
Chart Parsing and Constraint Programming

Frank Morawietz
Seminar für Sprachwissenschaft

Universität Tübingen
Wilhelmstr. 113

72074 Tübingen, Germany
frank@sfs.nphil.uni-tuebingen.de

Abstract
In this paper, parsing-as-deduction and constraint pro-
gramming are brought together to outline a procedure for
the specification of constraint-based chart parsers. Fol-
lowing the proposal in Shieber et al. (1995), we show
how to directly realize the inference rules for deductive
parsers as Constraint Handling Rules (Fr¨uhwirth, 1998)
by viewing the items of a chart parser as constraints and
the constraint base as a chart. This allows the direct use
of constraint resolution to parse sentences.

1 Introduction
The parsing-as-deduction approach proposed in Pereira
and Warren (1983) and extended in Shieber et al. (1995)
and the parsing schemata defined in Sikkel (1997) are
well established parsing paradigms in computational lin-
guistics. Their main strengths are their flexibility and
the level of abstraction concerning control information
inherent in parsing algorithms. Furthermore, they are
easily extensible to more complex formalisms, e.g., aug-
mented phrase structure rules or the ID/LP format.

Constraint Programming (CP) has been used in com-
putational linguistics in several areas, for example in
(typed) feature-based systems (Smolka, 1995), or condi-
tional constraints (Matiasek, 1994), or advanced compi-
lation techniques (G¨otz and Meurers, 1997) or special-
ized constraint solvers (Manandhar, 1994). But none
of these approaches uses constraint programming tech-
niques to implement standard chart parsing algorithms
directly in a constraint system.

In this paper, I will bring these two paradigms to-
gether by showing how to implement algorithms from
the parsing-as-deduction scheme by viewing the parsing
process as constraint propagation.

The core idea is that the items of a conventional chart
parser are constraints on labeled links between the words
and positions of an input string. Then the inference rules
allow for the deduction of new constraints, again labeled
and spanning parts of the input string, via constraint
propagation. The resulting constraint store represents the
chart which can be accessed to determine whether the
parse was successful or to reconstruct a parse tree.

While this may seem a trivial observation, it is not
just another way of implementing deductive parsing in

yet another language. The approach allows for a rapid
and very flexible but at the same time uniform method
of implementation of all kinds of parsing algorithms (for
constraint-based theories). The goal is not necessarily to
build the fastest parser, but rather to build – for an ar-
bitrary algorithm – a parser fast and perspicuously. For
example, the advantage of our approach compared to the
one proposed in Shieber et al. (1995) is that we do not
have to design a special deduction engine and we do not
have to handle chart and agenda explicitly. Furthermore,
the process can be used in any constraint-based formal-
ism which allows for constraint propagation and there-
fore can be easily integrated into existing applications.

The paper proceeds by reviewing the parsing-as-
deduction approach and a particular way of imple-
menting constraint systems, Constraint Handling Rules
(CHR) as presented in Fr¨uhwirth (1998). Then it shows
how to implement several parsing algorithms very natu-
rally with constraint propagation rules before concluding
with an outlook on how to extend the technique to more
advanced applications.

1.1 Parsing as Deduction
Although I assume some familiarity with parsing-as-
deduction, I will recall some basic definitions for con-
venience. The notations and the three basic algorithms
are directly taken from Shieber et al. (1995).

As usual, stringsw result from concatenation of sym-
bols from some alphabet setΣ, i.e., w 2 Σ�. We refer
to the decomposition of such a string into its alphabet
symbols with indices. We fix this notation usingw =
w1 : : :wn. Further notational conventions are:i; j 2 N, n
for the length of the string to be parsed,A;B;C; : : : for
arbitrary formulas or nonterminals,a;b;c; : : : for termi-
nals,ε for the empty string andα;β;γ; : : : for strings of
terminals and nonterminals. Formulas used in parsing
will also be called items or edges. Agrammatical deduc-
tion systemor, in Sikkel’s terminology aparsing schema,
is defined as a set of deduction schemes and a set of ax-
ioms. These are given with the help offormula schemata
which contain (syntactic) meta-variables which are in-
stantiated with concrete terms on application of the rules.
A deduction schemeRhas the general form

