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Abstract

We present a new statistical language
model based on a combination of
individual word language models. Each
word model is built from an individual
corpus which is formed by extracting
those subsets of the entire training corpus
which contain that significant word. We
also present a novel way of combining
language models called the “union
model”, based on a logical union of
intersections, and use this to combine the
language models obtained for the
significant words from a cache. The
initial results with the new model provide
a 20% reduction in language model
perplexity over the standard 3-gram
approach.

Introduction

Statistical language models are based on
information obtained from the analysis of large
samples of a target language. Such models
estimate the conditional probability of a word
given a sequence of preceding words. The
conditional probability can be further used to
determine the likelihood of a sentence through
the product of the individual word probabilities.
A popular type of statistical language model is
the dynamic language model, which dynamically
modifies conditional probabilities depending on
the recent word history. For example the cached-
based natural language models (Kuhn R. & De
Mori R., 1990) incorporates a cache component
into the model, which estimates the probability

of a word depending upon its recent usage.
Trigger based models go a step further by
triggering associated words to each content word
in a cache giving each associated word a higher
probability (Lau et al., 1993).

Our statistical language model, based
upon individual word domains, extends these
ideas by creating a new language model for each
significant word in the cache. A significant word
is hard to define; it is any word that significantly
contributes to the content of the text. We define
it as any word which is not a stop word, i. e.
articles, prepositions and some of the most
frequently used words in the language such as
“will”,  “now”, “very”, etc. Our model combines
individual word language models with a standard
global n-gram language model.

A training corpus for each significant
word is formed from the amalgamation of the
text fragments taken from the global training
corpus in which that word appears. As such these
corpora are smaller and closely constrained;
hence the individual language models are more
precise than the global language model and
thereby should offer performance gains. One
aspect of the performance of this joint model is
how the global language model is to be
combined with the individual word language
models. This is explored later.

This paper is organised as follows.
Section 1 explains the basis for this model. The
mathematical background and how the models
are combined are explained in section 2. In the
third section, a novel method of combining the
word models, the probabilistic-union model is
explained. Finally, results and conclusion are
drawn.



1 Dynamic Language Model based on
Word Language Models

Our dynamic language model builds a
language model for each individual word. In
order to do this we need to select which words
are to be classified as significant and furthermore
create a language model for them. We excluded
all the stop words (‘is’, ’to’, ‘an’, ‘some’) due to
their high frequency within the text and their
limited contribution to the thematic of the text. A
list of stop words was obtained by merging
together the lists used by various www search
engines, for example Altavista.

Secondly we need to create a dictionary
that contains the frequency of each word in the
corpus. This is needed because we want to
exclude those non-stop words which appear too
often in the training corpus, for example words
like ‘dollars’, ‘point’, etc. A hash file is
constructed to store large amounts of information
so that it can be retrieved quickly.

The next step is to create the global
language model by obtaining the text phrases and
their probabilities. Frequencies of words and
phrases are derived from a large text corpus and
the conditional probability of a word given a
sequence of preceding words is estimated. These
conditional probabilities are combined to
produce an overall language model probability
for any given word sequence. The probability of
a sequence of words is:
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where { }n
n wwwww ,,,, 3211 L=  is a sentence or

sequence of words. The individual conditional
probabilities are approximated by the maximum
likelihoods:
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where )(Xfreq is the frequency of the
phraseX in the text.

In equation (2), there are often unknown
sequences of words i.e. phrases which are not in
the dictionary. The maximum likelihood
probability is then zero. In order to improve this
prediction of an unseen event, and hence the
language model, a number of techniques have
been explored, for example, the Good-Turing
estimate (Good I. J., 1953), the backing-off
method (Katz S. M., 1987), deleted interpolation
(Jelinek F. and Mercer R. L., 1984) or the
weighted average n-gram model (O’Boyle P.,
Owens M. and Smith F. J., 1994). We use the
weighted average n-gram technique (WA), which
combines n-gram1 phrase distributions of several
orders using a series of weighting functions. The
WA n-gram model has been shown to exhibit
similar predictive powers to other n-gram
techniques whilst enjoying several benefits.
Firstly an algorithm for a WA model is relatively
straightforward to implement in computer
software, secondly it is a variable n-gram model
with the length depending on the context and
finally it facilitates easy model extension2. The
weighted average probability of a word given the
preceding words is
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where the weighted functions are:
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N is the number of tokens in the corpus and
( )mim wwfreq L−+1  is the frequency of the

sentence mim ww L−+1  in the text.

