Unscrambling English word order

Allan Ramsay & Helen Seville
Centre for Computational Linguistics
UMIST, PO Box 88, Manchester M60 1QD, England
allan/heleng@ccl.umist.ac.uk

Abstract

We propose a treatment of ‘extraposition’ which
allows items to be assimilated directly even when
they appear far from their canonical positions. This
treatment supports analyses of a number of phenom-
ena which are otherwise hard to describe. The ap-
proach requires a generalisation of standard chart
parsing techniques.

1 Extraposition in English

It is widely accepted that sentences such as

1 [saw the girl who your brother said he fancied.

2 The soup was OK, but the main course I thought
was awful.

involve items (‘who’, ‘the main course’) being found
far away from their normal positions (as the com-
plement of ‘fancied” and the subject of ‘was awful’).
It seems likely that the modifiers ‘%n the park’ and
‘with all my heart’ in

3 In the park I met Arthur.
4 [believed with all my heart that she loved me.

are also ‘out of position’, since you would normally
expect VP-modifying PPs of this kind to appear im-
mediately to the right of the modified VP (so that
the canonical versions of these sentences would have
been ‘I met Arthur in the park’ and ‘I believed that
she loved me with all my heart.”). There are vari-
ous reasons for moving things around in this way —
moving ‘who’ to the left in (1) provides an easy way
of picking out the boundary of the relative clause;
moving ‘the main course’ and ‘in the park’ in (2)
and (3) puts them into thematically /informationally
more prominent positions; and moving the senten-
tial complement ‘that she loved me’ to the right in
(4) reduces the attachment ambiguity that arises in
the alternative form.

This is all well-known, and is treated in most
grammatical frameworks by hallucinating an item in
the canonical position, and then remembering that

hallucination up to the point at which the out-of-
place item is encountered. Exactly how the halluci-
nation is remembered varies from one framework to
another, with unification grammars generally carry-
ing information about it on a category-valued fea-
ture (usually called slash). The main problem with
this approach is that it is difficult to control the sit-
uations in which ‘traces’ of this kind get proposed.
(Johnson and Kay, 1994) suggest using ‘sponsors’ in
order to license the introduction of traces, where a
sponsor is some item of the required kind that has
already been found, and which is hence potentially
going to cancel with the trace.

If your parser works from left—right then this
will work for items which have been left-shifted, but
clearly it cannot work for right-shifted items, since
the sponsor will not have been found at the time
when it is needed. Thus we cannot use a sponsor to
justify hallucinating an S-comp for ‘believed’ in (4),
or for the heavy-NP-shifts in

5 He gave up his job.

6 He built on that spot the most appallingly ugly
house.

In any case, the notion that some item has been
left- or right-shifted fails to account for cases of ‘in-
traposition’:

7 I believe Betty is a fool.
8 Betty, I believe, is a fool.
9 Betty is, I believe, a fool.

It is at least plausible that (8) and (9) are variants
on (7). They’re made out of the same words, they
have the same truth conditions: the only trouble is
that part of the sentence seems to be in the wrong
place.

This is analogous to the situation in (2) and (3),
where items were moved to the front to make them
more prominent. It seems as though in the current
case the words ‘I believe’ have been shifted into the
middle, and parenthesised, to make them less promi-
nent. We will show how to deal with this by adapting

our treatment of more orthodox cases of extraposi-
tion: in particular, the resulting analysis of (8) and
(9) will not require us to treat the words ‘I believe’
as a phrase.

2 Direct mapping

We start by reconsidering the simple case of extra-
position of ‘who’ in (1). Suppose we are trying to
parse this with a head-corner chart parser. When
we encounter ‘fancied’, we will start looking for an
NP immediately to the right. We won’t find one, so
we will be tempted to insert a trace. Before doing
so, we will look for a sponsor, and we will have no
trouble finding one, namely ‘who’ (and possibly oth-
ers, such as ‘the girl’ and ‘your brother’, depending
on exactly how the search is implemented). Hav-
ing introduced the trace, we will build the sentence
‘he fancied L’, remembering that there was a trace;
and then ‘your brother said he fancied LI’, again re-
membering that there was a trace. At this point we
will see that we’ve got a sentence with a trace ad-
jacent to something which could cancel it, so we’ll
produce the relative clause ‘who your brother said
he fancied’.

