Chart Parsing and Constraint Programming

Frank Morawietz
Seminar &ir Sprachwissenschatft
Universitt Tlibingen
Wilhelmstr. 113
72074 Tibingen, Germany
frank@sfs.nphil.uni-tuebingen.de

Abstract yet another language. The approach allows for a rapid
and very flexible but at the same time uniform method
pfimplementation of all kinds of parsing algorithms (for
onstraint-based theories). The goal is not necessarily to

In this paper, parsing-as-deduction and constraint pro
gramming are brought together to outline a procedure fo
the specification of constraint-based chart parsers. Fol:

lowing the proposal in Shieber et al. (1995), we show yild the fa;test parser, but rather to builo! — for an ar-
how to directly realize the inference rules for deductiveP!trary algorithm —a parser fast and perspicuously. For

: ; i le, the advantage of our approach compared to the
parsers as Constraint Handling Rulesuffrirth, 1998) €Xamp dvant :
by viewing the items of a chart parser as constraints an%ne proposed in Shieber et al. (1995) is that we do not

the constraint base as a chart. This allows the direct usg2Ve 0 design a special deduction engine and we do not
of constraint resolution to parse sentences. have to handle chart and agenda explicitly. Furthermore,

the process can be used in any constraint-based formal-

1 Introduction ism which allows for constra_int pro_pa_gation a_nd _there—

i]) _fore can be easily integrated into existing applications.
The parsing-as-deduction approach proposed in Pereira The paper proceeds by reviewing the parsing-as-
and Warren (1983) and eXtend(?d in .Shie.bel’ et al. (199%eduction approach and a particu|ar way of imp|e-
and the parsing schemata defined in Sikkel (1997) argnenting constraint systems, Constraint Handling Rules
well established parsing paradigms in computational lin{CHR) as presented in @niwirth (1998). Then it shows
guistics. Their main strengths are their flexibility and how to implement several parsing algorithms very natu-
the level of abstraction Concel’nlng control information ra”y W|th Constraint propagation ru'es before Conc'uding

inherent in parsing algorithms. Furthermore, they areyith an outlook on how to extend the technique to more
easily extensible to more complex formalisms, e.g., augadvanced applications.

mented phrase structure rules or the ID/LP format.))

Constraint Programming (CP) has been used in comi-1 Parsing as Deduction
putational linguistics in several areas, for example inAlthough | assume some familiarity with parsing-as-
(typed) feature-based systems (Smolka, 1995), or condideduction, | will recall some basic definitions for con-
tional constraints (Matiasek, 1994), or advanced compivenience. The notations and the three basic algorithms
lation techniques (Gtz and Meurers, 1997) or special- are directly taken from Shieber et al. (1995).
ized constraint solvers (Manandhar, 1994). But none As usual, stringsv result from concatenation of sym-
of these approaches uses constraint programming techols from some alphabet s&t i.e.,w € Z*. We refer
niques to implement standard chart parsing algorithmgo the decomposition of such a string into its alphabet
directly in a constraint system. symbols with indices. We fix this notation using=

In this paper, | will bring these two paradigms to- Wi...Wn. Further notational conventions aiej € N, n
gether by showing how to implement algorithms from for the length of the string to be parsedl,B,C, ... for
the parsing-as-deduction scheme by viewing the parsingrbitrary formulas or nonterminala, b, c, ... for termi-
process as constraint propagation. nals, ¢ for the empty string and, f3,y, ... for strings of

The core idea is that the items of a conventional charterminals and nonterminals. Formulas used in parsing
parser are constraints on labeled links between the word¥ill also be called items or edges.gkammatical deduc-
and positions of an input string. Then the inference ruledion systenor, in Sikkel's terminology @arsing schema
allow for the deduction of new constraints, again labeleds defined as a set of deduction schemes and a set of ax-
and spanning parts of the input string, via constrainioms. These are given with the helpfofmula schemata
propagation. The resulting constraint store represents th&hich contain (syntactic) meta-variables which are in-
chart which can be accessed to determine whether thgtantiated with concrete terms on application of the rules.
parse was successful or to reconstruct a parse tree. A deduction schemB has the general form

While this may seem a trivial observation, it is not Al ... _ -
just another way of implementing deductive parsing in —c (side conditions o ... Ay, C)