A1 : : : An

C
h side conditions onA1 : : :An;C i

Table 1: Parsing algorithms as Grammatical Deduction Systems

Bottom-Up Top-Down Earley

Items [j;α�] [j; �β] [i; j;A;α�β]
Axiom [0; �] [0; �S] [0;0;S0; �S]

Goal [n;S�] [n; �] [0;n;S0;S�]

Scan [j;α�]
[j +1;αwj+1�]

[j; �wj+1β]
[j +1; �β]

[i; j;A;α�wj+1β]
[i; j +1;A;αwj+1�β]

Predict [j; �Bβ]
[j; � γβ] hB�! γi [i; j;A;α�Bβ]

[j; j;B; � γ] hB�! γi

Complete [j;αγ�]
[j;αB�]

hB�! γi [i;k;A;α�Bβ] [k; j;B;γ�]
[i; j;A;αB�β]

where theAi andC are formula schemata. TheAi are
called antecedents andC the consequence. Note that de-
duction schemes may refer to string positions, i.e., the
indices within the input string, in their side conditions.
Application of these schemata and derivations of formu-
las are then defined as in the Shieber et al. article. In-
tuitively, parsing uses the deductive rules – if their an-
tecedents and the side conditions are met – to infer new
items from the axioms and already generated items until
no new ones can be derived. The parse was successful if
a goal item was derived.

Therefore, all the parsing systems used in this paper
are defined by specifying a class of items, a set of ax-
ioms, a set of inference rules and a subset of the items,
the goals. For better readability, I follow Shieber et al. in
using the familiar dotted items for the presentation. The
three classical example algorithms we will use to illus-
trate our technique are given in Tab. 1. I assume famil-
iarity with these algorithms.

Unless specified differently, we assume that we are
given a context-free grammarG = hN;Σ;S;P iwith non-
terminalsN, terminalsΣ, start symbolS and set of pro-
ductionsP. For Earley’s algorithm we also assume a new
start symbolS0 which is not inN. Each production is of
the formA�!α with A2N; α2 (N[Σ)�. For examples
I will use the simple PP-attachment grammarG given in
Fig. 1 with the obvious sets of nonterminals and termi-
nals, the start symbol S and productionsP. It is left to
the reader to calculate example derivations for the three
algorithms for a sentence such asJohn hit the dog with
the stick.

1.2 Constraint Handling Rules
There are several constraint programming environments
available. The most recent and maybe the most flexible is
the Constraint Handling Rules (CHR) package included
in SICStus Prolog (Fr¨uhwirth, 1998). These systems

S �! NP VP
VP �! V NP j V NP PP
PP �! P NP
NP �! PN j Det N1
N1 �! N j N1 PP

V �! hit
PN �! John
N �! dogj stick
P �! with
Det �! the

Figure 1: Example Grammar: PP-attachment

maintain a constraint base or store which is continually
monitored for possible rule applications, i.e., whether
there is enough information present to successfully use a
rule to simplify constraints or to derive new constraints.
Whereas usually one deals with a fixed constraint domain
and a specialized solver, CHR is an extension of the Pro-
log language which allows for the specification of user-
defined constraints and arbitrary solvers. The strength of
the CHR approach lies in the fact that it allows for mul-
tiple (conjunctively interpreted) heads in rules, that it is
flexible and that it is tightly and transparently integrated
into the Prolog engine.

In CHR constraints are just distinguished sets of
(atomic) formulas. CHR allow the definition of rule sets
for constraint solving with three types of rules: Firstly
simplification rules (<=>) which replace a number of
constraints in the store with new constraints; secondly
propagation rules (==>) which add new constraints
to the store in case a number of constraints is already
present; and thirdly “simpagation” rules (<=> in com-
bination with an in the head of the rule) which replace
only those constraints with new ones which are to the
right of the backslash. Rules can have guards. A guard
(separated from the rest of the body by aj) is a condition
which has to be met before the rule can be applied.