Why go through this rigmarole? Why go to the
bother of finding the sponsor, and then remembering
that you have hallucinated something, and then can-
celling the hallucination against the sponsor? Why
not just pick up the word ‘who’ as the object of ‘fan-
cied’?

There are two obvious reasons why we might not
want to include ‘who’ immediately. Firstly, the
distribution of traces and their fillers is rather re-
stricted in English. We need to be able to state
the constraints on what can actually happen, and
that may be easier this way. Secondly, most parsing
algorithms (certainly most chart-based parsing algo-
rithms) depend upon indexing items by their start
and end points, and only combining things if they
are in the right place.

We will deal with the practical parsing issue first.
Once we have the revised approach to combining
items together, it will be easier to see how we can
state and utilise the linguistic constraints. The re-
sulting approach will smoothly support linguistic de-
scriptions, and computational analyses, of cases like
(8) and (9).

3 Compact and non-compact
phrases

Consider the following rather general description of
what a chart parser does:

Fundamental rule of chart parsing (FRCP)
If X and Y are adjacent structures and X
is unsaturated and Y will help saturate it
then merge them to form a new, possibly

saturated, structure X' covering the com-
bined spans of X and Y.

Of course this has to be tightened up a little to
ensure that X and Y are actually adjacent in the
required manner — that if X expects Y to be on its
right then the end point of X and the start of Y must
be identical, and vice versa if Y should be to the left
of X; and it may have to be adapted to cope with
grammars where items can be combined because one
of them modifies the other as well as because one is
an argument of the other. Nonetheless, this rather
general statement characterises the standard oper-
ation of a chart-parser (Kay, 1973; Kaplan, 1973).
The difference between using such a parser bottom-
up or top-down lies in the source of incomplete edges
—in a top-down parser, incomplete edges arise from
considering rules which might be expanded to ob-
tain desirable items, in a bottom-up one they arise
from considering items that trigger rules by match-
ing some element of the right-hand side.

This algorithm will not work if the language we
are dealing with has completely free word order (pre-
sumably with enough morphology to help sort out
what goes with what), since under these conditions
the items that need to be combined may not be ad-
jacent. In a situation like this, we would need to
restate the rule as follows:

Fundamental rule of chart parsing (revised)
(FRCP')

If X and Y are nonoverlapping structures
and X is unsaturated and Y will help sat-
urate it then merge them to form a new,
possibly saturated, structure X' covering
the combined spans of X and Y.

Suppose, for instance, we took a scrambled version
of an English sentence:

10 him she hard hitting is

Using FRCP’, we would look for items that could
be combined, and all we would find is ‘hitting’ and
‘him’ (assuming for simplicity that ‘hit’ is a simple
transitive verb). So we would combine these into a
VP containing these two words. After that there are
two choices: we might combine ‘s’ and ‘hitting him’
to get ‘is hitting him’, or we might combine ‘hitting
him’ and ‘hard’ to get ‘hitting him hard’. The first
of these would combine further with ‘she’ to produce
‘she is hitting him’, but would go no further. The
second would combine with ‘s’ to make ‘ts hitting
him hard’, and then with ‘she’ to make ‘she is hitting
him hard’. There are no other ways of grouping these
words together into phrases 1.

IThe way we have grouped them makes it look as though
we have reconstructed the declarative sentence ‘she is hitting

To use the new version of the rule, we would
need to compare each new phrase with each non-
overlapping existing phrase, rather than comparing
them with adjacent existing phrases. When we com-
pared new items with adjacent old ones, we could use
the start and end positions of the two items as an
indexing mechanism for making sure that we only
compared items that had some chance of combin-
ing. We no longer have such an index, but we can
at least introduce a rapid test for whether two items
are overlapping.

