
A Method for Accelerating CFG-Parsing by Using Dependency
Information

Hideo Watanabe

IBM Research, Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato, Kanagawa 242-8502, Japan

watanabe@trl.ibm.co.jp

Abstract

This paper describes an algorithm for accelerat-
ing the CFG-parsing process by using dependency
(or modi�er-modi�ee relationship) information given
by, for instance, dependency estimation programs
such as stochastic parsers, user's indication in an
interactive application, and linguistic annotations
added in a source text. This is a method for en-
hancing existing grammar-based CFG-parsing sys-
tem by using dependency information.

1 Introduction

The parsing system is a key component for nat-
ural language applications such as machine trans-
lation, information retrieval, text summarization,
and its performance (processing speed and accu-
racy) is very important to the success of these ap-
plications.

The usual CFG-parsing algorithms [3, 6] keep all
intermediate possibilities which may or may not be
used in the �nal parse results. Therefore, we usu-
ally reduce these intermediate possibilities which
are unlikely to be used as �nal results in the mid-
dle of the process by using several pruning tech-
niques. One good information source for pruning
is dependency information between words. It has
not been so easy to get such dependency informa-
tion until a few years ago, but, the situation has
recently changed.

Recent intensive studies on statistical approach
[7, 1, 2] advanced statistical parsing systems, and
we can get relatively correct dependency informa-
tion using these systems. Further, if we suppose
an interactive NLP system, then there are some
types of user interactions which can be considered
to determine the modi�ee candidate. In addition,
recent studies on the linguistic information anno-
tation [10, 4, 12, 13] provide tools by which a user
can easily annotate linguistic information (special
XML markup tags) into source texts, and we can
expect to see an increase of the number of texts
with linguistic information. This linguistic infor-
mation usually includes dependency information.

For instance, the following example shows an anno-
tation example by Linguistic Annotation Language
described in [12, 13], and the id and mod attributes
inside lal:w elements specify word dependencies.

He hlal:w id="1"isawh/lal:wi a man hlal:w
mod="1"iwithh/lal:wi a telescope.

In this example, the word \with" modi�es the word
\saw."

As shown in the above examples, we can now
get dependency information more easily than a few
years ago. This paper describes an algorithm for
accelerating CFG-parsing systems by using such
dependency (or modi�er-modi�ee relationship) in-
formation. The proposed algorithm does not as-
sume all words are given dependency information,
rather it works in case such that some of words are
partially given dependency information.

2 Optimizing Algorithm Using De-

pendency Information

We use a normal CFG parsing system with one
extension that for each rule there must be one right-
hand side (or RHS) term1 marked as a head, and
the information of a head term is transferred to the
left-hand side (or LHS) term. In this paper, a CFG
rule is denoted as follows:

fX ! Y1 ... Yi� ... Yng (n > 0)

In the above notation, X is the left-hand side
(or LHS) term, and Yi are right-hand side (or RHS)
terms, and a RHS term followed by an asterisk '*' is
a head term. The typical usage of the head is that
the LHS term shares many features of the head
term in the RHS. For instance, a matching word of
the the LHS term becomes the same as the one of
the head term in the RHS.

For each rule, an arc is constructed over a word
segment in an input sentence. An arc is denoted
using terms of its base rule as follows:

[X ! Y1 ... Yi . Yi+1� ... Yn]

1A term expresses a non-terminal symbol in LHS, and a

non-terminal or a terminal symbol in RHS.



The LHS term of an arc means the LHS term
of the base rule of the arc, and RHS terms of an
arc means RHS terms of the base rule of the arc.
In the above notation, a single dot indicates that
RHS terms located to the left of a dot are inactive,
that is, they already match the LHS term of some
other arcs. Three dots are used to represent zero or
any number of terms. An arc whose RHS terms are
all inactive is called an inactive arc, otherwise it is
called an active arc. An arc covers a segment of
input words; the start point of an arc is the index
of the �rst word in the covering segment, and the
end point of an arc is 1 plus the index of the last
word in the covering segment.

Basically, a standard CFG parsing algorithm such
as [3, 6] consists of the following three operations.

Initialization: For each word, arcs are generated
from rules such that the leftmost RHS term
matches it.

Operation A: For each inactive arc A, an arc is
generated from A and a rule R such that the
leftmost RHS term of R matches the LHS
term of A.

Operation B: For each inactive arc A, an arc is
generated from A and another active arc B
such that the leftmost active RHS term of B
matches the LHS term of A and the end point
of B is the same as the start point of A.

We assume that some dependency information
between words are given, and such dependency in-
formation is denoted as follows:

Wx (Wy

Wx )Wy

The �rst of the above examples represents that
a wordWy modi�es another word Wx and Wx pre-
cedes Wy, while the second one represents that a
word Wx modi�es another word Wy and Wx pre-
cedes Wy.

Given this kind of dependency information, the
following conditions are imposed on Operation A
and Operation B.

Conditions for Operation A:

Condition A1 (when the leftmost RHS term of
a rule is a head term):

Given an inactive arc ArcI denoted by
[A ! ...] and a rule which has two or
more RHS terms and the leftmost RHS
term is a head denoted by fX ! A �
B ...g, Operation A is executed only if
there is dependency information Wa (
Wb where Wa is a word matching the
LHS term A of ArcI and Wb is a word

located anywhere to the right of the end
point of ArcI .