We cannot go into the details of the formal seman-
tics of CHR here. The interested reader is referred to
Frühwirth (1998). Since I will refer back to it let us just

note that logically, simplification rules are equivalences
and propagation rules are implications if their guard is
satisfied. Simpagation rules are special cases of simpli-
fication rules. Soundness and completeness results for
CHR are available (Abdennadher et al., 1996 Abdennad-
her, 1998).

2 Parsing as Constraint Propagation
The basic observation which turns parsing-as-deduction
into constraint propagation is simple: items of a chart
parser are just special formulas which are used in an in-
ference process. Since constraints in constraint program-
ming are nothing but atomic formulas and constraint han-
dling rules nothing but inference rules, the connection is
immediate.

In more detail, I will present in this section how to
implement the three parsing algorithms given in Tab. 1 in
CHR and discuss the advantages and drawbacks of this
approach. Since CHR are integrated in SICStus Prolog,
I will present constraints and rules in Prolog notation.

We use the following two types of constraints. The
constraints corresponding to the items will be called
edge constraints. They have two arguments in case of
the two naive algorithms and five in the case of Ear-
ley’s algorithm, i.e.,edge(X,N) means in the case of the
bottom-up algorithm that we have recognized a list of
categoriesX up to positionN, in the case of the top-down
algorithm that we are looking for a list of categoriesX
starting at positionN and in the case of Earley’s algo-
rithm edge(A,Alpha,Beta,I,J) means that we found
a substring fromI to J by recognizing the list of cate-
goriesAlpha , but we are still looking for a list of cate-
goriesBeta to yield categoryA. The second constraint,
word(Pos,Cat-Word) , is used in the scanning steps.
It avoids using lexical entries in prediction/completion
since in grammar rules we do not usewords but their
categories.

For simplicity, a grammar is given as Prolog facts: lex-
ical items aslex(Word,Category) and grammar rules
asrule(RHS,LHS) whereRHSis a list of categories rep-
resenting the right hand side andLHS is a single category
representing the left hand side of the rule.

The algorithms are simple to implement by specify-
ing the inference rules as constraint propagation rules,
the axioms and the goal items as constraints. The infer-
ence rules are translated into CHR in the following way:
The antecedents are transformed into constraints appear-
ing in the head of the propagation rules, the side condi-
tions into the guard and the consequence is posted in the
body. A summarization of the resulting CHR programs
is presented in Tab. 2.

We use Earley’s algorithm for a closer look at the CHR
propagation rules. In the scanning step, we can move
the head of the list of categories we are looking for to
those we already recognized in case we have an appro-
priately matching edge and word constraint in our con-
straint store. The result is posted as a new edge constraint

parse(InList):-
axiom,
post_const(InList, 0, Length),
report(Length).

post_const([], Len, Len).
post_const([Word|Str], InLen, Len):-

findall(Cat, lex(Word,Cat), Cats),
post_words(Cats, InLen, Word),
NewLen is InLen + 1,
post_const(Str, NewLen, Len).

Figure 2: Utilities for CHR-based deductive parsing

with the positional index appropriately incremented.
The prediction step is more complex. There is only

one head in a rule, namely an edge which is still looking
for some category to be found. If one can find rules with
a matching LHS, we collect all of them in a list and post
the appropriate fresh edge constraints for each element of
that list with the predicatepost ea edges/3 which posts
edges of the following kind:edge(LHS,[],RHS,J,J) .
The collection of all matching rules in a call tosetof/3
is necessary since CHR are a committed choice lan-
guage. One cannot enumerate all solutions via back-
tracking. If there are no matching rules, i.e., the list
of RHSs we found is empty, the call tosetof in the
guard will fail and therefore avoid vacuous predictions
and nontermination of the predictor.

Lastly, the completion step is a pure propagation rule
which translates literally. The two antecedents are in
the head and the consequence in the body with appro-
priate instantiations of the positional variables and with
the movement of the category recognized by the passive
edge from the categories to be found to those found.

In the table there is one more type of rule, called an
absorption rule. It discovers those cases where we posted
an edge constraint which is already present in the chart
and simply absorbs the newly created one.

Note that we do not have to specify how to insert edges
into either chart or agenda. The chart and the agenda are
represented by the constraint store and therefore built-
in. Neither do we need a specialized deduction engine
as was necessary for the implementation described in
Shieber et al. In fact, the utilities needed are extremely
simple, see Fig. 2.

