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Abstract Moreover, we characterize the semantic recipes of

Most of the studies in the framework of Lambek l€xical items that provide a polynomial solution for
calculus have considered the parsing process arffi€ Syntactic realization process. Then we give an
ignored the generation process. This paper want@xa@mple of this process.

to rely on the close link between Lambek calculus - -

and linear logic to present a method for the genera-z_ Proof .Nets. for Linear Logic
tion process with semantic proof nets. We express-inear logic (Girard, 1987) proposes for proofs a
the process as a proof search procedure based orf¥pre compact and accurate syntax than sequent cal
graph calculus and the solutions appear as a matrigulus: proof nets (they group distinct sequential
computation preserving the decidability properties proofs that only have inessential differences). They

and we characterize a polynomial time case. have both a related to sequential proof definition
_ and a geometrical definition: they can be defined
1 Introduction as a class of graphs (proof structures) satisfying a

From the type logical grammars point of view, the geometrical property so that every proof net corre-
parametric part of the language analysis is the lexiSPonds to a sequential proof and every proof struc-
con, and the constant one is the logical rules. Thigure built from a sequential proof has this prop-
should of course hold both for parsing and genera&rty (Retog, 1998).

tion, hence we can consider treversibilityproper- ~ In this paper, we only consider proof nets of the
ties of such grammars. And a relevant problem is tdn'IUI'[IOI’lIStIC |mpI|Cat|Ve linear IOg|C: Sequents are
compare the complexity of the two cases. made of several antecedent formulas, but only one

For Lambek calculus (Lambek, 1958), the pars-succedent formula. To deal with the iittanis-
ing complexity is still an open problem. But the tic notion for proof nets (since we consider one-
question arises to knowow to generate in this sided SequentS),We use the notion of polarltle§ with
framework, andhow difficult(on the computational the input (e: negative)and theoutput ¢: posi-
side) it is. (Merenciano and Morrill, 1997) an- tive) (Danos, 1990; Lamarche, 1995) to decorate

swered with a labelled deductive system guidedormulas. Positive ones correspond to succedent
with A-term unification. But a drawback of this lat- formulas and negative ones to antecedent formulas.
ter mechanism consists in its algorithmic undecid- Given the links of table 1, we defingoof struc-
ability (from second order unification). tures(we consider implicative fragment) as graphs
Relying on the linear logic (Girard, 1987) (which made of these links such that:
provides a powerful framework to express Lam-
bek calculus, specially with proof nets for the lat-
ter (Roorda, 1991; Lamarche and Retod996)),
this paper wants to adress the problem of finding
the way we can associate given lexical entries to fit 3
a given semantic exp_ression and generate a syntacti- input (resp. output) conclusions of the same
cally correct expression (for the moment, we do not type.
care to the choice of the lexical items). For this pur-
pose, we express our problem as a proof search ori®roof netsare proof structures that respect the cor-
in (multiplicative) linear logic which is decidable. rectness criterion.

1. any premise of any link is connected to exactly
one conclusion of some other link;

2. any conclusion of any link is connected to at

most one premise of some other link;

input (resp. output) premises are connected to
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The last link of table 1, the Cut link, allows the in a certain order. Proving thdbhn lives in Paris
combination of proofs of' - A and ofA,A -+ B is a correct sentence w.r.t. the lexicon of table 3
into a single proof of’, A - B. In sequential cal- (the two first columns) is finding axiom links be-
culs, the cut-elimination property states that therdween the atoms in the figure 1(a) so that the proof
exists a normal (not using the Cut rule) proof for structure is correct. Figure 1(b) shows it actually
the same sequent only from premisesl'odnd A happens (for technical reasons, in the proof net, the
(and builds it). order of the syntactic categories is the inverse of the

Of course, this property holds for proof nets too.order of the words in the sentence to be analysed.
And to enforce the intrinsic definition of these latter, Figure 1(c) showdohn lives Paris ircannot be suc-

a simple rewriting process (described in table 2) accessfully parsed).

