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Abstract

A deterministic finite state transducer is a fast
device for analyzing strings. It takes O(n) time
to analyze a string of length n. In this paper, an
application of this technique to Japanese depen-
dency analysis will be described. We achieved
the speed at a small cost in accuracy. It takes
about 0.17 millisecond to analyze one sentence
(average length is 10 bunsetsu, based on Pen-
tiumlII 650MHz PC, Linux) and we actually
observed the analysis time to be proportional
to the sentence length. The accuracy is about
81% even though very little lexical information
is used. This is about 17% and 9% better than
the default and a simple system, respectively.
We believe the gap between our performance
and the best current performance on the same
task, about 7%, can be filled by introducing lex-
ical or semantic information.

1 Introduction

Syntactic analysis or parsing based on tradi-
tional methods, like Chart parsing or the GLR
parsing algorithm, takes cubic or greater time
in the sentence length to analyze natural lan-
guage sentences. For Japanese, Sekine et al.
(Sekine et al., 2000) proposed a Japanese depen-
dency analyzer which analyzes sentences in time
quadratic in the sentence length using a back-
ward search algorithm. Recently, a number of
research efforts using Finite State Transducers
(FST) have been reported. Roche built an En-
glish syntactic analyzer by finding a fixed point
in a non-deterministic FST (Roche, 1994). But
it still can’t analyze a sentence in time linear in
the sentence length.

In this paper, we will propose a Japanese
dependency analyzer using a Deterministic Fi-
nite State Transducer (DFST). The Japanese
dependency structure is usually represented by

relationships between phrasal units called ‘bun-
setsu’. A bunsetsu usually contains one or more
content words, like a noun, verb or adjective,
and zero or more function words, like a post-
position (case marker) or verb/noun suffix. A
dependency between two bunsetsu has a direc-
tion from a dependent to its head. Figure 1
shows examples of bunsetsu and dependencies.
Each bunsetsu is separated by “|”. The first
segment “KANOJO-HA” consists of two words,
KANOJO (She) and HA (subject case marker).
The numbers in the “head” line show the head
ID of corresponding bunsetsus. Note that the
last segment does not have a head, and it is the
head bunsetsu of the sentence. The task of the
dependency analysis is to find the head ID for
each bunsetsu.

2 Backward beam search algorithm

First, we would like to describe the backward
beam search algorithm for Japanese dependency
analysis proposed by Sekine et al. (Sekine et al.,
2000). Their experiments suggested the method
proposed in this paper.

The following characteristics are known for
Japanese dependency. Sekine et al. assumed
these characteristics in order to design the algo-
rithm 1.

(1) Dependencies are directed from left to right
(2) Dependencies don’t cross.

(3) Each bunsetsu except the rightmost one
has only one head

(4) Left context is not necessary to determine
a dependency.

'We know that there are exceptions (Shirai, 1998),
but the frequencies of such exceptions are very small.
Characteristic (4) is not well recognized, but based on
our experiments with humans, it is true more than 90%
of the time.



KANOJO-HA | KARE-GA | TSUKUTTA | PAI-WO | YOROKONDE | UKETOTTA.

(She-subj) (he-subj) (made)
Head 6 3 4
Translation:

6

(pie-obj) (with pleasure) (received)

6 -

She received the pie made by him with pleasure.