All we have to do for parsing (parse/1) is to post the
axiom1 and on traversal of the input string to post the
word constraints according to the lexicon of the given
grammar. Then the constraint resolution process with the
inference rules will automatically build a complete chart.
The call toreport/1 will just determine whether there
is an appropriate edge with the correct length in the chart
and print that information to the screen.

Coming back to the issues of chart and agenda: the
constraint store functions as chart and agenda at the same

1axiom/0 just posts the edge(s) defined in Tab. 2.

Table 2: Parsing systems as CHR programs

Bottom-Up Top-Down Earley

Items edge(X,N) edge(X,N) edge(A,Alpha,Beta,I,J)

Axiom edge([],0) edge([s],0) edge(sprime,[],[s],0,0)

Goal edge([s],Len) edge([],Len) edge(sprime,[s],[],0,Len)

Scan

Bottom-Up edge(Stack,N), word(N,Cat-_Word) ==>
N1 is N+1,
edge([Cat|Stack],N1).

Top-Down edge([Cat|T],N), word(N,Cat-_Word) ==>
N1 is N+1,
edge(T,N1).

Earley edge(A,Alpha,[Cat|Beta],I,J), word(J,Cat-_Word) ==>
J1 is J+1,
edge(A,[Cat|Alpha],Beta,I,J1).

Predict

Top-Down edge([LHS|T],N) ==>
setof(RHS, rule(RHS,LHS), List) |
post_td_edges(List,T,N).

Earley edge(_A,_Alpha,[B|_Beta],_I,J) ==>
setof(Gamma, rule(Gamma,B), List) |
post_ea_edges(List,B,J).

Complete

Bottom-Up edge(Stack,N) ==>
setof(Rest-LHS, split(Stack,Rest,LHS), List) |
post_bu_edges(List,N).

Earley edge(A,Alpha,[B|Beta],I,K), edge(B,Gamma,[],K,J) ==>
edge(A,[B|Alpha],Beta,I,J).

Absorb

Bottom-Up edge(L,N) \ edge(L,N) <=> true.

Top-Down edge(L,N) \ edge(L,N) <=> true.

Earley edge(A,Alpha,Beta,I,J) \ edge(A,Alpha,Beta,I,J) <=> true.

time since as soon as a constraint is added all rules are
tried for applicability. If none apply, the edge will remain
dormant until another constraint is added which triggers
a rule together with it.2 So, the parser works incremen-
tally by recursively trying all possible inferences for each

2Another way to “wake” a constraint is to instantiate any of its vari-
ables in which case it will be matched against the rules again. Since all
our constraints are ground, this does not play a role here.

constraint added to the store before continuing with the
posting of new constraints from thepost const/3 pred-
icate. The way this predicate works is to traverse the
string from left-to-right. It is trivial to alter the predicate
to post the constraints from right-to-left or any arbitrary
order chosen. This can be used to easily test different
parsing strategies.

The testing for applicability of new rules also has a

| ?- parse([john, hit, the, dog,
with, the, stick]).

Input recognized.

word(0,pn-john),
word(1,v-hit),
word(2,det-the),
word(3,n-dog),
word(4,p-with),
word(5,det-the),
word(6,n-stick),
edge(sprime,[],[s],0,0),
edge(s,[],[np,vp],0,0),
edge(np,[],[det,nbar],0,0),
edge(np,[],[pn],0,0),
edge(np,[pn],[],0,1),
edge(s,[np],[vp],0,1),
edge(vp,[],[v,np],1,1),
edge(vp,[],[v,np,pp],1,1),
......
edge(s,[vp,np],[],0,7),
edge(sprime,[s],[],0,7)

Figure 3: A partial CHR generated chart

connection with the absorption rules. We absorb the
newer edge since we can assume that all possible propa-
gations have been done with the old identical edge con-
straint so that we can safely throw the other one away.

As an example for the resulting chart, part of the out-
put of an Earley-parse forJohn hit the dog with the stick
assuming the grammar from Fig. 1 is presented in Fig. 3.