tually performs the cut-elimination (in case of com- , .
plex formulas as in the third rewriting rule, thosez'2 _ PTO_Of Nets for Montague’s Semantlc§
rules can apply again on the result and propagatgapltallzmg on the fact that botkrterms (with the

until reaching atoms). Curry-Howard isomorphism) and proof nets repre-
sent proofs of intuitionistic implicative linear logic,
2.1 Proof Nets for Lambek Calculus (de Groote and Reter1996) propose to use proof

As Lambek calculus is an intuitionistic fragment of nets as semantic recipes: since proof nets encode
non commutative linar logic (with two linear impli- linearA-terms, instead of associatingaerm in the
cations: \" on the left and /" on the right), proof =~ Montagovian style to a lexical entry, they associate
nets for it naturally appeared in (Roorda, 1991).a proof net (decorated with typed constants). An ex-
They slightly differ from those of table 1.: ample of such a lexicon is given in tablgBar links
. encode abstraction, and tensor links encode applica-
e we get two tensor links: one for the formula tion).
(B/A)~ (the one in table 1) and one for the ¢ ¢ rse, to respect semantic types based on

formula(B\A)~ (justinverse the polarities of \;onag0vian basic typesandt, they use the fol-
the premises). And two par links: one for the lowing homomorphism:

formula(A\B)* and one fof A/B)* (idem);
e formulas in Lambek’s sequents are ordered, s (NP) =¢  H(S) =t H(A\B) = H(A) — H(B)
that conclusions of the proof nets are cyclically =~ #(N) =¢ — H(A/B) =H(B) — H(A)

ordered and axiom links may not cross. Let us illustrate the process in parsing the sen-
tenceJohn lives in Paris First we have to find

From a syntactic category, we can unfold the for- _ . .
mula to obtain a graph which only lacks axiom links the syntactic proof net of figure 1(b) as explained
in 2.1. It provides the way syntactic componants

to become a proof structure. So that the parsing pro-

cess in this framework is, given the syntactic cateLombine, hence how semantic recipes of each lexi-

gories of the items and their order, to put non crossS@! item combine: we take its homomorphic image

ing axiom links such tha_t the proof s_tructure IS @ ynlike in (de Groote and Reter’1996), we restrict our-
proof net. It means there is a proof fgiven types  selves for the moment to linearterms.




Table 2: Cut-elimination rewriting rules
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Figure 1: Parsing adohn lives in Paris

as in figure 3(a). The substitution of every input
with its semantic definition we would like to per-
form on theA-calculus side appears on the logical

side as plugging semantic proof nets with cut-links.

Then, thes-reduction we would like to perform
has its logical counterpart in the cut-elimination on
the resulting proof net. It gives a new proof net (on
figure 3(b)) we can use as tsemantic analysief
John lives in ParisIf necessary, we can come back
to the A-term expression(in p )(live j ).

In other words, the syntactic proof net yields a

¢ I, the semantic proof net of the expression we
want to generate;

o I[; the semantic proof nets associated to the
given lexical entries we use;

e T; the unfolding in proof structure of the syn-
tactic formula of the lexical item (as in fig-
ure 1(a));

e [ the forest made of the syntactic tre&3)(of
all the considered lexical entries plus the out-
put (the type we want to derive),

termt expressing how the elementary parts combine

(in this case = (ab)(cd)). Then the resulting proof
net of figure 3(b) corresponds to thenormal form
of t{Az. Ay.(in z)y/a,p/b, Az live z/c,j/d].

3 Whatis Generation?

We can now state the problem we are dealing with
given a semantic proof net (like the one in fig-

ure 3(b)), we want to put together syntactic entries

with axiom links such that:

1. thisyields a correct (syntactic) proof net;
2. the meaning of the resulting proof net matche
the given semantic expression.

Thus, if we define:

the generation problem (see figure 4) is to find a
matchingM of atomic formulas of” such that:

1. I endowed withV/ (let us call this proof struc-
_ tureF”)is a correct proof net;
" 2. when cut-linkingH( F") with theIl;, and elim-
inating these cuts, we obtalk.

We note that the problem is intrinsically decidable

S(because the finitness of the number of the match-

Ings) without making any assumption on the form
of the semantic entries. Of course, we want to keep
these good properties in our algorithm.



