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Abstract 

We describe a method of word segmentation in 
Japanese in which a broad-coverage parser selects 
the best word sequence while producing a syntactic 
analysis. This technique is substantially different 
from traditional statistics- or heuristics-based 
models which attempt to select the best word 
sequence before handing it to the syntactic 
component. By breaking up the task of finding the 
best word sequence into the identification of words 
(in the word-breaking component) and the selection 
of the best sequence (a by-product of parsing), we 
have been able to simplify the task of each 
component and achieve high accuracy over a wide 
variety of data. Word-breaking accuracy of our 
system is currently around 97~98%. 

1. Introduction 

Word-breaking is an unavoidable and crucial first 
step toward sentence analysis in Japanese. In a 
sequential model of word-breaking and syntactic 
analysis without a feedback loop, the syntactic 
analyzer assumes that the results of word-breaking 
are correct, so for the parse to be successful, the 
input from the word-breaking component must 
include all words needed for a desired syntactic 
analysis. Previous approaches to Japanese word 
segmentation have relied on heuristics- or 
statistics-based models to find the single most 
likely sequence of words for a given string, which 
can then be passed to the syntactic component for 
further processing. The most common 
heuristics-based approach utilizes a connectivity 
matrix between parts-of-speech and word 
probabilities. The most likely analysis can be 
obtained by searching for the path with the 
minimum connective cost (Hisamitsu and Nitta 
1990), often supplemented by additional heuristic 
devices such as the longest-string-match or the 
least-number-of-bunsetsu (phrase). Despite its 
popularity, the connective cost method has a major 
disadvantage in that hand-tuning is not only 
labor-intensive but also unsafe, since adjusting the 

cost for one string may cause another to break. 
Various heuristic (e.g. Kurohashi and Nagao 1998) 
and statistical (e.g. Takeuchi and Matsumoto 1997) 
augmentations of the minimum connective cost 
method have been proposed, bringing 
segmentation accuracy up to around 98-99% (e.g. 
Kurohashi and Nagao 1998, Fuchi and Takagi 
1998).  

Fully stochastic language models (e.g. Nagata 
1994), on the other hand, do not allow such manual 
cost manipulation and precisely for that reason, 
improvements in segmentation accuracy are harder 
to achieve. Attaining a high accuracy using fully 
stochastic methods is particularly difficult for 
Japanese due to the prevalence of orthographic 
variants (a word can be spelled in many different 
ways by combining different character sets), which 
exacerbates the sparse data problem. As a result, 
the performance of stochastic models is usually not 
as good as the heuristics-based language models. 
The best accuracy reported for statistical methods 
to date is around 95% (e.g. Nagata 1994). 

Our approach contrasts with the previous 
approaches in that the word-breaking component 
itself does not perform the selection of the best 
segmentation analysis at all. Instead, the 
word-breaker returns all possible words that span 
the given string in a word lattice, and the best word 
sequence is determined by applying the syntactic 
rules for building parse trees. In other words, there 
is no task of selecting the best segmentation per se; 
the best word-breaking analysis is merely a 
concomitant of the best syntactic parse. We 
demonstrate that a robust, broad-coverage parser 
can be implemented directly on a word lattice 
input and can be used to resolve word-breaking 
ambiguities effectively without adverse 
performance effects. A similar model of 
word-breaking is reported for the problem of 
Chinese word segmentation (Wu and Jiang 1998), 
but the amount of ambiguity that exists in the word 



 

lattice is much larger in Japanese, which requires a 
different treatment. In the following, we first 
describe the word-breaker and the parser in more 
detail (Section 2); we then report the results of 
segmentation accuracy (Section 3) and the results 
of related experiments assessing the effects of the 
segmentation ambiguities in the word lattice to 
parsing (Section 4). In Conclusion, we discuss 
implications for future research. 

2. Using a broad-coverage parser for 
word-breaking 

The word-breaking and syntactic components 
discussed in the current study are implemented 
within a broad-coverage, multi-purpose natural 
language understanding system being developed at 
Microsoft Research, whose ultimate goal is to 
achieve deep semantic understanding of natural 
language1. A detailed description of the system is 
found in Heidorn (in press). Though we focus on 
the word-breaking and syntactic components in 
this paper, the syntactic analysis is by no means 
the final goal of the system; rather, a parse tree is 
considered to be an approximate first step toward a 
more useful meaning representation. We also aim 
at being truly broad-coverage, i.e., returning useful 
analyses irrespective of the genre or the subject 
matter of the input text, be it a newspaper article or 
a piece of e-mail. For the proposed model of 
word-breaking to work well, the following 
properties of the parser are particularly important. 