Figure 1: Example of a Japanese sentence, bunsetsus and dependencies

Sekine et al. proposed a backward beam search
algorithm (analyze a sentence from the tail to
the head, or right to left). Backward search has
two merits. Let’s assume we have analyzed up
to the M + 1-st bunsetsu in a sentence of length
N (0 < M < N). Now we are deciding on the
head of the M-th bunsetsu. The first merit is
that the head of the dependency of the M-th
bunsetsu is one of the bunsetsus between M + 1
and N, which are already analyzed. Because of
this, we don’t have to keep a huge number of
possible analyses, i.e. we can avoid something
like active edges in a chart parser, or making
parallel stacks in GLR parsing, as we can make
a decision at this time. Also, we can use the
beam search mechanism, by keeping a certain
number of candidates of analyses at each bun-
setsu. The width of the beam search can be
easily tuned and the memory size of the process
is proportional to the product of the input sen-
tence length and the beam search width. The
other merit is that the possible heads of the de-
pendency can be narrowed down because of the
assumption of non-crossing dependencies. For
example, if the K-th bunsetsu depends on the
L-th bunsetsu (M < K < L), then the M-
th bunsetsu can’t depend on any bunsetsus be-
tween K and L. According to our experiment,
this reduced the number of heads to consider to
less than 50%.

Uchimoto et al. implemented a Japanese de-
pendency analyzer based on this algorithm in
combination with the Maximum Entropy learn-
ing method (Uchimoto et al., 2000). The an-
alyzer demonstrated a high accuracy. Table 1
shows the relationship between the beam width
and the accuracy of the system. From the table,
we can see that the accuracy is not sensitive to
the beam width, and even when the width is

Beam width || Dependency | Sentence
Accuracy | Accuracy

1 87.14 40.60

2 87.16 40.76

5 87.15 40.60

10 87.20 40.60

20 86.21 40.60

Table 1: Beam width and accuracy

1, which means that at each stage, the depen-
dency is deterministically decided, the accuracy
is almost the same as the best accuracy. This
means that the left context of a dependency is
not necessary to decide the dependency, which
is closely related to characteristic (4). This re-
sult gives a strong motivation for starting the
research reported in this paper.

3 Idea

Unfortunately, the fact that the beam width can
be 1 by itself can not lead to the analysis in time
proportional to the input length. Theoretically,
it takes time quadratic in the length and this is
observed experimentally as well (see Figure 3 in
(Sekine et al., 2000)). This is due to the process
of finding the head among the candidate bun-
setsus on its right. The time to find the head is
proportional to the number of candidates, which
is roughly proportional to the number of bun-
setsus on its right. The key idea of getting linear
speed is to make this time a constant.

Table 2 shows the number of candidate bun-
setsus and the relative location of the head
among the candidates (the number of candi-
date bunsetsus from the bunsetsu being ana-
lyzed). The data is derived from 1st to 8th of



Num.of Location of head
cand. 1 2 3 4 5 6 7 8 91011121314
1 7918
2 12824 4948
3 10232 3292 3126
4 6774 2244 1439 1968
5 3692 1294 888 660 1114
6 1843 614 398 331 291 551
7 848 278 176 133 138 125 264
8 340 110 83 47 38 57 68 121
9 137 33 28 17 19 21 19 24 46
10 51 11 10 7 g 10 8 6 8 22
11 7 5 2 0 2 2 4 2 4 210
12 5 1 1 2 0 o 0 0 2 2 1 3
13 3 0 1 0 0 17 0 0 0 0 0 00
14 0 1 1 0 0 o 0 0 0 0 0 0 0 2
Table 2: Number of candidate and location of head

January part of the Kyoto corpus, which is a
hand created corpus tagged with POS, bunsetsu
and dependency relationships (Kurohashi, Na-
gao, 1997). It is the same portion used as the
training data of the system described later. The
number of candidates is shown vertically and
the location of the head is shown horizontally.
For example, 2244 in the fourth row and the
second column means that there are 2244 bun-
setsu which have 4 head candidates and the 2nd
from the left is the head of the bunsetsu.