Table 3: Lexicon

lexical entry| syntaxic category associated-term semantic proof net
John NP ] 11 3ohn(ct. figure 2(a))
Mary NP m HMary (cf. figure 2(b))
Paris NP p Il p4rig(ct. figure 2(c))
Lives NP\S Az.live z Il}ye (cf. figure 2(d))

In (S\S)/NP Az Ay.(in z)y IT;, (cf. figure 2(e))

tt ¢ tt
e"'(g le‘ et e~ e"'(g le‘ <
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Figure 2: Semantic proof nets of the lexicon of table 3

4 Cut-elimination as Matrix Computation not involved in a cut link, and those involved in a

Using proof netsesultingfrom a cut-elimination ~ cut link and their dual as well) such that:
to guide a proof search on proof ndisfore cut-

elimination relies on the algebraic representation of; _ zg%lg _ [H100] > [8(91(92]
cut-elimination on proof nets expressed in (Girard, "0'1;'"0";(]5 888 00504

1989) and reformulated in (Retr1990; Girard,
1995). Due to lack of space, we can not developg\ote that all the atoms belonging to the matching
it, but the principle is to express cut-elimination be-we are looking for in the generation process (see
tween axioms with incidence matrices and paths irfigure 4) are in’s.
graphs. If we defineA = (U1l — o1 U1)U; and X =

Let us consider a proof néf. We can define Us(1 — o4Us)™!, we can state the theorem:
U the incidence matrix oéxiom links ¢ the inci- — :
dence matrix ottut links(we assume without loss _Theorem 1letl be a correct proof net reduc_lng
of generality that they happen only between axiom" Re$a_, U) af'Fer cut-elimination. These relations
links), andIl the incidence matrix of axiom links of are equivalent:
IT wherell is the proof netresulting from allthe cut- o Rego, U) = (1 — 02)U(1 — oU)~Y(1 — 0?)
eliminations on/. Then we have (Girard, 1989). o (U111} — 0y U Uy = 03Us(1 — 04Uz) "oy

_ 1 _ -1
H:(l—o‘z)U(l—UU)_l(l—O'Q) (1) o A= O'QXO'QandUg—X + 04.
_ _ _ Of course, all the terms are defined.

We want to give an equivalent relation to (1) fo-
cusing on some axiom links we are interested inWe base the proof search algorithm corresponding
Without loss of generality, we assume the lack ofto the generation process we are dealing with on this
any axiom link inU such that none of its conclu- third relation.
sions are involved in cut links. Indeed, the axiom links we are looking for are

Then we can choose an order for the atoms (fronthose whose two conclusions are involved in cut
the proof net before the cut-elimination, there islinks. That is we want to complet€; (knowing
three subsets of atoms: those not involved in a cuéll the other matrices). The previous theorem states
link, those involved in a cut link and whose dual is that solving the equation (1) correponds to solving
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Figure 3: Semantic proof nets fan(p)(live )
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Figure 4: The generation problem

the equatio = ¢,X o in X with X inversible. We also assume in this numbering that we know
Then, we have to solv&€; = X! + o, such that which of the atoms ir#{(F) is linked to¢* (the
Us = Us andU2 = 1. unique output). In our case whesg = 0, it is

not a problem to make such a statement. In other
Theorem 2 If 04 = 0 and there exists a solution, cases, the complexity would increase at most poly-
then the latter is unique and completely defined (a$10m|a||y

matrices product) fromd ando. Then, th

glve atrices are:

1
Soocooo—o

COoCooOoor coocoocoor
COOCOoOoOHD o~rocoOooOoOD
COOCOOoO—HOO coorrooOD
OCHOOOOOCDS cooco—RoOoD
COHROOOO0D —mooocooOoD
HOOoOOoOOooe cocoo~OoO

If 4 # 0 we generally have many solutions, and we
have to investigate this case to obtain good compu-
tational properties for example in adding word order
constraints. Ui =

Nevertheless, we can decide the case we are han-
dling as soon as we are given the lexical entries

OO OoOOoOOoOO

OOOOOOO?—‘

OOOOOOO SO oooo—O

5 Example

Let us process on an example the previous results.
We still use the lexicon of table 3, and we want to
generate (if possible) a sentence whose meaning is 71 =
given by the proof net of figure 3(b).