Table 1: Parsing algorithms as Grammatical Deduction Systems

Bottom-Up Top-Down Earley
ltems [i,ae] i, *B] [i,j,Aaep]
Axiom [0, o] [0, ¢S 0,0,S, S
Goal [n,Se] n, o] [0,n,S,Se]
Scan _ [j:a.] [J: .Wj+1B] _ [i_aj,Aaa.Wj+lB]
[i+1awjze] [i+1, 0] [i,i+1,A 0wji1ef]
: j, *Bp] [i,j,A aeBp]
Predict [J. ° B— o — (B —
Te BV B ey BV
[i,aye] i,k,AaeBp| [k j,B,ye]
Complete 7 qge (B V) T.J.AGBef
where theA; andC are formula schemata. Thig are S — NPVP V — hit
called antecedents aftthe consequence. Note thatde- vp —s VNP |[VNPPP PN — John
q%c_tion sc_:t?]t_emt?]s maytreIe_r to _strtirr]lg_ pq(sjitions,di_.?., the pp _, pNP N — dog] stick
indices within the input string, in their side conditions. PN | Det N1 P with

Application of these schemata and derivations of formu-
las are then defined as in the Shieber et al. article. In- N1 — N[N1PP Det — the
tuitively, parsing uses the deductive rules — if their an-)

tecedents and the side conditions are met — to infer new Figure 1: Example Grammar: PP-attachment

items from the axioms and already generated items until

no new ones can be derived. The parse was successfulmgmﬁgg fcoornsgsasmg|garS?QO;Sto|'r:a\tl'v§|£h !secont;]r;l:ﬁg¥
a goal item was derived. I possi ule applications, I.e., w

Therefore, all the parsing systems used in this papeTrhere Is (_enoqgh informgtion present to successfully usea
| rule to simplify constraints or to derive new constraints.

are defined by specifying a class of items, a set of ax; . . . ;
ioms, a set of inference rules and a subset of the iteméNhereas usually one deals with a fixed constraint domain

the goals. For better readability, | follow Shieber et al. in dnd a specialized solver, CHR is an extension of the Pro-

using the familiar dotted items for the presentation. Thelc?%.landguagetwhltch allcngsbft()r the slpeC|f|(3rar;uontof ustﬁr-f
three classical example algorithms we will use to illus- elinec constraints and arbitrary Solvers. 'he strength o

trate our technique are given in Tab. 1. | assume famil—t.he CHR _appr(_)ach _Iies in the fact that ?t allows for m.“_"
iarity with these algorithms tiple (conjunctively interpreted) heads in rules, that it is
Unless specified differently, we assume that we arélexmle and that it is tightly and transparently integrated

given a context-free gramm@r= (N, %, S P) with non- into the Prolog engine. . o

terminalsN, terminalsZ, start symboS and set of pro- N CHR constraints are just distinguished sets of
ductionsP. For Earley’s algorithm we also assume a new(atomic) formulas. CHR allow the definition of rule sets
start symbolS which is not inN. Each production is of OF constraint solving with three types of rules: Firstly
the formA —s awith A€ N, a € (NUZ)*. For examples simplification rules £=>) which replace a number of

| will use the simple PP-at,tachmentgraeragiven in constraints in the store with new constraints; secondly
Fig. 1 with the obvious sets of nonterminals and termi-Propagation rules%=>) which add new constraints
nals, the start symbol S and productidhslt is left to O the store in case a number of constraints is already
the reader to calculate example derivations for the thre resent; a.”d thwdly simpagation ruleg(:>. In com-
algorithms for a sentence such Zshn hit the dog with ination with a\ in the head of the rule) which replace

the stick only those constraints with new ones which are to the
. _ right of the backslash. Rules can have guards. A guard
1.2 Constraint Handling Rules (separated from the rest of the body by & a condition

There are several constraint programming environmentwhich has to be met before the rule can be applied.
available. The most recent and maybe the most flexible is We cannot go into the details of the formal seman-
the Constraint Handling Rules (CHR) package includedics of CHR here. The interested reader is referred to
in SICStus Prolog (Rrfiwirth, 1998). These systems Frihwirth (1998). Since | will refer back to it let us just

note that logically, simplification rules are equivalencesParse(InList):-

and propagation rules are implications if their guard is ~ &XI0m, _

satisfied. Simpagation rules are special cases of simpli- Post_const(inList, 0, Length),
fication rules. Soundness and completeness results for report(Length).

