are best seen
as context-free grammars over graph description ele-
ments, an approach which permits factorization of com-
mon parts while maintaining a transparent, easily com-
putable, relationship to the set of structures represented
(interaction-freeness, countability)4, and (2) transfer is
a rewriting process that takes as input such a context-
free representation and that outputs a target context-free

4Properties that we believe are essential to all such representations,
whether they are made explicit or not.

representation which maintains these beneficial proper-
ties. Although proofs have not been provided here, the
algorithm can be shown to satisfy our initial formal def-
inition of transfer as nondeterministic, exhaustive, non-
overlapping replacement of description elements in the
source structure by their counterparts as specified in the
rewriting rules. The method described in this paper bears
some obvious analogy to the classical problem of map-
ping a context-free language into another context-free
language by way of a finite-state transducer (Harrison,
1978). It would be an interesting research question to
make this analogy formal, the main difference here be-
ing the need to work with a commutative concatenation,
as opposed to the standard non-commutative concatena-
tion which is more directly connected with the automaton
view of transductions.

Acknowledgments
Thanks to our colleagues Eric de la Clergerie, Max Copper-
man, Andreas Eisele, Martin Emele, Anette Frank, Pierre Is-
abelle, Ron Kaplan, Martin Kay, Bernard Lang, John Maxwell
and Hadar Shemtov for extended discussions and comments at
various stages in the preparation of this paper.

References
S. Billot and B. Lang. 1989. The structure of shared forests in

ambiguous parsing. In27th Meeting of the Association for
Computational Linguistics.

J. Dörre. 1997. Efficient construction of underspecified seman-
tics under massive ambiguity. InProc. ACL, Madrid.

M. Dymetman. 1997. Interaction-free grammars, chart-
parsing, and the compact representation of ambiguity. In
Proc. IJCAI, Nagoya.

Martin Emele and Michael Dorna. 1998. Ambiguity preserv-
ing machine translation using packed representations. In
Proceedings of Coling-ACL ’98, pages 365–371, Montreal,
August.

Anette Frank. 1999. From parallel grammar development to-
wards machine translation. InProceedings of MT Summit
VII. MT in the Great Translation Era, pages 134–142, Kent
Ridge Digital Labs, Singapore, September.

Michael A. Harrison. 1978.Introduction to Formal Language
Theory. Addison-Wesley, Reading, MA.

M. Kay, J.M. Gawron, and P. Norvig. 1994.Verbmobil: a
translation system for face to face dialog. CSLI.

Martin Kay. 1999. Chart translation. InProceedings of MT
Summit VII. MT in the Great Translation Era, pages 9–14,
Kent Ridge Digital Labs, Singapore, September.

John Maxwell and Ronald Kaplan. 1991. A method for dis-
junctive constraint satisfaction. In Masaru Tomita, editor,
Current Issues in Parsing Technology. Kluwer, Dordrecht.

John T. Maxwell and Ronald M. Kaplan. 1993. The interface
between phrasal and functional constraints.Computational
Linguistics, 19(4):571–590, December.

John T. Maxwell and Ronald M. Kaplan.
1996. An efficient parser for LFG. In First
LFG Conference, Grenoble, France, August.
http://www-csli.stanford.edu/user/mutt/ .

M. Rayner and P. Bouillon. 1995. Hybrid Transfer in an
English-French Spoken Language Translator. InProceed-
ings of IA ’95, Montpellier, France, June.

H. Shemtov. 1997.Ambiguity Management in Natural Lan-
guage Generation. Ph.D. thesis, Stanford.