��The bottom-up chart parser creates syntactic 
analyses by building incrementally larger phrases 
from individual words and phrases (Jensen et al. 
1993). The analyses that span the entire input 
string are the complete analyses, and the words 
used in that analysis constitutes the word-breaking 
analysis for the string. Incorrect words returned by 
the word-breaker are filtered out by the syntactic 
rules, and will not make it into the final complete 
parse.  

��All the grammar rules, written in the 
formalism of Augmented Phrase Structure 
Grammar (Heidorn 1975), are binary, a feature 
crucial for dealing with free word-order and 

                                                      
1  Japanese is one of the seven languages under 
development in our lab, along with Chinese, English, 
French, German, Korean and Spanish.  

missing constituents (Jensen 1987). Not only has 
the rule formalism proven to be indispensable for 
parsing a wide range of English texts, it is all the 
more critical for parsing Japanese, as the free 
word-order and missing constituents are the norm 
for Japanese sentences.  

��There is very little semantic dependency in the 
grammar rules, which is essential if the grammar is 
to be domain-independent. However, the grammar 
rules are elaborately conditioned on morphological 
and syntactic features, enabling much finer-grained 
parsing analyses than just relying on a small 
number of basic parts-of-speech (POS). This gives 
the grammar the power to disambiguate multiple 
word analyses in the input lattice.  

Because we do not utilize semantic information, 
we perform no semantically motivated attachment 
of phrases during parsing. Instead, we parse them 
into a default analysis, which can then be expanded 
and disambiguated at later stages of processing 
using a large semantic knowledge base 
(Richardson 1997, Richardson et al. 1998). One of 
the goals of this paper is to show that the syntactic 
information alone can resolve the ambiguities in 
the word lattice sufficiently well to select the best 
breaking analysis in the absence of elaborate 
semantic information. Figure 1 (see Appendix) 
shows the default attachment of the relative clause 
to the closest NP. Though this structure may be 
semantically implausible, the word-breaking 
analysis is correct.  

The word-breaking component of our system is 
described in detail in Kacmarcik et al. (2000). For 
the purpose of robust parsing, the component is 
expected to solve the following two problems:  

��Lemmatization: Find possible words in the 
input text using a dictionary and its inflectional 
morphology, and return the dictionary entry forms 
(lemmas). Note that multiple lemmas are often 
possible for a given inflected form (e.g. surface 
form ��� (katte) could be an inflected form of 
the verbs �� (kau "buy"), �� (katu "win") or 
�� (karu "trim"), in which case all these forms 
must be returned. The dictionary the word-breaker 
uses has about 70,000 unique entries.  

��Orthography normalization: Identify and 
normalize orthographic variants. This is a 
non-trivial task in Japanese, as words can be 
spelled using any combination of the four character 



 

types (hiragana, katakana, kanji and roman 
alphabets). Other types of spelling variations are 
also frequent in Japanese (see Tables in Kacmarcik 
et al. 2000 for examples). It is therefore very 
important that the word-breaker identifies and 
normalizes these spelling variants.  

The present model of word-breaking and parsing 
offers some desirable properties:  

��The division of labor between the 
word-breaking and parsing components simplifies 
the task of the word-breaker tremendously, 
allowing it to focus on the sufficiently complex 
task of lemmatization and orthography 
normalization.  

��Maintenance and consistency benefit from the 
fact that the grammar rules are maintained in only 
one place, i.e., in the rules for the parsing 
component. There is no separate set of rules 
exclusive to the task of word-breaking analysis.  

��Undesired breaking results can be attacked 
separately in the word-breaking or syntactic 
components, depending upon the nature of the 
problem. Recall errors, in which desired words are 
missing, must be corrected in the word-breaking 
component, while the precision errors, in which a 
wrong word is preferred over a correct one, are 
corrected in the syntactic component. Fixing a 
recall error in the word-breaking component may 
result in a new precision error, but this can then be 
readily corrected separately in syntax. The 
error-correction process is thus substantially 
simpler than the model that needs to correct both 
recall and precision errors within a single 
component. 