CHR are available (Abdennadher et al., 1996 Abdennad-

her, 1998). post_const([], Len, Len).
' post_const([Word|Str], InLen, Len):-
2 Parsing as Constraint Propagation findall(Cat, lex(Word,Cat), Cats),

_) _) _ post_words(Cats, InLen, Word),
The basic observation which turns parsing-as-deduction NewLen is InLen + 1,

into constrgint propagation is simp'le: items of a chayt post_const(Str, NewLen, Len).
parser are just special formulas which are used in an in-
ference process. Since co_nstraints in constraint program- Figure 2: Utilities for CHR-based deductive parsing
ming are nothing but atomic formulas and constraint han-
dling rules nothing but inference rules, the connection is . _))
immediate. with the posltlpnal |nde?< appropriately mcrementgd.
In more detail, | will present in this section how to 1N prediction step is more complex. There is only

implement the three parsing algorithms given in Tab. 1 inN€ head in a rule, namely an edge which is still looking

CHR and discuss the advantages and drawbacks of thf@ SOme category to be found. If one can find rules with

approach. Since CHR are integrated in SICStus Prologt Matching LHS, we collect all of them in a list and post

| will present constraints and rules in Prolog notation. the appropriate fresh edge constraints for each element of
We use the following two types of constraints. Thethatllst with the predicatgost _ea_edges/3 which posts

constraints corresponding to the items will be called€d9€s Of the following kindedge(LHS,[RHS,J,J)

edge constraints. They have two arguments in case Of'l'he collection of all matching rules in a call $etof/3

the two naive algorithms and five in the case of Ear-'S Nécessary since CHR are a committed choice lan-
ley’s algorithm, i.e.edge(X,N) means in the case of the 9uage. One cannot enumerate all solutions via back-
bottom-up algorithm that we have recognized a list oftr?%khnsg' If t?ereda_re no matcr:ung :lules,fl.e:, tk;}e list
categorie up to positiorN, in the case of the top-down © s we found Is empty, the call &etof in the
algorithm that we are looking for a list of categoriés guard will fal_l an_d therefore av_0|d vacuous predictions
starting at positiorN and in the case of Earley’s algo- &nd nontermination of the predictor. _
rithm edge(A Alpha,Beta,|,J) means that we found Lastly, the completion step is a pure propagation rule
a substring from to J by recognizing the list of cate- which translates literally. The two antecedents are in
goriesAlpha , but we are still looking for a list of cate- th(_a he_ad anq the conseéquence in the b_ody with appro-
goriesBeta to yield categoryA. The second constraint, priate instantiations of the positional _/anables and W|t_h
word(Pos,Cat-Word) , is used in the scanning steps. the movement of the category recognized by the passive
It avoids using lexical entries in prediction/completion €d9€ from the categories to be found to those found.
since in grammar rules we do not usrds but their In the table there is one more type of rule, called an
categories absorption rule. It discovers those cases where we posted
For simplicity, a grammar is given as Prolog facts: lex- an ed_ge constraint which is already present in the chart
ical items adex(Word,Category) ~ and grammar rules 2nd Simply absorbs the newly created one.
asrule(RHS,LHS) whereRHSis a list of categories rep- . Not_e that we do not have to specify how to insert edges
resenting the right hand side abidSis a single category into either chart or agenda. The chart and the agenda are
representing the left hand side of the rule represented by the constraint store and therefore built-

The algorithms are simple to implement by specify- in. Neither do we need a specialized deduction engine

ing the inference rules as constraint propagation rules?S Was necessary for the implementation described in

the axioms and the goal items as constraints. The infer—s.hleber etal. Infact, the utilities needed are extremely

ence rules are translated into CHR in the following way:s'mple’ see Fig. 2.