We will encode the ‘span’ of a phrase as a bit
string with a 1 in position N of the string if the
phrase contains the N’th word in the sentence being
parsed. Thus the phrase ‘hitting him’, containing
the first and fourth words of the input sequence, has
01001 as its span (the ‘first’ bit in a bit-string like
this is actually the rightmost, so that you have to
read this from right to left). The span of ‘s’ is then
10000. It is easy to test whether two items are non-
overlapping: is their bitwise-& zero? Clearly this is
the case here. It is equally easy to compute the span
of the result, namely take their bitwise-OR, which in
this case is 11001. When we add ‘hard’, the span of
the resulting edge is 11101, and then when we finally
add ‘she” we get 11111,

We will need two further notions. We need to
know whether a phrase has any holes in it — whether
we have skipped over intervening material in con-
structing it. Clearly English is not entirely free-word
order, and you can’t make phrases by picking words
from here and there in a sentence as you please.
Keeping track of whether a phrase is ‘compact’ in
this sense is one of the mechanisms for ensuring the
actual rules of English are obeyed. If the leftmost
word included in a phrase is at position I and the
rightmost is at position J, the phrase will be com-
pact if its span is equal to ((1 << (J-I))-1) <<
12, which we can compute extremely easily. We will
mark phrases as +compact or —compact depending
on the outcome of this computation.

We also need to distinguish between the compact
start and end positions of the phrase and its ex-
treme start and end points. Any headed phrase will
have a compact core, made up of those words and
phrases which have been found adjacent to the head.
It may also have outliers. Thus if we analyse (1) by
this approach, at some point we will construct the
—compact clause ‘who he fancied’. This will have a

him hard’, and it might appear as though ‘is she hitting him
hard’ is also a possibility. The example, however, relates to
a language with English vocabulary but completely free word
order, so that what we are investigating is the way that words
group together, not some underlying intended sentence of real
English.

2A << B denotes the result of left shifting A by B places.
The computation specified here produces a set of J-I 1’s,
offset to the left by I.

compact core, consisting of ‘he fancied’, with ‘who’
as an outlier. Its extreme start will therefore be 4,
the start of ‘who’ (we count from 0), whereas its
compact start is 8, the start of ‘he’. The extreme
and compact ends are both 10 — the position imme-
diately after the word ‘fancied’.

4 Linear-precedence constraints

FRCP’ is fine for languages with completely free
word order. There are not many such languages —
English certainly is not one. We therefore need to
be able to put constraints on what can actually turn
up where.

It is true that English does seem to have a canon-
ical word order which is based on adjacency. For
simple sentences complements do occur adjacent to
heads, and modifiers do occur adjacent to targets:

11 Charles kissed Diana.
12 The cat sat on the mat.

Such facts can be captured either by using
rewrite rules or by embedding them in complex
lexical descriptions, where the lexical item itself
carries the required information about what it
can combine with. We will take a version of
the latter approach, defining ‘kissed’, for instance,
as sign(cat(verb), args([np/right,np/left]) and ‘on’
as sign(cat(prep),arg([np/right]), target(vp/left)).
These say that ‘kissed’ is a verbal item which re-
quires one NP to its right and another to its left to
saturate it, and that ‘on’ is a preposition which re-
quires an NP to its right, and which will modify a
VP once it is itself saturated. These lexical entries
are backed up by the following very skeletal rules:

sign(X,args(T))

= sign(X, args([H/right|T))), H
sign(X,args(T))

= H,sign(X,args([H/left|T]))
X = X, sign(cat(...), target(X/left))
X = sign(cat(...), target(X/right)), X

These rules lie somewhere between pure categorial
grammar (Wood, 1993) and HPSG (Pollard and Sag,
1988; Pollard and Sag, 1994; Sag and Wasow, 1999)
— the rules relating to modifiers are not usually part
of categorial grammar, and HPSG tends to have
more modes of combination (distinguishing, for in-
stance, between subjects and other arguments, or
between specifiers and other adjuncts). Nonetheless,
the general framework is familiar, and the argument
below will apply to any similar analysis.

