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Abstract

In developing an Information Extraction (IE)
system for a new class of events or relations, one
of the major tasks is identifying the many ways
in which these events or relations may be ex-
pressed in text. This has generally involved the
manual analysis and, in some cases, the anno-
tation of large quantities of text involving these
events. This paper presents an alternative ap-
proach, based on an automatic discovery pro-
cedure, ExDi1sco, which identifies a set of rele-
vant documents and a set of event patterns from
un-annotated text, starting from a small set of
“seed patterns.” We evaluate ExXDI1sco by com-
paring the performance of discovered patterns
against that of manually constructed systems
on actual extraction tasks.

0 Introduction

Information Extraction is the selective extrac-
tion of specified types of information from nat-
ural language text. The information to be
extracted may consist of particular semantic
classes of objects (entities), relationships among
these entities, and events in which these entities
participate. The extraction system places this
information into a data base for retrieval and
subsequent processing.

In this paper we shall be concerned primar-
ily with the extraction of information about
events. In the terminology which has evolved
from the Message Understanding Conferences
(muc, 1995; muc, 1993), we shall use the term
subject domain to refer to a broad class of texts,
such as business news, and the term scenario to
refer to the specification of the particular events
to be extracted. For example, the “Manage-
ment Succession” scenario for MUC-6, which we
shall refer to throughout this paper, involves in-
formation about corporate executives starting
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and leaving positions.

The fundamental problem we face in port-
ing an extraction system to a new scenario is
to identify the many ways in which information
about a type of event may be expressed in the
text. Typically, there will be a few common
forms of expression which will quickly come to
mind when a system is being developed. How-
ever, the beauty of natural language (and the
challenge for computational linguists) is that
there are many variants which an imaginative
writer can use, and which the system needs to
capture. Finding these variants may involve
studying very large amounts of text in the sub-
ject domain. This has been a major impediment
to the portability and performance of event ex-
traction systems.

We present in this paper a new approach
to finding these variants automatically from a
large corpus, without the need to read or anno-
tate the corpus. This approach has been evalu-
ated on actual event extraction scenarios.

In the next section we outline the structure of
our extraction system, and describe the discov-
ery task in the context of this system. Sections
2 and 3 describe our algorithm for pattern dis-
covery; section 4 describes our experimental re-
sults. This is followed by comparison with prior
work and discussion in section 5.

1 The Extraction System

In the simplest terms, an extraction system
identifies patterns within the text, and then
maps some constituents of these patterns into
data base entries. (This very simple descrip-
tion ignores the problems of anaphora and in-
tersentential inference, which must be addressed
by any general event extraction system.) Al-
though these patterns could in principle be
stated in terms of individual words, it is much



easier to state them in terms of larger syntac-
tic constituents, such as noun phrases and verb
groups. Consequently, extraction normally con-
sists of an analysis of the text in terms of general
linguistic structures and domain-specific con-
structs, followed by a search for the scenario-
specific patterns.

It is possible to build these constituent struc-
tures through a full syntactic analysis of the
text, and the discovery procedure we describe
below would be applicable to such an architec-
ture. However, for reasons of speed, coverage,
and system robustness, the more common ap-
proach at present is to perform a partial syn-
tactic analysis using a cascade of finite-state
transducers. This is the approach used by our
extraction system (Grishman, 1995; Yangarber
and Grishman, 1998).

At the heart of our system is a regular ex-
pression pattern matcher which is capable of
matching a set of regular expressions against
a partially-analyzed text and producing addi-
tional annotations on the text. This core draws
on a set of knowledge bases of varying degrees
of domain- and task-specificity. The lexicon in-
cludes both a general English dictionary and
definitions of domain and scenario terms. The
concept base arranges the domain terms into
a semantic hierarchy. The predicate base de-
scribes the logical structure of the events to be
extracted. The pattern base consists of sets of
patterns (with associated actions), which make
reference to information from the other knowl-
edge bases. Some pattern sets, such as those for
noun and verb groups, are broadly applicable,
while other sets are specific to the scenario.