The entire constraint store is printed to the screen after
the constraint resolution process stops. The order of the
constraints actually reflects the order of the construction
of the edges, i.e., the chart constitutes a trace of the parse
at the same time. Although the given string was ambigu-
ous, only a single solution is visible in the chart. This is
due to the fact that we only did recognition. No explicit
parse was built which could have differentiated between
the two solutions. It is an easy exercise to either write a
predicate to extract all possible parses from the chart or
to alter the edges in such a way that an explicit parse tree
is built during parsing.

By using a built-in deduction engine, one gives up con-
trol of its efficiency. As it turns out, this CHR-based ap-
proach is slower than the specialized engine developed
and provided by Shieber et al. by about a factor of 2, e.g.,
for a six word sentence and a simple grammar the pars-
ing time increased from 0.01 seconds to 0.02 seconds on
a LINUX PC (Dual Pentium II with 400MHz) running
SICStus Prolog. This factor was preserved under 5 and
500 repetitions of the same parse. However, speed was
not the main issue in developing this setup, but rather
simplicity and ease of implementation.

To sum up this section, the advantages of the approach

lie in its flexibility and its availability for rapid prototyp-
ing of different parsing algorithms. While we used the
basic examples from the Shieber et al. article, one can
also implement all the different deduction schemes from
Sikkel (1997). This also includes advanced algorithms
such as left-corner or head-corner parsing, the refined
Earley-algorithm proposed by Graham et al. (1980), or
(unification-based) ID/LP parsing as defined in Moraw-
ietz (1995), or any improved version of any of these.
Furthermore, because of the logical semantics of CHR
with their soundness and completeness, all correctness
and soundness proofs for the algorithms can be directly
applied to this constraint propagation proposal. The main
disadvantage of the proposed approach certainly lies in
its apparent lack of efficiency. One way to address this
problem is discussed in the next section.

3 Extensions of the Basic Technique
There are two directions the extensions of the presented
technique of CHR parsing might take. Firstly, one might
consider parsing of more complicated grammars com-
pared to the CF ones which were assumed so far. Fol-
lowing Shieber et al., one can consider unification-based
grammars or tree adjoining grammars. Since I think that
the previous sections showed that the Shieber et al. ap-
proach is transferable in general, the results they present
are applicable here as well.3 Instead, I want to consider
parsing of minimalist grammars (Chomsky, 1995) as de-
fined in recent work by Stabler (1997, 1999).4

3.1 Minimalist Parsing

We cannot cover the theory behind derivational minimal-
ism as presented in Stabler’s papers in any detail. Very
briefly, lexical items are combined with each other by a
binary operationmergewhich is triggered by the avail-
ability of an appropriate pair of clashing features, here
noted ascat(C) for Stabler’s categoriesc andcomp(C)
for =c . Furthermore, there is a unary operationmove
which, again on the availability of a pair of clashing fea-
tures (e.g.,-case , +case), triggers the extraction of a
(possibly trivial) subtree and its merging in at the root
node. On completion of these operations the clashing
feature pairs are removed. The lexical items are of the
form of linked sequences of trees. Accessibility of fea-
tures is defined via a given order on the nodes in this
chain of trees. A parse is acceptable if all features have
been checked, apart from one category feature which
spans the length of the string. The actual algorithm
works naively bottom-up and, since the operations are
at most binary, the algorithm is CYK-based.

3Obviously, using unification will introduce additional complexity,
but no change of the basic method is required. If the unification can be
reduced to Prolog unification, it can stay in the head of the rule(s). If it
needs dedicated unification algorithms, they have to be called explicitly
in the guard.

4The code for the original implementation underlying the paper was
kindly provided by Ed Stabler. Apart from the implementation in CHR,
all the rest is his work and his ideas.

Table 3: Part of a CHR-based minimalist parser

Items edge(I, J, Chain, Chains)

Axiom edge(I, I, Chain, Chains) h[Chain|Chains] �! εi, I a variable

edge(I, I+1, Chain, Chains) h[Chain|Chains] �! wi+1i

and there is no-X in [Chain|Chains]

edge(J, J, Chain, Chains) h[Chain|Chains] �! wi+1i, J a variable

and-X , I andI+1 occur in[Chain|Chains]

Goal edge(0, Length, [cat(C)], [])

Merge edge(I,J,[comp(X)|RestHead],Ch0), edge(K,L,[cat(X)|RestComp],Ch1) ==>
check(RestHead,NewHead,I,J,K,L,A,B,RestComp,Ch0,Ch1,Ch) |

edge(A,B,NewHead,Ch).