3. Accuracy results 

We now turn to reporting experimental results 
using the current version of our system. 

3.1 Test data 

The test data used for this study were derived from 
three sets of corpora, each consisting of 5,000 
randomly selected sentences from three major 
genres of text: an electronic encyclopedia2, the 
Nikkei newspaper 3 , and a collection of 

                                                      
2 Microsoft Encarta 98 Encyclopedia. 
3 Nihon Keizai Shimbun (1993-1994). Made available 
by the Linguistic Data Consortium, University of 

pocketbooks. To evaluate word-breaking accuracy 
(Section 3.3), we used a smaller subset of 1,500 
sentences from these three genres (500 from 
encyclopedia, 500 from newspaper, and 500 from 
pocketbooks corpora). No manual changes were 
made in the test corpora, and the developers of the 
system had no previous exposure to them. The 
average sentence length is 49.02 characters. Table 
1 summarizes the test corpora. 

corpus average 
sentence length 

number 
of sentences 

A (encyclopedia) 48.07 chars 5,000 
B (newspaper) 46.99 chars 5,000 
C (pocketbooks) 52.00 chars 5,000 
total 49.02 chars 

(average) 
15,000 

Table 1. Summary of test corpora 

3.2 Evaluation measures 

To measure word-breaking accuracy, we used the 
standard metric of recall (R) and precision (P): 

totalCorrect

Matched
R =    

totalOutput

Matched
P =  

in which Matched is a number of words correctly 
returned by the word-breaker, Correcttotal is the 
number of words in the target corpora, and 
Outputtotal is the total number of words returned by 
the word-breaker. Target word-breaking analyses 
for the test corpora were created manually by two 
native speakers of Japanese holding a degree in 
linguistics. The target word-breaking and tagging 
was chosen to maximize the retrieval of words in 
our dictionary rather than following an 
independent guideline. Since the parser currently 
uses extremely crude heuristics to rank multiple 
parses, the first analysis was chosen as the best 
word-breaking analysis in this experiment 
whenever the parser returned multiple parse 
analyses.  

3.3 Breaking and POS-labeled recall and 
precision 

Table 2 illustrates breaking recall and precision. In 
the breaking-only analysis, we considered the 
analysis to be correct if the desired character string 

                                                                                    
Pennsylvania. 



 

was returned. POS-labeled accuracy, on the other 
hand, requires that the word be returned with one 
of nine correct POS-labels4. Because we used our 
own test corpora and because what counts as a 
word varies among word-breakers, it is difficult to 
cross-compare accuracy results with those of other 
word-breakers. With that caveat, the results are 
roughly comparable with those reported by others 
for both recall and precision. Further development 
on the grammar can be expected to improve the 
figures in the future. Stylistic and topical 
differences among different genres of corpora 
affected the accuracy only minimally.  

 A B C 
recall 98.4 98.5 98.0 word-breaking 

only precision 97.9 98.1 97.4 
recall 98.0 97.8 97.0 POS-labeled 
precision 97.5 97.4 96.4 

Table 2. Recall and precision of 3 x 500 sentence 
corpora (in %) 

4. Word-breaking ambiguity and parser 
performance 

At this point, there are a number of interesting 
questions we can ask regarding the nature of 
ambiguity in the input word lattice and its effects 
on parsing and word-breaking. How is the 
word-breaking accuracy related to the parser 
coverage as a whole? What are the effects of the 
word-breaking ambiguity on the parser precision 
and performance? How much ambiguity does the 
input word lattice contain to begin with? In this 
section, we discuss each of these questions in turn.  

4.1 Parser coverage and word-breaking 
accuracy 

Currently, the parser coverage at the sentence level 
is about 70% on the 15,000-sentence blind corpora 
mentioned above. The parser coverage is measured 
automatically as the percentage of sentences that 
received a final sentential parse, which is a good 
indicator of the coverage in terms of desired parses 
in our system (Gamon et al. 1997). About 30% of 
the input strings did not receive a final sentential 

                                                      
4 9 POSs include: Verb, Noun, Pronoun, Adjective, 
Adverb, Conjunction, Interjection, Postposition and 
special characters (e.g. punctuation marks and 
parentheses). 

parse, due to incomplete, fragmental input or to 
word-breaker or parser errors. Even when the input 
did not reach the sentential parse, however, the 
maximally spanning structure built by the parser is 
often useful, as in Figure 2 (see Appendix). For 
this reason, word-breaking accuracy is much 
higher than parser coverage. 