We have previously (Yangarber and Grish-
man, 1997) described a user interface which
supports the rapid customization of the extrac-
tion system to a new scenario. This interface
allows the user to provide examples of rele-
vant events, which are automatically converted
into the appropriate patterns and generalized to
cover syntactic variants (passive, relative clause,
etc.). Through this interface, the user can also
generalize the pattern semantically (to cover a
broader class of words) and modify the concept
base and lexicon as needed. Given an appro-
priate set of examples, therefore, it has become
possible to adapt the extraction system quite
rapidly.

However, the burden is still on the user to
find the appropriate set of examples, which may
require a painstaking and expensive search of a
large corpus. Reducing this cost is essential for
enhanced system portability; this is the problem
addressed by the current research.

How can we automatically discover a suitable
set of candidate patterns or examples (patterns
which at least have a high likelihood of being
relevant to the scenario)? The basic idea is to
look for linguistic patterns which appear with
relatively high frequency in relevant documents.
While there has been prior research on identi-
fying the primary lexical patterns of a sublan-
guage or corpus (Grishman et al, 1986; Riloff,
1996), the task here is more complex, since we
are typically not provided in advance with a
sub-corpus of relevant passages; these passages
must themselves be found as part of the discov-
ery procedure. The difficulty is that one of the
best indications of the relevance of the passages
is precisely the presence of these constructs. Be-
cause of this circularity, we propose to acquire
the constructs and passages in tandem.

2 ExDisco: the Discovery Procedure

We first outline ExDisco, our procedure for
discovery of extraction patterns; details of some
of the steps are presented in the section which
follows, and an earlier paper on our approach
(Yangarber et al., 2000). ExDIsco is an un-
supervised procedure: the training corpus does
not need to be annotated with the specific event
information to be extracted, or even with infor-
mation as to which documents in the corpus are
relevant to the scenario. The only information
the user must provide, as described below, is a
small set of seed patterns regarding the scenario.

Starting with this seed, the system automati-
cally performs a repeated, automatic expansion
of the pattern set. This is analogous to the pro-
cess of automatic term expansion used in some
information retrieval systems, where the terms
from the most relevant documents are added
to the user query and then a new retrieval is
performed. However, by expanding in terms of
patterns rather than individual terms, a more
precise expansion is possible. This process pro-
ceeds as follows:

0. We start with a large corpus of documents
in the domain (which have not been anno-



tated or classified in any way) and an initial
“seed” of scenario patterns selected by the
user — a small set of patterns whose pres-
ence reliably indicates that the document
is relevant to the scenario.

1. The pattern set is used to divide the cor-
pus U into a set of relevant documents, R
(which contain at least one instance of one
of the patterns), and a set of non-relevant
documents R = U — R.

2. Search for new candidate patterns:

e automatically convert each document
in the corpus into a set of candidate
patterns, one for each clause

e rank patterns by the degree to which
their distribution is correlated with
document relevance (i.e., appears with
higher frequency in relevant docu-
ments than in non-relevant ones).

3. Add the highest ranking pattern to the pat-
tern set. (Optionally, at this point, we may
present the pattern to the user for review.)

4. Use the new pattern set to induce a new
split of the corpus into relevant and non-
relevant documents. More precisely, docu-
ments will now be given a relevance confi-
dence measure; documents containing one
of the initial seed patterns will be given
a score of 1, while documents which are
added to the relevant corpus through newly
discovered patterns will be given a lower
score. Repeat the procedure (from step 1)
until some iteration limit is reached, or no
more patterns can be added.

3 Methodology

3.1 Pre-processing: Syntactic Analysis

Before applying ExDisco, we pre-processed
the corpus using a general-purpose dependency
parser of English. The parser is based on
the FDG formalism (Tapanainen and Jarvi-
nen, 1997) and developed by the Research Unit
for Multilingual Language Technology at the
University of Helsinki, and Conexor Oy. The
parser is used for reducing each clause or noun
phrase to a tuple, consisting of the central ar-
guments, as described in detail in (Yangarber
et al., 2000). We used a corpus of 9,224 articles

from the Wall Street Journal. The parsed arti-
cles yielded a total of 440,000 clausal tuples, of
which 215,000 were distinct.