An initial edge or axiom in this minimalist parsing sys-
tem cannot simply be assumed to cover only the part of
the string where it was found since it could have been the
result of a move. So the elements of the lexicon which
will have to be moved (they contain a movement trig-
ger -X) actually have the positional indices instantiated
in the last of those features appearing. All other move-
ment triggers and the position it will be base generated
are assumed to be traces and therefore empty. Their po-
sitional markers are identical variables, i.e., they span no
portion of the string and one does not know their value
at the moment of the construction of the axioms. They
have to be instantiated during the minimalist parse.

Consider the set of items as defined by the axioms, see
Tab. 3. The general form of the items is such that we
have the indices first, then we separate the chain of trees
into the first one and the remaining ones for better access.
As an example for the actual edges and to illustrate the
discussion about the possibly variable string positions in
the edges, consider the lexical itemit (as inbelieve it):

lex(it,I,[(K,K)=[cat(d),-case(I,J)]]):-

J is I+1.

Since I = 1 in the example the following edge results
edge(K, K, [cat(d),-case(1,2)]], []) : We know
that it has been moved to cover positions1 to 2, but we
do not know (yet) where it was base generated.

We cannot go into any further detail how the actual
parser works. Nevertheless, the propagation rule for
merging complementizers shown in Tab. 3 demonstrates
how easily one can implement parsers for more advanced
types of grammars.5

5The predicatecheck implements the checking of the features and
indices and recomputes the new values for the resulting edge.

3.2 Compiling the Grammar Rules into the
Inference Rules

A proposal for improving the approach consists in mov-
ing the test for rule applicability from the guards into
the heads of the CHR rules. One can translate a given
context-free grammar under a given set of inference rules
into a CHR program which contains constraint propaga-
tion rules for each grammar rule, thereby making the pro-
cessing more efficient. For simplicity, we discuss only
the case of bottom-up parsing.

For the translation from a CF grammar into a con-
straint framework we have to distinguish two types of
rules: those with from those without an empty RHS. We
treat the trivial case of the conversion first. For each rule
in the CF grammar with a non-empty RHS we create a
constraint propagation rule such that each daughter of
the rule introduces an edge constraint in the head of the
propagation rule with variable, but appropriately match-
ing string positions and a fixed label. The new, propa-
gated edge constraint spans the entire range of the posi-
tions of the daughters and is labeled with the (nontermi-
nal) symbol of the LHS of the CF rule. In our example,
the resulting propagation rule for S looks as follows:

edge(I,K,np), edge(K,J,vp) ==> edge(I,J,s)

The translation is a little bit more complicated for rules
with empty RHSs. Basically, we create a propagation
rule for each empty rule, e.g.,A�! ε, such that the head
is an arbitrary edge, i.e., both positions and the label are
arbitrary variables, and post new edge constraints with
the LHS of the CF rule as label, using the positional vari-
ables and spanning no portion of the string, resulting in
CHR rules of the following type:

edge(I,J, Sym) ==> J is I+1 |

edge(I,I,A), edge(J,J,A)

But obviously rules of this type lead to nontermination
since they would propagate further constraints on their
own output which is avoided by including a guard which
ensures that empty edges are only propagated for every
possible string position once by testing whether the edge
spans a string of length one. Recall that storing and us-
ing already existing edge constraints is avoided with an
absorption rule. Since these empty constraints can be
reused an arbitrary number of times, we get the desired
effect without having to fear nontermination. Although
this is not an elegant solution, it seems that other alterna-
tives such as analyzing and transforming the entire gram-
mar or posting the empty constraints while traversing the
input string are not appealing either since they give up
the one-to-one correspondence between the rules of the
CF grammar and the constraint program which is advan-
tageous in debugging.