The positional information encoded in these rules
clearly relates to their canonical positions. When we
say that ‘kissed’ requires an NP to its right, we are
referring to what happens in cases like (11), not to
cases like

13 Charles danced with Eliza, but Diana he kissed.

and when we say that the PP that results from satu-
rating ‘on’ modifies a VP to its left we are referring
to cases like (12), not to

14 On the mat the cat sat.

(or even ‘On the mat sat the cat.’; where the expec-
tation that the subject will appear to the left of the
verb has also been violated.)

It seems as though we need the standard FRCP to
cope with the canonical cases; the weakened FRCP’
to cope with cases where the phrase occurs in some
unexpected position; and something else to constrain
the unexpected positions which are actually possible.

The constraints on what can be moved around
take two forms. Firstly, we have say whether some-
thing can be moved at all, which we do by intro-
ducing a polar-valued feature called moved: items
which appear away from their canonical positions
are marked moved(right) or moved(left), depend-
ing on the direction in which they have been shifted.
Arguments and targets which aren’t allowed to move
will be marked —moved by the item that subcate-
gorises for them.

Secondly, we have to specify where those items
that can move are allowed to get to. We do this
by using linear precedence rules (LP-rules), most of
which place constraints on immediate local subtrees.
Thus we can say things like

{4,B,C} : +wh@A&—whQB
— start@QA < startQB

to capture the fact that if A and B are local subtrees
of C, then if A is WH-marked and B is not then
A must precede B (A’s start must be before B’s).
Note that the signature of the rule mentions C, even
though in this case the body does not.

The facts about extraposition are captured by
rules which specify the circumstances under which a
local subtree can (or must)be +moved. The key con-
straints for trees representing structures with verbal
heads are as follow:

{A,B,C} : -whQA& —auz@QC&A = subject@QC
— —moved@QA

(if A is the subject of C, where A is not WH-marked
and C'is not an auxiliary, then A may not be moved)

{4, B,C} :moved@A = right
— 33X (X € dtrs@C
& start@core@QC < start@X)
& start@QX < start@QA)

(if A has been right-shifted, then C' had better have
some other daughter X between C’s head and A.

The full rule says that C' must be heavier than X,
where we take ‘C' is heavier than X’ to mean that C
covers more words than X, so that this rule covers
(4), (5) and (6)).

There are a number of other such rules, of which the
most complex relates to ‘that’-clauses (denoted by
+comp). The description of such clauses comes in
two parts, one to say that —wh phrases may not be
extracted and one to say that +wh phrases must be
extracted.

(i) {A,B,C} :C € clause
& +comp@C & +compact@C
— —wh@B

(ii) {4,B,C} : C € clause
& +compQC & —compactQC
— +wh@B

The first part of this says that if combining A and
B produces a ‘that’-clause C, then if C' is +compact
(so nothing has been extracted from it) then it had
better be —wh (in other words, nothing properly
inside it can be +wh). If on the other hand C is
—compact then there must be something extracted
from it, in which case the item which has been ex-
tracted must mark it as +wh. These rules cover the
(un)acceptability of

15 I know that she loves me.
16 * I know me that she loves.
17 who I know that she loves.
18 * I know that who she loves.

5 Intraposition

The rules in Section 4 provide a reasonable account
of simple extraposition (both left and right) from
clauses. We now return to

7 I believe Betty is a fool.
8 Betty, I believe, is a fool.
9 Betty is, I believe, a fool.

Suppose we use FRCP’, with no LP-rules, to analyse
(8). We will get, among other things, the phrases
and part phrases shown in Fig. 1 (the commas are
treated as lexical items, so that ‘Betty’ starts at 0,
the first comma at 1, and ‘I’ at 2, and so on).

The first couple of steps are straightforward: ‘a
fool’ results from combining ‘a’ and ‘fool’. It has no
holes in it, its extreme start and end are the same as
its compact start and end. Then ‘%s a fool’ results
from combining ‘s’ and ‘a fool’, and again all the
pieces are in the right place, so the extreme start
and end are the same as the compact start and end
and the phrase is +compact.