The maximum likelihood probability of a word
is:

                                                     
1 A n-gram model contains the conditional probability
of a word dependant on the previous n words. (Jelinek
F., Mercer R.L. and Bahl L. R., 1983)
2 The “ease of extension” applies to the fact that
additional training data can be incorporated into an
existing WA model without the need to re-estimate
smoothing parameters.
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)(wfreq is the frequency of the word w in the
text. This language model (defined by equation
(3) and (5)) is what we term a standard n-gram
language model or global language model.

Finally the last step is the creation of a
language model for each significant word, which
is formed in the same manner as the global
language model. The word language-training
corpus to be used is the amalgamation of the text
fragments taken from the global training corpus
in which the significant word appears. A number
of choices can be made as to how the word-
training corpus for each significant word can be
selected. We initially construct what we termed
the “paragraph context model”, entailing that the
global training corpus is scanned for a particular
word and each time the word is found the
paragraph containing that word is extracted. The
paragraphs of text extracted for a particular word
are joined together to form an individual word-
training corpus, from which an individual word
language model is built. Alternative methods
include storing only the sentences where the
word appears or extracting a piece of the text M-

words before and M+ words after the search
word.

Additionally some restrictions on the
number of words were imposed. This was done
due to the high frequency of certain words. Such
words were omitted since the additional
information that they provide is minimal
(conversely language models for “rare” words
are desirable as they provide significant
additional information to that contained within
the global language model). Once individual
language models have been formed for each
significant word (trained using the standard n-
gram approach as used for the global model),
there remains the problem of how the individual
word language models will be combined together
with the global language model.

2 Combining the Models

We need to combine the probabilities
obtained from each word language model and
from the global language model, in order to
obtain a conditional probability for a word given
a sequence of words. The first model to be tested
is an arithmetic combination of the global
language model and the word language models.
All the word language models and the global
language model are weighted equally. We
believe that words, which appear far away in the
previous word history, do not have as much
importance as the ones closest to the word.
Therefore we need to make a restriction in the
number of language models. First, the
conditional probabilities obtained from the word
language models and the global language
model can be combined in a linear
interpolated model as follows:
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and )|( 1
n

i wwP is the conditional probability in
the word language model for the significant word

iw , iλ are the correspondent weights and m is
the maximum number of word models that we
are including.

If the same weight is given to all the
word language models but not to the global
language model and if a restriction on the
number of word language models to be included
is enforced, the weighted model is defined as:
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and α is a parameter which is chosen to optimise
the model.

Furthermore, a method was used based
on an exponential decay of the word model
probabilities with distance. This stands to reason,
as a word appearing several words previously
will generally be less relevant than more recent



words. Given a sequence of words, for example,
“We had happy times in America…”

We Had Happy Times In America

5 4 3 2 1

where 5, 4, 3, 2, 1 represent the distance of the
word from the word America, Happy and Times
are significant words for which we have an
individual word language models. The
exponential decay model for the word w, where
in this case w represents the significant word
America, is as follows:
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where )|( 1
n

Global wwP  is the conditional
probability of the word w  following a phrase

nww L1 in the global language model.

)|( 1
n

Happy wwP  is the conditional probability of the

word w  following a phrase nww L1 word
language model for the significant word Happy.
The same definition applies for the word model
Times. d is the exponential decay distance with
d=5, 10, 15,etc. The decaying factor exp(-l/d)
introduces a cut off:

distancedecay   theis              

distance   word tomodel   word theis      where

    0exp   if                

d

l

(-l/d) d   l =⇒≥

Presently the combination methods
outlined above have been experimentally
explored. However, they offer a reasonably
simplistic means of combining the individual and
global language models. More sophisticated
models are likely to offer improved performance
gains.

3 The Probabilistic-Union Model

The next method is the Probabilistic-
Union model. This model is based on the logical
concept of a disjunction of conjunction which is
implemented as a sum of products. The union

model has been previously applied in problems
of noisy speech recognition, (Ming J. et al.,
1999). Noisy conditions during speech
recognition can have a serious effect on the
likelihood of some features which are normally
combined using the geometric mean. This noise
has a zeroing effect upon the overall likelihood
produced for that particular speech frame. The
use of the probabilistic-union reduces the overall
effect that each feature has in the combination,
therefore loosening any zeroing effect.

For the word language model, some of the
conditional probabilities are zero or very small
due to the small size of some of the word model
corpora. For these word models, many of the
words in the global training corpus are not in the
word-model training-corpus dictionary. And so,
the conditional probability will be in many cases
zero or near zero reducing the overall
probability. As in noisy speech recognition we
wish to reduce the effect of this zeroing in the
combined model. The probabilistic-union model
is one of the possible solutions for the zeroing
problem when combining language models.