With this technique, the parsing times achieved were
better by a factor of a third compared to the Shieber et al.
implementation. Although now the process of the com-
pilation obscures the direct connection between parsing-
as-deduction and constraint propagation somewhat, the
increase in speed makes it a worthwhile exercise.

4 Conclusion
In the paper, the similarity between parsing-as-deduction
and constraint propagation is used to propose a flexible
and simple system which is easy to implement and there-
fore offers itself as a testbed for different parsing strate-
gies (such as top-down or bottom-up), for varying modes
of processing (such as left-to-right or right-to-left) or for
different types of grammars (such as for example min-
imalist grammars). Compared to the Shieber approach,
the pure version seems to be lacking in efficiency. This
can be remedied by providing an automatic compilation
into more efficient specialized parsers.

While the paper has shown that existing constraint
systems are powerful enough to allow chart parsing,
more work has to be invested in the realization of such
a larger system combining these techniques with con-
straint solvers for existing constraint-based natural lan-
guage theories to see whether further benefits can be got-
ten from using parsing as constraint propagation. Due to
the flexibility of the CHR system, one can now use the
constraint propagation approach to drive other constraint
solving or constraint resolution techniques (also imple-
mented in CHR) resulting in a homogenous environment
which combines both classical constraint solving with a
more operational generator.

Specifically, one can use each created edge to post
other constraints, for example about the well-formedness
of associated typed feature structures. By posting them,
they become available for other constraint handling rules.
In particular, systems directly implementing HPSG seem
to suffer from the problem how to drive the constraint
resolution process efficiently. Some systems, as for ex-
ample ALE (Carpenter and Penn, 1998) use a phrase

structure backbone to drive the process. The proposal
here would allow to use the ID/LP schemata directly as
constraints, but nevertheless as the driving force behind
the other constraint satisfaction techniques. However, for
the moment this remains speculative.

References
Abdennadher, S. (1998).Analyse von regelbasierten

Constraintl̈osern, PhD thesis, Ludwig-Maximilians-
Universität München.

Abdennadher, S., Fr¨uhwirth, T. and Meuss, H. (1996).
On confluence of constraint handling rules,LNCS
1118, Springer.

Carpenter, B. and Penn, G. (1998). ALE: The attribute
logic engine, version 3.1,User manual, Carnegie Mel-
lon University, Pittsburgh.

Chomsky, N. (1995).The Minimalist Program, Vol. 28
of Current Studies in Linguistics, MIT Press.

Frühwirth, T. (1998). Theory and practice of constraint
handling rules,Journal of Logic Programming37.

Götz, T. and Meurers, D. (1997). Interleaving universal
principles and relational constraints over typed feature
logic, ACL/EACL Conference ’97, Madrid, Spain.

Graham, G., Harrison, M. G. and Ruzzo, W. L. (1980).
An improved context–free recognizer,ACM Transac-
tions on Programming Languages and Systems 2 (3).

Manandhar, S. (1994). An attributive logic of set descrip-
tions and set operations,ACL Conference ’94.

Matiasek, J. (1994).Principle-Based Processing of Nat-
ural Language Using CLP Techniques, PhD thesis, TU
Wien.

Morawietz, F. (1995). A Unification-Based ID/LP Pars-
ing Schema,Proceedings of the 4th IWPT, Prag.

Pereira, F. C. N. and Warren, D. H. D. (1983). Parsing as
deduction,ACL Conference ’83.

Shieber, S. M., Schabes, Y. and Pereira, F. C. N. (1995).
Principles and implementation of deductive parsing,
Journal of Logic Programming24(1–2).

Sikkel, K. (1997). Parsing Schemata: A Framework
for Specification and Analysis of Parsing Algorithms,
ETACS Series, Springer.

Smolka, G. (1995). The Oz programming model,in
J. van Leeuwen (ed.),Computer Science Today, LNCS
1000, Springer.

Stabler, E. (1997). Derivational minimalism,in C. Retoré
(ed.), Logical Aspects of Computational Linguistics,
LNAI 1328, Springer.

Stabler, E. (2000). Minimalist grammars and recogni-
tion, Presented at the WorkshopLinguistic Form and
its Computationof the SFB 340 in Bad Teinach, Uni-
versität Tübingen. Draft.