We can observe that the data is very biased.
The head location is very limited. 98.7% of
instances are covered by the first 4 candidates
and the last candidate combined. In the table,
the data which are not covered by the criteria
are shown in italics. From this observation, we
come to the key idea. We restrict the head can-
didate locations to consider, and we remember
all patterns of categories at the limited loca-
tions. For each remembered pattern, we also
remember where the head (answer) is. This
strategy will give us a constant time selection
of the head. For example, assume, at a certain
bunsetsu in the training data, there are five can-
didates. Then we will remember the categories
of the current bunsetsu, say “A”, and five can-
didates, “B C D E F”, as well as the head loca-
tion, for example “2nd”. At the analysis phase,
if we encounter the same situation, i.e. the same
category bunsetsu “A” to be analyzed, and the

same categories of five candidates in the same
order “B C D E F”, then we can just return the
remembered head location, “2nd”. This process
can be done in constant time and eventually, the
analysis of a sentence can be done in time pro-
portional to the sentence length.

For the implementation, we used a DFST in
which each state represents the pattern of the
candidates, the input of an edge is the category
of the bunsetsu being analyzed and the output
of an edge is the location of head.

4 Implementation

We still have several problems which have to
be solved in order to implement the idea. As-
suming the number of candidates to be 5, the
problems are to

(1) define the categories of head bunsetsu can-
didates,

(2) limit the number of patterns (the number
of states in DFST) to a manageable range,
because the combination of five categories
could be huge

(3) define the categories of input bunsetsus,

(4) deal with unseen events (sparseness prob-
lem).

In this section, we present how we imple-
mented the system, which at the same time



shows the solution to the problems. At the end,
we implemented the system in a very small size;
1200 lines of C program, 188KB data file and
less than 1MB processing size.

Structure of DFST

For the categories of head bunsetsu candi-
dates, we used JUMAN’s POS categories as the
basis and optimized them using held-out data.
JUMAN has 42 parts-of-speech (POS) including
the minor level POSs, and we used the POS of
the head word of a candidate bunsetsu. We also
used the information of whether the bunsetsu
has a comma or not. The number of categories
becomes 18 after tuning it using the held-out
data.

The input of an edge is the information about
the bunsetsu currently being analyzed. We
used the information of the tail of the bunsetsu
(mostly function words), and it becomes 40 cat-
egories according to the same tuning process.

The output of an edge is the information of
which candidate is the head. It is simply a num-
ber from 1 to 5. The training data contains
examples which represent the same state and
input, but different output. This is due to the
rough definition of the categories or inherent im-
possibility of to disambiguating the dependency
relationship from the given information only. In
such cases, we pick the one which is the most
frequent as the answer in that situation. We will
discuss the problems caused by this strategy.

Data size

Based on the design described above, the
number of states (or number of patterns) is
1,889,568 (18°) and the number of edges is
75,582,720 as each state has 40 outgoing edges.
If we implement it as is, we may need several
hundred megabytes of data. In order to keep
it fast, all the data should be in memory, and
the current memory requirement is too large to
implement.

To solve the problem, two ideas are employed.
First, the states are represented by the combi-
nation of the candidate categories, i.e. states
can be located by the 5 candidate categories.
So, once it transfers from one state to another,
the new state can be identified from the previ-
ous state, input bunsetsu and the output of the

edge. Using this operation, the new state does
not need to be remembered for each edge and
this leads to a large data reduction. Second, we
introduced the default dependency relationship.
In the Japanese dependency relationship, 64%
of bunsetsu depend on the next bunsetsu. So
if this is the output, we don’t record the edge
as it is the default. In other words, if there is
no edge information for a particular input at a
particular state, the output is the next bunsetsu
(or 1). This gave unexpectedly a large benefit.
For unseen events, it is reasonable to guess that
the bunsetsu depends the next bunsetsu. Be-
cause of the default, we don’t have to keep such
information. Actually the majority (more than
99%) of states and edges are unseen events, so
the default strategy helps a lot to reduce the
data size.

By the combination of the two ideas, there
could be a state which has absolutely no in-
formation. If this kind of state is reached in
the DFST, the output for any input is the next
bunsetsu and the next state can be calculated
from the information you have. In fact, we
have a lot of states with absolutely no infor-
mation. Before implementing the supplemen-
tation, explained in the next section, the num-
ber of recorded states is only 1,006 and there
are 1,554 edges (among 1,889,568 possible states
and 75,582,720 possible edges). After imple-
menting the supplementation, we still have only
10,457 states and 31,316 edges. The data sizes
(file sizes) are about 15KB and 188KB, respec-
tively.