We first need to associate every atom with an in-
dex (in the figures, we indicate a numbebeside 00000000
the atom). Of course, we have to know how to rec-And the unique solution is:

09 =

OO0 OHOOOOOO 3
OO oOoOoOoOo P—‘OOOOOOO
T

OOOOOOO

e n
0000
0000
1000
0100
0010
0001
0000
0000
0000
0000
0000
0001
0010
0000
0000

OORODOOD OO OoO

ognize the atoms that are the saméitfigure 5(b)) 010000
and inlI (figure 5(a)). This can be done by looking 100000
at the typed constants decorating the input conclu- X=0,=]000100
sions (for the moment, we don’t have a general pro- 8 8 (1) 8 8 (1)
cedure). 000010



We can add this matching to the syntactic forest of editors,Formal Grammay pages 57-70, Prague,
figure 6(a) (do not forget that the link betwesn August. FoLLI.
andS~ isinU; and notinl/s, and thal’s represents  Jean-Yves Girard. 1987. Linear logitheoretical
edges between atoms withe [17, 22]) and obtain Computer Scien¢&0:1-102.
on F' the matching of figure 6(b). Jean-Yves Girard. 1989. Geometry of interaction
We still have to ensure the correctness of this I: Interpretation of system F. In C. Bonotto,
proof net (because we add all the tensor and par R. Ferro, S. Valentini, and A. Zanardo, editors,
links), but it has a quadratic complexity (less than Logic Colloquium '88 pages 221-260. North-
the matricial computation). In this case, it is cor- Holland.
rect. Jean-Yves Girard. 1995. Geometry of interaction
Actually, this only gives us the axiom links. It Ill: The general case. In J.-Y. Girard, Y. La-
still requires to compute the word order to have no font, and L. Regnier, editorédvances in Lin-
crossing axiom link. This can be done from the ax- ear LogiG pages 329-389. Cambridge University
iom links easier than quadratic time (it is a bracket- Press. Proceedings of the Workshop on Linear
ing problem). Logic, Ithaca, New York, June 1993.
Franois Lamarche and Christian Regor 1996.
Proof-nets for the lambek calculus — an overview.
In V. Michele Abrusci and Claudio Casadio, edi-
tors, Proceedings 1996 Roma Workshop. Proofs

6 Conclusion

We showed that the problem of generation in the
Lambek calculus framework is decidable, and we LR :
relied on semantic proof nets to express it as a f’f:r?d LCI:nLgljjilzsélcBC?tegorlzspfallges 241-262. Ed-
guided proof search. On top of keeping the decid-F lrice L ’ ho 09126;’5 pg. tics f
ability property of this framework, we characterized "'aN®!S Lamarche. - Games semantics for

. 1 full propositional linear logic. InProceedings
the semantic proof nets that enable a polynomial . N :
time processing. Tenth Annual IEEE Symposium on Logic in Com-

Nevertheless, some work remains: we should puter Sciencepages 464473, San Diego, Cal-

soon work on the atom numbering and the choice g?g;'sa’ 26-29 June. |EEE Computer Society
of the lexical items to enable a practical implemen- o :
tation of this work. Moreover, we want to benefit Joachim Lambek. 1958. The mathematics of

from the power of linear logic (and modalities) to i/lenttet?lceessgl{%ﬁei%nenCan Mathematical
deal with non lineai-terms. onthly, 65(3):154-170.

Finally, since different extensions of Lambek cal-Alaln Lecomte and Christian Re@r'1995. Pom-

culus based on proof nets (Moortgat, 1996; Lecomte set logic as an alternative categorial grammar. In
and Retoe, 1995) have been considered, we hope Formal Grammar Barcelona.

; : Josep M. Merenciano and Glyn Morrill. 1997.
our proposal and its good properties to apply to . .
other linguistic approaches. Generation as deduction on labelled proof nets.

In Christian Retoe; editor,Proceedings of LACL-
96, volume 1328 of.NAI, pages 310-328, Berlin.
Springer.
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