At step 3, ‘Betty’ is integrated as the subject of
‘is a fool’. The result starts at 0, since that’s where

phrase start | end | xstart | xend | compact
1 a fool 6 8 6 8 +
2 is a fool 5 8 5 8 +
3 Betty is a fool 5 8 0 8 -
4 believe Betty is a fool 3 4 0 8 —
5 | I believe Betty is a fool 2 4 0 8 —
6 | ,I believe Betty is a fool 0 4 0 8 —
7 | ,I believe Betty is a fool, 0 8 0 8 +

Figure 1: Analysis of (8)

‘Betty’ starts, and is —compact, since it does not
include all the intervening words.

At 4 this —compact sentence becomes the com-
plement of ‘believe’. The result is again —compact,
since it fails to include the word ‘I’ or the two com-
mas which appear between its start and end points.
The compact core is now the word ‘believe’, so the
compact start and end are 3 and 4.

At 5, the VP ‘believe Betty is a fool’ combines
with ‘I’ to produce ‘I believe Betty is a fool’. The
two commas then combine with this phrase, mark-
ing it as being parenthetical and, when the second
comma, is included, finally marking it as +compact.

Similar structures would be created during the
processing of (9), with the only difference being that
‘is a fool” would be the first —compact phrase found.
Apart from that the analysis of (9) would be identi-
cal to the analysis of (8).

There are two problems with this approach to sen-
tences of this kind: (i) because we obtain identical
syntactic analyses of (7), (8) and (9), then any com-
positional semantics will assign all three the same
interpretation. This is not entirely wrong: I cannot
fairly say any of these sentences unless I do believe
that Betty is a fool. But it is also clearly not entirely
right, since it misses the difference in emphasis. We
will not discuss this any further here. (ii) because we
are not applying the LP-rules, we get rather a large
number of analyses. Without LP-rules, we get a sin-
gle analysis of ‘I believe Betty is a fool’, having con-
structed 23 partial and complete edges. For ‘Betty,
I believe, is a fool’ we get three analyses (including
the correct one) having constructed 101 edges. Most
of these arise from the presence of the commas, since
we have to allow for the possibility that each of these
commas is either an opening or closing bracket, or a
conjunction in a comma-separated list of conjuncts.
Others arise from the fact that we have removed
all the LP-rules, so that we are treating English as
having completely free word order. Case marking
still provides some constraints on what can combine
with what, so that in the current case ‘I’ is the only
possible subject for ‘believe’ and ‘Betty’ is the only
possible subject for ‘s’. If we had been dealing with

19 Betty, Fred believes, is a fool

then we would have had six analyses from 107 edges,
with the new ones arising because we had assigned
‘Fred’ as the subject of %s’ and ‘Betty’ as the sub-
ject of ‘believes’.

Clearly we need to reinstate the general LP-rules,
whilst allowing for the cases we are interested in.
These cases are characterised in two ways: (i) some
word that requires a sentence has occurred in a con-
text where a ‘split’ sentence is available, and (ii) this
word is adjacent to a parenthetical comma. The
statement of this rule is rather long-winded, but the
result is to provide a single analysis of (8) from 66
edges, and a single analysis of (9) from 70 edges.

6 ‘more X than Y’

Most cases of extraposition in English involve sen-
tences, but there are a number of other phenomena
where items seem to have been shifted around. Con-
sider for instance the following examples:

20 George ate more than siz peaches.
21 Harriet ate more peaches than pears.

22 Jan ate more peaches than Julian.

In (20), ‘more than siz’ looks like a complex deter-
miner. How many peaches did George eat? More
than six. The easiest way to analyse this is by
assuming that ‘more’ subcategorises for a ‘than-
phrase’.

In (21) and (22), however, the than-phrase seems
to have become disjointed. It still seems as though
‘more’ heads a complex determiner, since (22) would
support the answer ‘more than Julian’ to the ques-
tion ‘How many peaches did Ian eat?’ 3.