Sparseness problem

The amount of training data is about 8,000
sentences. As the average number of bunsetsu
in a sentence is 10, there are about 72,000 data
points in the training data. This number is very
much smaller than the number of possible states
(1,889,568), and it seems obvious that we will
have a sparseness problem?.

In order to supplement the unseen events,
we use the system developed by Uchimoto
et.al (Uchimoto et al., 2000). A large cor-
pus is parsed by the analyzer, and the results

2However, we can make the system by using the de-
fault strategy and surprisingly the accuracy of the sys-
tem is not so bad. This will be reported in the Experi-
ment section



are added to the training corpus. In prac-
tice, we parsed two years of newspaper articles
(2,536,229 sentences of Mainichi Shinbun 94 and
95, excluding January 1-10, 95, as these are used
in the Kyoto corpus).

5 Experiment

In this section, we will report the experiment.
We used the Kyoto corpus (version 2). The
training is done using January 1-8, 95 (7,960
sentences), the test is done using January 9,
95 (1,246 sentences) and the parameter tuning
is done using January 10, 95 (1,519 sentences;
held-out data). The input sentences to the sys-
tem are morphologically analyzed and bunsetsu
are detected correctly.

Dependency Accuracy

Table 3 shows the accuracy of the systems.
The ‘dependency accuracy’ means the percent-
age of the bunsetsus whose head is correctly
analyzed. The bunsetsus are all but the last
bunsetsu of the sentence, as the last bunsetsu
has no head. The ‘default method’ is the sys-
tem in which the all bunsetsus are supposed
to depend on the next bunsetsu. The ‘base-
line method’ is a quite simple rule-based sys-
tem which was created by hand and has about
30 rules. The details of the system are reported
in (Uchimoto et al., 1999). The ‘Uchimoto’s
system’ is the system reported in (Uchimoto et
al., 2000). They used the same training data
and test data. The dependency accuracies of

System Dependency
Accuracy
Our system (with supp.) 81.231 %
Our system (without supp.) | 77.972 %
Default method 64.14 %
Baseline method 72.57 %
Uchimoto’s system 87.93 %

Table 3: Dependency Accuracy

our systems are 81% with supplementation and
78% without supplementation. The result is
about 17% and 9% better than the default and
the baseline methods respectively. Compared
with Uchimoto’s system, we are about 7% be-
hind. But as Uchimoto’s system used about

40,000 features including lexical features, and
they also introduced combined features (up to
5), it is natural that our system, which uses only
18 categories and only combinations of two cat-
egories, has less accuracy?.

Analysis speed

The main objective of the system is speed.
Table 4 shows the analysis speed on three dif-
ferent platforms. On the fastest machine, it an-
alyzes a sentence in (.17 millisecond. Table 5
shows a comparison of the analysis speed of
three different systems on SPARC-I. Our system
runs about 100 times faster than Uchimoto’s
system and KNP(Kurohashi, Nagao, 1994).

Platform Analysis time

(millisec. /sent.)

PentiumIIT 650MHz 0.17
SunEnterprise, 400MHz 0.29
Ultra SPARC-I, 170MHz 1.03

Table 4: Analysis Speed

Analysis time
(millisec. /sent.)

System

Our system 1.03
Uchimoto’s system 170
KNP 86

Table 5: Comparison of Analysis Speed

Figure 2 shows the relationship between the
sentence length and the analysis time. We used
the slowest machine (Ultra SPARC-I, 170MHz)
in order to minimize observational errors. We
can clearly observe that the analysis time is pro-
portional to the sentence length, as was pre-
dicted by the algorithm.

The speed of the training is slightly slower
than that of the analysis. The training on the
smaller training data (about 8000 sentences)
takes about 10 seconds on Ultra SPARC-I.