Figure 1: Condition A1

Figure 1 shows the above condition. In this �g-
ure, a thick arc represents an inactive arc, a line
represents a matching to be tried in this operation,
a dotted line represents a matching between a term
in an arc and a word, and a dotted arrow represents
dependency information. In this case, this type of
rule implies that a word matching the LHS term
of the arc to be matched with the leftmost term of
the rule must be modi�ed by any word which is lo-
cated after the end point of the arc, since the head
term is the leftmost term of the rule. Therefore, if
the A1 condition does not hold, Operation A is not
required to be executed.

Condition A2 (when the leftmost RHS term of
a rule is not a head term):

Given an inactive arc ArcI denoted by
[A ! ...] and a rule which has two or
more RHS terms and the leftmost RHS
term is not a head denoted by fX ! A

... D� ...g, Operation A is executed
only if there is a dependency informa-
tion Wa ) Wb where Wa is a word
matching the LHS term A of ArcI and
Wb is a word located anywhere after the
end point of ArcI .

Figure 2 shows the above condition. In this case,
this type of rule implies that a word matching the
LHS term of the arc to be matched with the left-
most term of the rule must modify any word which
is located after the end point of the arc, since the
head term is not the leftmost term of the rule.

Conditions for Operation B:

Condition B1 (when the leftmost active RHS
term of an active arc is the head term):

Given an active arc ArcA denoted by
[X ! A0 ... An . B� ...] and an in-
active arc ArcI denoted by [B ! ...]



Figure 2: Condition A2

such that the end point of ArcA is the
same as the start point of ArcI , Opera-
tion B is executed only if, for each Wai

(0 � i � n) which is a word match-
ing the RHS term Ai of ArcA, there
is dependency information Wai ) Wb,
where Wb is a word matching the LHS
term B of ArcI .

Figure 3: Condition B1

Figure 3 shows the above condition. In this �g-
ure, a dotted thick arc represents an active arc. In
this case, this type of active arc implies that words
matching inactive terms before the head term of
the active arc must modify a word matching the
LHS term of the inactive arc.

Condition B2 (when the head term is on the left
side of the leftmost active RHS term of an active
arc):

Given an active arc ArcA denoted by
[X ! ... A� ... . B ...] and an in-
active arc ArcI denoted by [B ! ...]
such that the end point of ArcA is the
same as the start point of ArcI , Oper-
ation B is executed only if there is de-
pendency information Wa (Wb where
Wa is a word matching the RHS term

A of ArcA, and Wb is a word matching
the LHS term B of ArcI .

Figure 4: Condition B2

Figure 4 shows the above condition. In this case,
this type of active arc implies that a word matching
the LHS term of the inactive arc must modify a
word matching the head term of the active arc.

Condition B3 (when the head term is on the
right side of the leftmost active RHS term of an
active arc):

Given an active arc ArcA denoted by
[X ! A . B ... C� ...] and an inactive
arc ArcI denoted by [B ! ...] such that
the end point of ArcA is the same as the
start point of ArcI , Operation B is exe-
cuted only if there is dependency infor-
mation Wb ) Wc where Wb is a word
matching the LHS term B of ArcI , and
Wc is a word on the right side of the
end point of ArcI .

Figure 5: Condition B3

Figure 5 shows the above condition. In this case,
this type of active arc implies that a word matching
the LHS term of the inactive arc must modify a
word after the end point of the inactive arc.

The dependency information is not necessarily
given to all words. If there is any source word ex-
cept for the root word of a sentence such that there



is no dependency information originating from it,
then a set of such dependency information is called
partial, otherwise, it is called total. If the given de-
pendency information is partial, the A1 condition
can not be used, since, even if there is no depen-
dency information targetingWa, we cannot know if
such dependency information does not really exist,
or if such dependency information is not supplied.
For other conditions, we check them only when all
source words for dependency checking have depen-
dency information. On the other hand, if the given
dependency information is total, all conditions are
checked.

3 Experiment

We have implemented the proposed algorithm
into an existing English CFG-parser we have devel-
oped for a machine translation product [8, 9, 11] 2

, and conducted an experiment to know the e�ec-
tiveness of this algorithm.

We selected 280 test sentences randomly from
a sentence set created by JEIDA3 for evaluating
translation system, and made the correct depen-
dency relation data for these selected test sentences.
We collected the number of inactive arcs, the num-
ber of active arcs, and the processing time for cases
such that C modi�ee candidates (one of which is
the correct modi�ee) are given to a word.4 If C=1
then it corresponds to the best case for a parser
such that only one correct modi�ee is given for each
word, while if C is 3 or 4 then it corresponds to the
approximation of using a statistical modi�ee esti-
mation program for getting candidate modi�ees.

The graphs in Figure 6 indicate the reduction
ratios of active arcs, inactive arcs, and processing
time for using conditions for total dependency in-
formation and conditions for partial dependency in-
formation. The denominators for calculating these
ratios are the numbers of arcs and the processing
time (seconds) in case of the parser without this al-
gorithm. In these graphs, C=X indicates that X is
the maximum number of modi�ee candidates given
to a word.