We therefore introduce lexical entries for ‘more’
and ‘than’ which look roughly as follows:

3though (21) does not seem to support ‘more than pears’
as an answer to ‘How many peaches did Harriet eat?’. The
problem seems to be that NP complements to ‘than’ are actu-
ally elliptical (see below), and it seems to be harder to recover
the ellipsed sentence ‘More than she ate pears’ than to recover
‘More than Julian ate peaches’ or ‘more than Julian ate’.

phon ‘more’

head [cat speciﬁer]
nonfoot

syn

sign foot [Wh <>]

phon ‘than’
subcat <>

semantics ... H

subcat < sign

[phon ‘than’

head [cat than]
nonfoot

syn
sign
foot [wh <>}

subcat <X>

_ J

| semantics ...

The entry for ‘more’ says that it will make a specifier
if it finds a saturated phrase headed by ‘than’. The
entry for ‘than’ says that it will make a phrase of
the required type so long as it finds some argument
X. We know very little about X. In (20) it is a
number, in (21) and (22) it appears to be an NP. In
fact, as (Pulman, 1987) has shown, the best way to
think about these examples is by regarding them as
elliptical for the sentences

23 Harriet ate more peaches than she ate pears.
24 Ian ate more peaches than Julian ate peaches.

Other kinds of elliptical phrase are permitted, as in
25 Keith ate more peaches than Lucy did.

or even

26 Martha ate more ripe than unripe peaches. *

We therefore allow arbitrary phrases as the argu-
ment to ‘than’. All we need now are the LP-rules
describing when arguments of ‘than’ should be ex-
traposed. These simply say that if you are combin-
ing the determiner ‘more’ with a ‘than’-phrase, then
if the sole daughter of the ‘than’-phrase is a number
then it must not be shifted, and if it is not then it
must be right-shifted.

(i) {A,B,C} : A € det&phon@A = ‘more’
& cat@QB = than& dirs@QB = <D>
& (D € num or D € adj)

4Note that in this case the argument of ‘than’ is not dis-
placed.

— —movedQB
(i) {4, B,C} : A € det&phon@A = ‘more’
& cat@B = than
& not(dtrs@QB = <D>
& (D € num or D € adj))
— moved@QB = right

With these LP-rules, we get appropriate structural
analyses for (20)-(25). We do not, however, cur-
rently have a treatment of ellipsis. We therefore
cannot provide sensible semantic analyses of (21)
and (22), since we cannot determine what sentences
‘peaches’ and ‘Julian’ are elliptical for (imagine, for
instance, trying to decide whether ‘Eagles eat more
sparrows than crows’ meant ‘Eagles eat more spar-
rows than crows eats sparrows’ or ‘Fagles eat more
sparrows than eagles eat crows’).

If the structure of ‘more peaches than pears’ in-
volves a displaced ‘than’-phrase, then it seems very
plausible that the same is true for

27 Nick wrote a more elegant program than Olive.
28 Peter wrote a more elegant program than that.

This is given further support by the acceptability of
examples like

29 A program more elegant than that would be hard
to find.

where the ‘than’-phrase is adjacent to the modified
adjective ‘elegant’ rather than to the noun ‘program’
which is modified by the whole phrase ‘more elegant
than that’.

Frustratingly, it just does not seem possible to
reuse the lexical entry above for ‘more’ to cope with
these cases. In (20)—(25), ‘more’ made a determiner
when supplied with an appropriate ‘than’-phrase.
For (27)—(29) it needs to make something which will
combine with an adjective/adverb to produce an in-
tensified version of the original. We therefore need
the following entry:

[phon ‘more’

head [cat intensiﬁer]
nonfoot

syn

foot [Wh <>]
phon ‘than’
subcat <>

target |sign lsyntax [head [cat adj]ﬂ

sign

subcat < sign

| semantics ... J

This needs a ‘than’-phrase to saturate it, and once it
is saturated it will combine with an adj (adjective or
adverb) to make a new adj. There are two questions
to be answered: should such a complex adj appear to
the left or right of its target, and should the ‘than’-
phrase be extraposed or not?