3However, our system uses context information of five
bunsetsus, which is not used in Uchimoto’s system.
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6 Discussion

6.1 The restriction

People may strongly argue that the main prob-
lem of the system is the restriction of the head
location. We completely agree. We restrict the
candidate to five bunsetsus, as we described ear-
lier, and we theoretically ignored 1.3% of accu-
racy. Obviously, this restriction can be loosened
by widening the range of the candidates. For ex-
ample, 1.3% will be reduced to 0.5% if we take
6 instead of 5 candidates. Implementation of
this change is easy. However, the problem lies
with the sparseness. As shown in Table 2, there
are fewer examples with a large number of bun-
setsu candidates. For example, there are only 4
instances which have 14 candidates. It may be
impossible to accumulate enough training ex-
amples of these kinds, even if we use a lot of
untagged text for the supplementation. In such
cases, we believe, we should have other kinds
of remedies. One of them is a generalization of
a large number candidates to a smaller number
candidates by deleting unimportant bunsetsus.
This remains for future research.

We can easily imagine that other systems may
not analyze accurately the cases where the cor-
rect head is far from the bunsetsu. For example,
Uchimoto’s system achieves an accuracy of 41%
in the cases shown in italics in Table 2, which is
much lower than 88%, the system’s overall ac-
curacy. So, relative to the Uchimoto’s system,
the restriction caused a loss of accuracy of only
0.5% (1.3% x 41%) instead of 1.3%.

6.2 Accuracy

There are several things to do in order to achieve
better accuracy. One of the major things is to
use the information which has not been used,
but is known to be useful to decide dependency
relationships. Because the accuracy of the sys-
tem against the training data is only 81.653%
(without supplementation), it is clear that we
miss some important information,

We believe the lexical relationships in verb
frame element preference (VFEP) is one of the
most important types of information. Analyz-
ing the data, we can find evidence that such
information is crucial. For example, there are
236 examples in the training corpus where there
are 4 head candidates and they are bunsetsus
whose heads are noun, verb, noun and verb, and
the current bunsetsu ends with a kaku-joshi,
a major particle. Out of the 236 examples, the
number of cases where the first, second, third
and last candidate is the head are 60, 142, 3 and
31, respectively. The answer is widely spread,
and as the current system takes the most fre-
quent head as the answer, 94 cases out of 236
(40%) are ignored. This is due to the level of
categorization which uses only POS informa-
tion. Looking at the example sentences in this
case, we can observe that the VFEP could solve
the problem.

It is not straightforward to add such lexical
information to the current framework. If such
information is incorporated into the state infor-
mation, the number of states will become enor-
mous. We can alternatively take an approach
which was taken by augmented CFG. In this ap-
proach, the lexical information will be referred
to only when needed. Such a process may slow
down the analyzer, but since the number of in-
vocation of the process needed in a sentence
may be proportional to the sentence length, we
believe the entire process may still operate in
time proportional to the sentence length.

7 Conclusion

We proposed a Japanese dependency analy-
sis using a Deterministic Finite State Trans-
ducer (DFST). The system analyzes a sentence
with fairly good accuracy of about 81% in 0.17
millisecond on average. It can be applied to
a wide range of NLP applications, including
real time Machine Translation, Information Ex-



traction and Speech Recognition. There are
a number of efforts to improve the accuracy
of Japanese dependency analysis (Haruno et.al,
1997) (Fujio, Matsumoto, 1998) (Kanayama
et.al, 2000). In particular, it is interesting to see
that Kanayama’s method uses a similar idea,
limiting the head candidates, in order to im-
prove the accuracy. We are planning to incor-
porate the fruit of these works to improve our
accuracy. We believe our research is comple-
mentary to these research. We also believe the
method proposed in this paper may be applica-
ble to other languages which share the charac-
teristics explained earlier, for example, Korean,
Turkish and others.
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