3.2 Normalization

We applied a name recognition module prior to
parsing, and replaced each name with a token
describing its class, e.g. C-Person, C-Company,
etc. We collapsed together all numeric expres-
sions, currency values, dates, etc., using a single
token to designate each of these classes. Lastly,
the parser performed syntactic normalization to
transform such variants as the various passive
and relative clauses into a common form.

3.3 Generalization and Concept Classes

Because tuples may not repeat with sufficient
frequency to obtain reliable statistics, each tu-
ple is reduced to a set of pairs: e.g., a verb-
object pair, a subject-object pair, etc. Each pair
is used as a generalized pattern during the can-
didate selection stage. Once we have identified
pairs which are relevant to the scenario, we use
them to gather the set of words for the miss-
ing role(s) (for example, a class of verbs which
occur with a relevant subject-object pair: “com-
pany {hire/fire/expel...} person”).

3.4 Pattern Discovery

We conducted experiments in several scenarios
within news domains such as changes in cor-
porate ownership, and natural disasters. Here
we present results on the “Management Suc-
cession” and “Mergers/Acquisitions” scenarios.
ExDisco was seeded with minimal pattern sets,
namely:

Subject Verb Direct Object
C-Company | C-Appoint | C-Person
C-Person C-Resign | —

for the Management task, and

Subject Verb Direct Object
* C-Buy | C-Company
C-Company | merge | *

for Acquisitions. Here C-Company and C-
Person denote semantic classes containing
named entities of the corresponding types. C-
Appoint denotes the list of verbs { appoint, elect,
promote, name, nominate}, C-Resign = { re-
sign, depart, quit }, and C-Buy = { buy , pur-
chase }.



During a single iteration, we compute the
score, Score(p), for each candidate pattern p,
using the formula':

_ |HNR|

log |H N R (1)
|H|

Score(p)

where R denotes the relevant subset of docu-
ments, and H = H(p) the documents matching
p, as above; the first term accounts for the con-
ditional probability of relevance of p, and the
second for its support. We further impose two
support criteria: we distrust such frequent pat-
terns where |H NU| > «|U|, as uninformative,
and rare patterns for which |[H N R| < f as
noise.? At the end of each iteration, the system
selects the pattern with the highest Score(p),
and adds it to the seed set. The documents
which the winning pattern hits are added to
the relevant set. The pattern search is then
restarted.

3.5 Document Re-ranking

The above is a simplification of the actual pro-
cedure, in several respects.

Only generalized patterns are considered for
candidacy, with one or more slots filled with
wild-cards. In computing the score of the gen-
eralized pattern, we do not take into consider-
ation all possible values of the wild-card role.
We instead constrain the wild-card to those val-
ues which themselves in turn have high scores.
These values then become members of a new
class, which is produced in tandem with the
winning pattern.

Documents relevance is scored on a scale be-
tween 0 and 1. The seed patterns are accepted
as truth; the documents they match have rele-
vance 1. On iteration ¢ + 1, each pattern p is
assigned a precision measure, based on the rel-
evance of the documents it matches:

rec ! (p) = L. el’
Prec'p) = gy 3 Rl (2

where Rel’(d) is the relevance of the document
from the previous iteration, and H(p) is the set
of documents where p matched. In general, if K
is a classifier consisting of a set of patterns, we
define H(K) as the set of documents where all

lsimilar to that used in (Riloff, 1996)
*We used = 0.1 and 3 = 2.

of patterns p € K match, and the “cumulative”
precision of K as

Pred™(K) = Z Rel'(d)  (3)

HE
Once the winning pattern is accepted, the rel-
evance of the documents is re-adjusted. For
each document d which is matched by some
subset of the currently accepted patterns, we
can view that subset of patterns as a classifier
K4 = {pj}. These patterns determine the new
relevance score of the document as

Rel™!(d) = max (Rel’(d), Prec™ ! (Ky))  (4)

This ensures that the relevance score grows
monotonically, and only when there is sufficient
positive evidence, as the patterns in effect vote
“conjunctively” on the documents.