(28) and (29) show that these questions are in-
timately connected. If the ‘than’-phrase is right-
shifted, then the resulting modifier appears to the
left of its target (28); if it is not, then the modifier
appears to the right (29). This is exactly what is pre-
dicted by (Williams, 1981)’s suggestion that head-
final modifiers generally appear to the left of their
targets (‘a quietly sleeping man’) whereas non-head-
final ones appear to the right (‘a man sleeping qui-
etly’). All we need to do is to make right-shifting of
the ‘than’-phrase optional, and to invoke Williams’
rule, using the compact core of the modifier. Thus
the compact modifier ‘more elegant than that’ from
(29) is not head final, since the whole thing is com-
pact but the head, ‘elegant’, is not the last word; the
non-compact one ‘more elegant ...than that’ from
(28) is head final, since this time ‘elegant’ is the
last word in the compact core ‘more elegant’. Hence
‘more elegant than that’ follows its target and ‘more
elegant . ..than that’ precedes it. No new LP-rules
are required, and no changes to the general rule for
locating modifiers are required.

7 Conclusions

We have shown how retrieving displaced items di-
rectly, rather than positing a trace of some kind
and then cancelling it against an appriate item
when one turns up, can provide treatments of left-
and right-extraposition which display the advan-
tages that (Johnson and Kay, 1994) obtain for left-
extraposition. This approach to extraposition can
be extended to deal with ‘intraposition’ and to cases
where items have been extracted from non-clausal
items. In order to avoid overgeneration, we needed
to introduce a set of LP-rules which are applied
as phrases are constructed in order to ensure that
items have not been shifted to unacceptable posi-
tions. The extra computation required for checking
the LP-rules has no effect on the complexity of the
parsing process, since they simply add a constant
(and fairly small) extra set of steps each time a new
edge is proposed. As a rough performance guide, the
grammar generates five analyses for

30 He built on that site a more unattractive house
than the one which he built in Greenwich.

on the basis of 237 edges (the different global anal-
yses arise from the attachment ambiguities for the
various modifiers), and takes 4.1 seconds to do so
(compiled Sicstus on a Pentium 350). This sentence
contains a right-shifted NP, which itself contains a

‘more ... than ... construction and also a relative
clause with a left-shifted WH-pronoun, and hence
could be expected to cause problems for approaches
using sponsors, while

8 Betty, I believe, is a fool.

takes 0.27 seconds. The worst case complexity
analysis for this kind of approach is fairly awful
(o(P? x 22(N=1)) where P is the number of unsatu-
rated edges in the initial chart and NNV is the length
of the sentence (Ramsay, in press)). In practice the
LP-rules provide sufficient constraints on the gener-
ation of non-compact phrases for performance to be
generally acceptable on sentences of about twenty
words.

References

M Johnson and M Kay. 1994. Parsing and empty
nodes. Computational Linguistics, 20(2):289-300.

R M Kaplan. 1973. A general syntactic processor.
In R. Rustin, editor, Natural language processing,
pages 193-241, New York. Algorithmics Press.

M Kay. 1973. The MIND system. In R. Rustin,
editor, Natural Language Processing, pages 155—
188, New York. Algorithmics Press.

C J Pollard and T A Sag. 1988. An Information
Based Approach to Syntax and Semantics: Vol
1 Fundamentals. CSLI lecture notes 13, Chicago
University Press, Chicago.

C J Pollard and I A Sag. 1994. Head-driven Phrase
Structure Grammar. Chicago University Press,
Chicago.

S G Pulman. 1987. Events and VP-modifiers. In
B.G.T. Lowden, editor, Proceedings of the Alvey
Sponsored Workshop On Formal Semantics in
Natural Language Processing, Colchester. Univer-
sity of Essex.

A M Ramsay. in press. Parsing with discontinuous
phrases. Natural Language Engineering.

I A Sag and T Wasow. 1999. Syntactic theory: a
formal introduction. CSLI, Stanford, Ca.

E Williams. 1981. On the notions ‘lexically related’
and ‘head of a word’. Linguistic Inquiry, 12:254—
274.

M M Wood. 1993. Categorial Grammars. Rout-
ledge, London.