4.2 Ambiguity in the lattice 

Figure 3 shows the precision of the word-breaker 
in terms of how frequently the words returned by 
the word-breaker are used in the final successful 
parse. For this experiment, we used a corpus of 
4,153 sentences for which the correct POS and 
segmentation analyses have been annotated, and 
for which the parser is known to return a correct 
analysis. The word-breaker recall for this corpus is 
therefore 100%. We measured the precision figures 
against two kinds of input word lattice: (1) a lattice 
containing both breaking and POS ambiguities; (2) 
a lattice containing only POS ambiguity. The latter 
kind of ambiguity also exists in parsing languages 
with white space between words. The figure shows 
that when there is only POS ambiguity in the input 
lattice, there are about 1.5 times more records in 
the input word lattice than the number of words in 
the final parse (i.e., about 62% of the candidate 
words are in the final parse). When both 
word-breaking and POS ambiguities are 
considered, the input lattice size is about three 
times the number of words used in the final parse 
(or about 36% of the words in the input lattice end 
up being used in the final parse). This ratio 
remains stable across various sentence lengths. 
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Figure 3. Precision of the word-breaker (y-axis) in 

relation to the sentence length (x-axis) 



 

4.3 Parser precision 

An initial concern in implementing the present 
model was that parsing ambiguous input might 
proliferate syntactic analyses. In theory, the 
number of analyses might grow exponentially as 
the input sentence length increased, making the 
reliable ranking of parse results unmanageable. In 
practice, however, pathological proliferation of 
syntactic analyses is not a problem5. Figure 4 
tallies the average number of parses obtained in 
relation to sentence length for all successful parses 
in the 5,000-sentence test corpus (corpus A in 
Table 1). There were 4,121 successful parses in the 
corpus, corresponding to 82.42% coverage. From 
Figure 4, we can see that the number of parses 
does increase as the sentence grows longer, but the 
increment is linear and the slope is very moderate. 
Even in the highest-scoring range, the mean 
number of parses is only 2.17. Averaged over all 
sentence lengths, about 68% of the successfully 
parsed sentences receive only one parse, and 22% 
receive two parses. Only about 10% of sentences 
receive more than 2 analyses. From these results 
we conclude that the overgeneration of parse trees 
is not a practical concern within our approach. 
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Figure 4.  Average number of parses for corpus A 

(5,000 sentences) 

4.4 Performance 

A second potential concern was performance: 
would the increased number of records in the chart 
cause unacceptable degradation of system speed? 

                                                      
5 A similar observation is made by Charniak et al. 
(forthcoming), who find that the number of final parses 
caused by additional POS tags is far less than the 
theoretical worst case in reality.  

This concern also proved unfounded in practice. In 
another experiment, we evaluated the processing 
speed of the system by measuring the time it takes 
per character in the input sentence (in 
milliseconds) relative to the sentence length. The 
results are given in Figure 5. This figure shows 
that the processing time per-character grows 
moderately as the sentence grows longer, due to 
the increased number of intermediate analyses 
created during the parsing. But the increase is 
linear, and we interpret these results as indicating 
that our approach is fully viable and realistic in 
terms of processing speed, and robust against input 
sentence length. The current average parsing time 
for our 15,000-sentence corpus (with average 
sentence length of 49.02 characters) is 23.09 
sentences per second on a Dell 550MHz Pentium 
III machine with 512MB of RAM. 
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Figure 5. Processing speed on a 15,000-sentence corpus 

5. Conclusion 

We have shown that a practical, broad-coverage 
parser can be implemented without requiring the 
word-breaking component to return a single 
segmentation analysis, and that it can at the same 
time achieve high accuracy in POS-labeled 
word-breaking. Separating the tasks of word 
identification and best sequence selection offers 
flexibility in enhancing both recall and precision 
without sacrificing either at the cost of the other. 