The antecedents are transformed into constraints appear—AlL‘]’l\’e hgve t? do for |c|)arf3|trr11q36_1rse/ 1t)t IS totpost tr:eth
ing in the head of the propagation rules, the side cond;&X!0M" and on traversal or the Input string 1o post the
ord constraints according to the lexicon of the given

tions into the guard and the consequence is posted in thi

body. A summarization of the resulting CHR programsgrammar. Then the constraint resolution process with the

is presented in Tab. 2 inference rules will automatically build a complete chart.

We use Earley’s algorithm for a closer look at the CHRThe call toreport/l ~ will just determine whether there

propagation rules. In the scanning step, we can movis an appropriate edge with the correct length in the chart

the head of the list of categories we are looking for toand print that information to the screen.

those we already recognized in case we have an apprg: “0R (EF 0 08 B2 B R B0 B e e
priately matching edge and word constraint in our con- 9

straint store. The resultis posted as a new edge constraint *axiom/0 just posts the edge(s) defined in Tab. 2.

Table 2: Parsing systems as CHR programs

Bottom-Up Top-Down Earley
Iltems edge(X,N) edge(X,N) edge(A,Alpha,Beta,l,J)
Axiom edge([],0) edge([s],0) edge(sprime,[],[s],0,0)

Goal edge([s],Len) edge([],Len) edge(sprime,[s],[],0,Len)

Scan

Bottom-Up edge(Stack,N), word(N,Cat- Word) ==>
N1 is N+1,
edge([Cat|Stack],N1).

Top-Down edge([Cat|T],N), word(N,Cat-_Word) ==>
N1 is N+1,
edge(T,N1).

Earley edge(A,Alpha,[Cat|Beta],!,J), word(J,Cat- Word) ==>
J1 is J+1,
edge(A,[Cat|Alpha],Beta,l,J1).

Predict

Top-Down edge([LHS|T],N) ==>
setof(RHS, rule(RHS,LHS), List) |
post_td edges(List,T,N).

Earley edge(_A,_Alpha,[B|_Beta],_I,J) ==>
setof(Gamma, rule(Gamma,B), List) |
post_ea_edges(List,B,J).

Complete

Bottom-Up edge(Stack,N) ==>
setof(Rest-LHS, split(Stack,Rest,LHS), List) |
post_bu_edges(List,N).

Earley edge(A,Alpha,[B|Beta], 1K), edge(B,Gamma,[],K,J) ==>
edge(A,[B|Alpha],Beta,l,J).

Absorb

Bottom-Up edge(L,N) \ edge(L,N) <=> true.
Top-Down edge(L,N) \ edge(L,N) <=> true.
Earley edge(A,Alpha,Beta,l,J) \ edge(A Alpha,Beta,l,J) <=> true.

time since as soon as a constraint is added all rules ameonstraint added to the store before continuing with the
tried for applicability. If none apply, the edge will remain posting of new constraints from tipest _const/3 pred-
dormant until another constraint is added which triggerdcate. The way this predicate works is to traverse the
a rule together with it. So, the parser works incremen- string from left-to-right. It is trivial to alter the predicate
tally by recursively trying all possible inferences for eachto post the constraints from right-to-left or any arbitrary

Eyv— - o) . ~order chosen. This can be used to easily test different
nother way to “wake” a constraint is to instantiate any of its vari- ; ;

ables in which case it will be matched against the rules again. Since alpa'rsmg Str.ategles. . .

our constraints are ground, this does not play a role here. The testing for applicability of new rules also has a

| ?- parse(fjohn, hit, the, dog,
with, the, stick]).

Input recognized.

lie in its flexibility and its availability for rapid prototyp-
ing of different parsing algorithms. While we used the
basic examples from the Shieber et al. article, one can
also implement all the different deduction schemes from
Sikkel (1997). This also includes advanced algorithms

word(0,pn-john), such as left-corner or head-corner parsing, the refined
word(1,v-hit), Earley-algorithm proposed by Graham et al. (1980), or
word(2,det-the), (unification-based) ID/LP parsing as defined in Moraw-
word(3,n-dog), ietz (1995), or any improved version of any of these.
word(4,p-with), Furthermore, because of the logical semantics of CHR
word(5,det-the), with their soundness and completeness, all correctness
word(6,n-stick), and soundness proofs for the algorithms can be directly
edge(sprime,[],[s],0,0), applied to this constraint propagation proposal. The main
edge(s,[1.[np,vp],0,0), disadvantage of the proposed approach certainly lies in
edge(np,[],[det,nbar],0,0), its apparent lack of efficiency. One way to address this
edge(np,[],[pn],0,0), problem is discussed in the next section.
edge(np,[pn],[1,0,1),