The union model is best illustrated with
an example when the number of word models to
be included is m=4  and if they are assumed to be
independent probabilities.
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model of order k. )|( 1
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ii wwPP =  is the

conditional probability for the significant word

iw  and kΨ  is a normalizing constant. The

symbol ‘ ’ is a probabilistic sum, i.e. its
equivalent for 1 and 2 is:

2121212 and 1 PPPPPPP −+=⊕= (14)

The combination of the global language
model with the probabilistic-union model is



defined as follows:

)|()1()|()|( 111
n

Union
n

Global
n wwPwwPwwP αα −+= (15)

Results

To evaluate the behaviour of one language model
with respect to others we use perplexity. It
measures the average branching factor (per
word) of the sequence at every new word, with
respect to some source model. The lower the
branching factor, the lower the model errors rate.
Therefore, the lower the branching (perplexity)
the better the model. Let iw  be a word in the

language model and { }m
m wwwww ,,,, 3211 L=

a sentence or sequence of words. The perplexity
of this sequence of words is:
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The Wall Street Journal (version
WSJ03) contains about 38 million words, and a
dictionary of approximately 65,000 words. We
select one quarter of the articles in the global
training corpus as our training corpus (since the
global training corpus is large and the
normalisation process takes time). To test the
new language model we use a subset of the test
file given by WSJ0, selected at random. The
training corpus that we are using contains
172,796 paragraphs, 376,589 sentences,
9,526,187 tokens. The test file contains 150
paragraphs, 486 sentences, 8824 tokens and 1908
words types. Although the size of this test file is
small, further experiments with bigger training
corpora and test files are planned.

 Although in our first experiments we use
5-grams in the calculation of the word models,
the size of the n-gram has been reduced to 3-
grams because the process of normalisation is
slow in these experiments.

                                                     
3 CSR-I(WSJ0) Sennheiser, published by LDC ,
ISBN:1-58563-007-1

The model based on a simple weighted
combination offers improved results, up to 10%
when α=0.6 in Eq. (8) and a combination of a
maximum of 10 word models. Better results were
found when the word models were weighted
depending on their distance from the current
word, that is, for the exponential decay model  in
Eq. (9) where d=7 and the number of word
models is selected by the exponential cut off
(Table 1 ). For this model improvements of over
17% have been found.

cut 5 6 7 8

4d 15.53% 16.31% 16.46% 16.44%

5d 15.90% 16.42% 16.52% 16.43%

6d 15.92% 16.45% 16.53% 16.41%

7d 16.02% 16.46% 16.51% 16.40%

8d 16.02% 16.46% 16.51% 16.39%

9d 15.97% 16.45% 16.51% 16.39%

Exponential Decay d

Table 1. Improvement in perplexity for the
exponetial decay models with respect to the Global
Language Model over the basic 3-gram model.

For the probabilistic-union model, we
have as many models as numbers of word
language models. For example, if we wish to
include m=4 word language models, the four
union models are those with orders 1 to 4
(equation (13) to (15)). The results for the
probabilistic union model when the number of
words models is m=5 and m=6 are shown in the
tables below.

alpha 5 4 3 2 1

0.3 13% 15% -2% -15% -25%

0.4 13% 18% 6% -3% -10%

0.5 12% 19% 11% 4% -1%

0.6 12% 19% 13% 9% 5%

0.7 11% 18% 14% 11% 8%

0.8 9% 15% 13% 11% 9%

0.9 6% 10% 9% 8% 8%

Union Model Order



alpha 6 5 4 3 2 1

0.3 13% 15% -2% -13% -22% -30%

0.4 13% 18% 6% -2% -8% -13%

0.5 13% 20% 11% 5% 1% -3%

0.6 12% 20% 14% 9% 6% 3%

0.7 11% 18% 14% 11% 9% 7%

0.8 9% 16% 13% 11% 10% 9%

0.9 6% 11% 10% 9% 8% 7%

Union Model Order

Table 2. Improvement in perplexity of the
Probabilistic-Union Model with respect to the
Global Language Model over the basic 3-gram
model.

The best result obtained so far, is an
improvement of 20% when a maximum of 6 word
models and the order is 5, i.e. sums of the
products of pairs (Table 2).The value of alpha is
0.6.

Conclusion

In this paper we have introduced the
concept of individual word language models to
improve language model performance.
Individual word language models permit an
accurate capture of the domains in which
significant words occur and hence improve the
language model performance. We also describe a
new method of combining models called the
probabilistic union model, which has yet to be
fully explored but the first results show good
performance. Even though the results are
preliminary, they indicate that individual word
models combined with the union model offer a
promising means of reducing the perplexity.

Weighted   Eq. (8) 10%

Exponential Decay  Eq. (9) 17%

Union Model  5 words 19%

Union Model  6 words 20%

Union Model 7 words 19%

Table 3. Improvement in perplexity for different
combinations of word models.
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