From these graphs, we can see that the more
words in a sentence, the better the performance.
In a real domain, most sentences consist of more
than ten words. Therefore, looking at values for
around 10 in the X axis, we can see that inactive
arcs are reduced by about 40% and 25%, active arcs

2This parser is used in a Web page translation software

called \Internet King of Translation" released from IBM

Japan.
3Japan Electronic Industry Development Association
4Modi�ee candidates are selected randomly except for

the correct one.

are reduced by about 65% and 35%, and processing
time is reduced by about 45% and 15%, for the
ideal case (C=1) and more practical cases (C=3
or 4), respectively, in the case of total dependency
information. Please note that, since the parser in
which this algorithm is implemented has already
several pruning mechanisms, we can expect more
reduction (or performance gain) for generic CFG
parsers.

4 Discussion

As a study for accelerating the parsing process
using dependency information, Imaichi[5] reported
an algorithm for Japanese language. The condi-
tions introduced by Imaichi are described by using
the notation in this paper as follows:

Condition M1:

Given an active arc ArcA denoted by
[X ! A . B�] and an inactive arc ArcI
denoted by [B ! ...] such that the end
point of ArcA is the same as the start
point of ArcI , Operation B is executed
only if there is dependency information
Wa )Wb whereWa is a word matching
the RHS term A of ArcA, and Wb is
a word matching the LHS term B of
ArcI .

Condition M2:

Given an inactive arc ArcI denoted by
[A ! ...] and a rule denoted by fX !
A ...g, Operation A is executed only
if there is no dependency information
Wk ) Wa where Wa is a word match-
ing the LHS term A of ArcI and Wk is
a word located before the start point of
ArcI .

The condition M1 corresponds to B1. Since Imaichi's
algorithm considers only Japanese in which all words
other than the last word modi�es one of the suc-
ceeding words, it does not deal with cases usually
seen in European languages where a word modi�es
one of the preceding words. Therefore, it is not
applicable to any language other than Japanese in
general. Further, since a CFG rule is restricted to
be in Chomsky normal form, Imaichi's algorithm is
limited in terms of applicability.

Since the algorithm proposed in this paper does
not have any restrictions on the dependency direc-
tion and the CFG rule format, it can be applicable
to any CFG-parsers in any languages.



(a) (b)

(c) (d)

(e) (f)

Figure 6: Reduction ratios of inactive arcs, active arcs, and processing time



5 Conclusion

We developed an algorithm for accelerating the
performance of the CFG parsing process if we are
given dependency information. From an experi-
ment, we can show the e�ectiveness of this algo-
rithm.

By using this algorithm, we can enhance exist-
ing grammar-based parsers using dependency in-
formation given by stochastic parsers, interactive
systems, and texts created by linguistic annotation
systems.

References

[1] M. Collins. A new statistical parser based on
bigram lexical dependencies. In Proc. of 34th
ACL, pages 184{191, 1996.

[2] M. Collins. Three generative, lexicalized models
for statistical parsing. In Proc. of 35th ACL,
pages 16{23, 1997.

[3] J. Earley. An e�cient context-free parsing al-
gorithm. In Readings in Natural Language Pro-
cessing. Morgan Kaufman, 1969.

[4] K. Hashida, K. Nagao, et al., Progress and
Prospect of Global Document Annotation. (in
Japanese) In Proc. of 4th Annual Meeting of
the Association of Natural Language Process-
ing, pp. 618{621, 1998.

[5] O. Imaichi, Y. Matsumoto, and M. Fujio. An
integrated parsing method using stochastic in-
formation and grammatical constraints. Jour-
nal of Natural Language Processing, 5(3):67{83,
1998.

[6] M. Kay. Algorithm schemata and data struc-
ture in syntactic processing. Technical Report
CSL-80-12, Xerox PARC, 1980.

[7] D. M. Magerman. Statistical decision-tree mod-
els for parsing. In Proc. of 33rd ACL, pages
276{283, 1995.

[8] K. Takeda. Pattern-based context-free gram-
mars for machine translation. In Proc. of 34th
ACL, pages 144{151, 1996.

[9] K. Takeda. Pattern-based machine translation.
In Proc. of 16th Coling, volume 2, pages 1155{
1158, 1996.

[10] Text Encoding Initiative
(http://www.uic.edu:80/orgs/tei/)

[11] H. Watanabe and K. Takeda. A pattern-
based machine translation system extended by
example-based processing. In Proc. of 17th Col-
ing (Coling-ACL'98), volume 2, pages 1369{
1373, 1998.

[12] H. Watanabe, Linguistic Annotation Lan-
guage - The Markup Language for Assist-
ing NLP Programs -. IBM Research Report
RT0334, 1999.

[13] H. Watanabe, K. Nagao, et al., Linguistic An-
notation System for Improving the Performance
of Natural Language Processing Programs. In
Proc. of 6th Annual Meeting of The Association
for NLP (in Japanese), pp. 171{174, 2000.