egge(s.[np],[Vp],Ol,ll), 3 Extensions of the Basic Technique
gdggggﬁ{wg}pp})ﬂ) There are two directions the extensions of the presented

technique of CHR parsing might take. Firstly, one might
consider parsing of more complicated grammars com-
pared to the CF ones which were assumed so far. Fol-
lowing Shieber et al., one can consider unification-based
Figure 3: A partial CHR generated chart grammars or tree adjoining grammars. Since | think that
the previous sections showed that the Shieber et al. ap-

. ,) proach is transferable in general, the results they present
connection with the absorption rules. We absorb theyre applicable here as wéllinstead, | want to consider

newer edge since we can assume that all possible propgzysing of minimalist grammars (Chomsky, 1995) as de-
gations have been done with the old identical edge congined in recent work by Stabler (1997, 1999).

straint so that we can safely throw the other one away.
As an example for the resulting chart, part of the out-3-1 Minimalist Parsing
put of an Earley-parse fadlohn hit the dog with the stick We cannot cover the theory behind derivational minimal-
assuming the grammar from Fig. 1 is presented in Fig. 3ism as presented in Stabler’s papers in any detail. Very
The entire constraint store is printed to the screen aftebriefly, lexical items are combined with each other by a
the constraint resolution process stops. The order of thbinary operatiormergewhich is triggered by the avail-
constraints actually reflects the order of the constructiorability of an appropriate pair of clashing features, here
of the edges, i.e., the chart constitutes a trace of the pargeted agat(C) for Stabler’s categories andcomp(C)
at the same time. Although the given string was ambigufor =c. Furthermore, there is a unary operatimove
ous, only a single solution is visible in the chart. This is which, again on the availability of a pair of clashing fea-
due to the fact that we only did recognition. No explicit tures (e.g.-case , +case), triggers the extraction of a
parse was built which could have differentiated betweer(possibly trivial) subtree and its merging in at the root
the two solutions. It is an easy exercise to either write anode. On completion of these operations the clashing
predicate to extract all possible parses from the chart ofeature pairs are removed. The lexical items are of the
to alter the edges in such a way that an explicit parse tre@rm of linked sequences of trees. Accessibility of fea-
is built during parsing. tures is defined via a given order on the nodes in this
By using a built-in deduction engine, one gives up con-chain of trees. A parse is acceptable if all features have
trol of its efficiency. As it turns out, this CHR-based ap- been checked, apart from one category feature which
proach is slower than the specialized engine develope8Pans the length of the string. The actual algorithm
and provided by Shieber et al. by about a factor of 2, e.g.works naively bottom-up and, since the operations are
for a six word sentence and a simple grammar the parsat most binary, the algorithm is CYK-based.
ing time increased from Q'Ol Sec?”ds t00.02 seco_nds on 30bviously, using unification will introduce additional complexity,
a LINUX PC (Dual Pentium Il with 400MHz) running but no change of the basic method is required. If the unification can be
SICStus Prolog. This factor was preserved under 5 anekduced to Prolog unification, it can stay in the head of the rule(s). If it
500 repetitions of the same parse. However, speed wdiseds dedicated unification algorithms, they have to be called explicitly

not the main issue in deVGlOping this setup, but rathept?‘?’hgeu?g%e for the original implementation underlying the paper was
simplicity and ease of implementation. kindly provided by Ed Stabler. Apart from the implementation in CHR,

To sum up this section, the advantages of the approacil the rest is his work and his ideas.

edge(s,[vp,np],[1.0,7),
edge(sprime,[s],[1,0,7)

Table 3: Part of a CHR-based minimalist parser

Iltems edge(l, J, Chain, Chains)

Axiom edge(l, I, Chain, Chains) ([Chain|Chains] — €), | avariable
edge(l, 1+1, Chain, Chains) ([Chain|Chains] — Wiy1)
and there is neX in [Chain|Chains]
edge(J, J, Chain, Chains) ([Chain|Chains] — Wiy1), J avariable

and-X, | andl+1 occur in[Chain|Chains]
Goal edge(0, Length, [cat(C)],)

Merge edge(l,J,[comp(X)|RestHead],Ch0), edge(K,L,[cat(X)|RestComp],Chl) ==>
check(RestHead,NewHead,|,J,K,L,A,B,RestComp,Ch0,Ch1,Ch) |
edge(A,B,NewHead,Ch).