Our results show that morphological and syntactic 
information alone can resolve most word-breaking 
ambiguities. Nonetheless, some ambiguities 
require semantic and contextual information. For 
example, the following sentence allows two parses 
corresponding to two word-breaking analyses, of 
which the first is semantically preferred:  



 

��	
������
�����������

��� 
(1) ocha-ni haitte-iru arukaroido 

tea-in  contain-ASP alkaloid 
"the alkaloid contained in tea" 

(2) ocha-ni-ha itte-iru arukaroido 
tea-in-TOP  go-ASP alkaloid 
??"the alkaloid that has gone to the tea" 

Likewise, the sentence below allows two different 
interpretations of the morpheme de, either as a 
locative marker (1) or as a copula (2). Both 
interpretations are syntactically and semantically 
valid; only contextual information can resolve the 
ambiguity.  

��
����
 !�� 
(1)  rainen-ha     isuraeru-de aru 

next year-TOP   Israel-LOC be-held 
"It will be held in Israel next year". 

(2)  rainen-ha    isuraeru de-aru 
next year-TOP  Israel  be-PRES  
"It will be Israel next year".  

In both these sentences, we create syntactic trees 
for all syntactically valid interpretations, leaving 
the ambiguity intact. Such ambiguities can only be 
resolved with semantic and contextual information 
eventually made available by higher processing 
components. This will be the focus of our ongoing 
research.  
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Appendix 
��������	
��
����� �

“(It) has been annoyed by the successive interventions by the neighboring country”.  
----------------------------------------------- 
 ���� VERB1  
 �� NOUN1  
 �� VERB2  
:::::::: �� VERB3  
:::::::::::::::: �� NOUN2  
:::::::::::::::::::::::: � NOUN3  
:::::::::::::::::::::::: � PRON1  
:::::::::::::::::::::::: � POSP1  
:::::::::::::::::::::::::::: �	 NOUN4  
:::::::::::::::::::::::::::::::::::: 
� NOUN5  
:::::::::::::::::::::::::::::::::::: 
 VERB4  
:::::::::::::::::::::::::::::::::::: 
 POSP2  
:::::::::::::::::::::::::::::::::::::::: ��
� VERB5  
:::::::::::::::::::::::::::::::::::::::: �� NOUN6  
:::::::::::::::::::::::::::::::::::::::: � VERB6  
:::::::::::::::::::::::::::::::::::::::: � IJ1  
:::::::::::::::::::::::::::::::::::::::: � POSP3  
:::::::::::::::::::::::::::::::::::::::::::: �
� VERB7  
:::::::::::::::::::::::::::::::::::::::::::: � IJ2  
:::::::::::::::::::::::::::::::::::::::::::: � POSP4  
:::::::::::::::::::::::::::::::::::::::::::::::: 
 NOUN7  
:::::::::::::::::::::::::::::::::::::::::::::::::::: � VERB8  
:::::::::::::::::::::::::::::::::::::::::::::::::::: � CONJ1  
:::::::::::::::::::::::::::::::::::::::::::::::::::: � POSP5  
:::::::::::::::::::::::::::::::::::::::::::::::::::::::: �� NOUN8  
:::::::::::::::::::::::::::::::::::::::::::::::::::::::: �� VERB9  
----------------------------------------------- 

DECL1  NP1   NP2   RELCL1  VERB1*  "����"  (successive) 
NOUN2*   "��"       (neighboring country) 
PP1   POSP1*    "�"    (GEN) 

NOUN4*  "�	"           (intervention) 
            PP2   POSP2*    "
"        (by) 

VERB5*    "��
�"             (annoyed) 
AUXP1     VERB9*    "��"          (be) 
CHAR1     "�"  

  ------------------------------  

Figure 1. Example of ambiguous attachment. RELCL1 can syntactically modify either NOUN2 or NOUN4. 
NOUN4 (non-local attachment) is the semantically correct choice. Shown above the parse tree is the 
input word lattice returned from the word-breaker. 

�

������������
���� �!��”Classical Thai literature is based on tradition and history”. 

FITTED1 NP1   NOUN1*  "�� �� ��"    (classical Thai literature) 
PP1       POSP1*  "�"   (TOPIC) 

NP2   NP3       NOUN2*    "��"  (tradition) 
POSP2*    "�"        (and) 
NP4       NOUN3*    "��"  (history) 
PP2       POSP3*    "
"   (on) 

VP1   VERB1*    "���� "     (based) 
AUXP1     VERB2*    "�!"  (be) 

CHAR1  "�"  
  ------------------------------  

Figure 2. Example of an incomplete parse with correct word-breaking results.  