We also tried an alternative, “disjunctive”
voting scheme, with weights which accounts for
variation in support of the patterns,

Rel'(d) =1— - II (- Prec(p) (5)
peK(d)

where the weights w,, are defined using the rel-
evance of the documents, as the total support
which the pattern p receives:

wp = log Z Rel(d)
deH (p)

and w is the largest weight. The recursive for-
mulas capture the mutual dependency of pat-
terns and documents; this re-computation and
growing of precision and relevance ranks is the
core of the procedure.?

4 Results
4.1 Event Extraction

The most natural measure of effectiveness of our
discovery procedure is the performance of an ex-
traction system using the discovered patterns.
However, it is not possible to apply this met-
ric directly because the discovered patterns lack
some of the information required for entries in

*We did not observe a significant difference in perfor-
mance between the two formulas 4 and 5 in our experi-
ments; the results which follow use 5.



the pattern base: information about the event
type (predicate) associated with the pattern,
and the mapping from pattern elements to pred-
icate arguments. We have evaluated ExDisco
by manually incorporating the discovered pat-
terns into the Proteus knowledge bases and run-
ning a full MUC-style evaluation.

We started with our extraction system, Pro-
teus, which was used in MUC-6 in 1995, and
has undergone continual improvements since
the MUC evaluation. We removed all the
scenario-specific clause and nominalization pat-
terns.* We then reviewed all the patterns which
were generated by the ExDisco, deleting those
which were not relevant to the task, or which
did not correspond directly to a predicate al-
ready implemented for this task.> The remain-
ing patterns were augmented with information
about the corresponding predicate, and the re-
lation between the pattern and the predicate
arguments.® The resulting variants of Proteus
were applied to the formal training corpus and
the (hidden) formal test corpus for MUC-6, and
the output evaluated with the MUC scorer.

The results on the training corpus are:

Pattern Base | Recall | Precision F
Seed 38 83 | 52.60
ExDisco 62 80 | 69.94
Union 69 79 | 73.50
Manual-MUC 54 71 | 61.93
Manual-NOW 69 79 | 73.91

and on the test corpus:

“There are also a few noun phrase patterns which can
give rise to scenario events. For example, “Mr Smith,
former president of IBM”, may produce an event record
where Fred Smith left IBM. These patterns were left in
Proteus for all the runs, and they make some contribu-
tion to the relatively high baseline scores obtained using
just the seed event patterns.

SExDisco found patterns which were relevant to the
task but could not be easily accomodated in Proteus.
For instance “X remained as president” could be rele-
vant, particularly in the case of a merger creating a new
corporate entity, but Proteus was not equipped to han-
dle such information, and has not yet been extended to
incorporate such patterns.

5As with all clause-level patterns in Proteus, these
patterns are automatically generalized to handle syntac-
tic variants such as passive, relative clause, etc.

Pattern Base | Recall | Precision F
Seed 27 74 | 39.58
ExDisco 52 72 | 60.16
Union 57 73 | 63.56
Manual-MUC 47 70 | 56.40
Manual-NOW 56 75 | 64.04

The tables show the recall and precision mea-
sures for the patterns, with F-measure being
the harmonic mean of the two. The Seed pat-
tern base consists of just the initial pattern set,
given in the table on the previous page. To this
we added the patterns which the system discov-
ered automatically after about 100 iterations,
producing the pattern set called ExDisco. For
comparison, Manual-MUC' is the pattern base
manually developed on the MUC-6 training
corpus—prepared over the course of 1 month
of full-time work by at least one computational
linguist (during which the 100-document train-
ing corpus was studied in detail). The last row,
Manual-now, shows the current performance of
the Proteus system. The base called Union con-
tains the union of ExDisco and Manual-Now.

We find these results very encouraging: Pro-
teus performs better with the patterns discov-
ered by EXDisco than it did after one month
of manual tuning and development; in fact, this
performance is close to current levels, which
are the result of substantial additional devel-
opment. These results must be interpreted,
however, with several caveats. First, Proteus
performance depends on many factors besides
the event patterns, such as the quality of name
recognition, syntactic analysis, anaphora reso-
lution, inferencing, etc. Several of these were
improved since the MUC formal evaluation, so
some of the gain over the MUC formal evalua-
tion score is attributable to these factors. How-
ever, all of the other scores are comparable in
these regards. Second, as we noted above, the
patterns were reviewed and augmented manu-
ally, so the overall procedure is not entirely au-
tomatic. However, the review and augmenta-
tion process took little time, as compared to
the manual corpus analysis and development of
the pattern base.

4.2 Text filtering

We can obtain a second measure of perfor-
mance by noting that, in addition to growing
the pattern set, EXDisco also grows the rele-
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Figure 1: Management Succession

vance rankings of documents. The latter can be
evaluated directly, without human intervention.
We tested ExDisSco against two corpora: the
100 documents from MUC-6 formal training,
and the 100 documents from the MUC-6 for-
mal test (both are contained among the 10,000
ExXDISCO training set)”. Figure 1 shows recall
plotted against precision on the two corpora,
over 100 iterations, starting with the seed pat-
terns in section 3.4. This view on the discovery
procedure is closely related to the MUC “text-
filtering” task, in which the systems are judged
at the level of documents rather than event slots.
It is interesting to compare EXDISCO’s results
with how other MUC-6 participants performed
on the MUC-6 test corpus, shown anonymously.
ExDisco attains values within the range of
the MUC participants, all of which were either
heavily-supervised or manually coded systems.
It is important to bear in mind that ExDisco
had no benefit of training material, or any in-
formation beyond the seed pattern set.

Figure 2 shows the performance of text fil-
tering on the Acquisition task, again, given the
seed in section 3.4. ExXDisco was trained on
the same WSJ corpus, and tested against a set
of 200 documents. We retrieved this set using
keyword-based IR search, and judged their rel-
evance by hand.

"These judgements constituted the truth which was
used only for evaluation, not visible to ExDisco

Figure 2: Mergers/Acquisitions

5 Discussion

The development of a variety of information
extraction systems over the last decade has
demonstrated their feasibility but also the lim-
itations on their portability and performance.
Preparing good patterns for these systems re-
quires considerable skill, and achieving good
coverage requires the analysis of a large amount
of text. These problems have been impediments
to the wider use of extraction systems.

These difficulties have stimulated research on
pattern acquisition. Some of this work has em-
phasized interactive tools to convert examples
to extraction patterns (Yangarber and Grish-
man, 1997); much of the research has focused on
methods for automatically converting a corpus
annotated with extraction examples into pat-
terns (Lehnert et al., 1992; Fisher et al., 1995;
Miller et al., 1998). These techniques may re-
duce the level of system expertise required to
develop a new extraction application, but they
do not lessen the burden of studying a large cor-
pus in order to find relevant candidates.

The prior work most closely related to our
own is that of (Riloff, 1996), who also seeks to
build patterns automatically without the need
to annotate a corpus with the information to
be extracted. However, her work differs from
our own in several important respects. First,
her patterns identify phrases that fill individual
slots in the template, without specifying how
these slots may be combined at a later stage
into complete templates. In contrast, our pro-
cedure discovers complete, multi-slot event pat-




terns. Second, her procedure relies on a corpus
in which the documents have been classified for
relevance by hand (it was applied to the MUC-3
task, for which over 1500 classified documents
are available), whereas ExDISCO requires no
manual relevance judgements. While classify-
ing documents for relevance is much easier than
annotating documents with the information to
be extracted, it is still a significant task, and
places a limit on the size of the training corpus
that can be effectively used.

Our research has demonstrated that for the
studied scenarios automatic pattern discovery
can yield extraction performance comparable to
that obtained through extensive corpus anal-
ysis. There are many directions in which the
work reported here needs to be extended:

e using larger training corpora, in order to
find less frequent examples, and in that way
hopefully exceeding the performance of our
best hand-trained system

e capturing the word classes which are gen-
erated as a by-product of our pattern dis-
covery procedure (in a manner similar to
(Riloff and Jones, 1999)) and using them
to discover less frequent patterns in subse-
quent iterations

e evaluating the effectiveness of the discov-
ery procedure on other scenarios. In par-
ticular, we need to be able to identify top-
ics which can be most effectively charac-
terized by clause-level patterns (as was the
case for the business domain), and topics
which can be better characterized by other
means. We would also like to understand
how the topic clusters (of documents and
patterns) which are developed by our pro-
cedure line up with pre-specified scenarios.
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