Aninitial edge or axiom in this minimalist parsing sys- 3.2 Compiling the Grammar Rules into the
tem cannot simply be assumed to cover only the part of Inference Rules
the string where it was found since it could have been they proposal for improving the approach consists in mov-
reSU|t Of a move. So the e|ementS Of the IeXicon Wh|Ch|ng the test for ru'e app“cabmty from the guards into
will have to be moved (they contain a movement trig- the heads of the CHR rules. One can translate a given
ger-X) actually have the positional indices instantiatedcontext-free grammar under a given set of inference rules
in the last of those features appearing. All other moveintg 3 CHR program which contains constraint propaga-
ment triggers and the position it will be base generatedjon rules for each grammar rule, thereby making the pro-
are assumed to be traces and therefore empty. Their p@essing more efficient. For simplicity, we discuss only
sitional markers are identical variables, i.e., they span n¢ne case of bottom-up parsing.
portion of the string and one does not know their value Egr the translation from a CF grammar into a con-
at the moment Of the ConStI’UCtion Of the aXiomS. Theystraint framework we have to d|st|ngu|sh two types Of
have to be instantiated during the minimalist parse. yyles: those with from those without an empty RHS. We

Consider the set of items as defined by the axioms, segeat the trivial case of the conversion first. For each rule
Tab. 3. The general form of the items is such that wein the CF grammar with a non-empty RHS we create a
have the indices first, then we separate the chain of treesonstraint propagation rule such that each daughter of
into the first one and the remaining ones for better accesshe rule introduces an edge constraint in the head of the
As an example for the actual edges and to illustrate thgropagation rule with variable, but appropriately match-
discussion about the possibly variable string positions inng string positions and a fixed label. The new, propa-

the edges, consider the lexical iténfas inbelieve i: gated edge constraint spans the entire range of the posi-
tions of the daughters and is labeled with the (nontermi-
lex(it, |, [(K,K)=[cat(d),-case(l,J)]]):- nal) symbol of the LHS of the CF rule. In our example,

Jis 141 the resulting propagation rule for S looks as follows:

_ edge(l,K,np), edge(K,J,vp) ==> edge(l,J,s)
Sincel =1 in the example the following edge results

edge(K, K, [cat(d)-case(1,2)]], []) _ -Weknow The translation is a little bit more complicated for rules
thatit has been moved tQ cover positidh$o 2, but we \yith empty RHSs. Basically, we create a propagation
do not know (yet) where it was base generated. rule for each empty rule, e.qt,— €, such that the head

We cannot go into any further detail how the actualis an arbitrary edge, i.e., both positions and the label are
parser works. Nevertheless, the propagation rule foarbitrary variables, and post new edge constraints with
merging complementizers shown in Tab. 3 demonstratethe LHS of the CF rule as label, using the positional vari-
how easily one can implement parsers for more advancedbles and spanning no portion of the string, resulting in
types of grammars. CHR rules of the following type:

5The predicateheck implements the checking of the features and edge(ld, -Sym) ==>Jis I+1 |
indices and recomputes the new values for the resulting edge. edge(l,l,A), edge(J,J,A)

But obviously rules of this type lead to nontermination structure backbone to drive the process. The proposal
since they would propagate further constraints on theihere would allow to use the ID/LP schemata directly as
own output which is avoided by including a guard which constraints, but nevertheless as the driving force behind
ensures that empty edges are only propagated for evetfie other constraint satisfaction techniques. However, for
possible string position once by testing whether the edgéhe moment this remains speculative.

spans a string of length one. Recall that storing and us-

ing already existing edge constraints is avoided with arReferences

absorption rule. Since these empty constraints can bgpdennadher, S. (1998).Analyse von regelbasierten

reused an arbitrary number of times, we get the desired constraintbsern PhD thesis, Ludwig-Maximilians-
effect without having to fear nontermination. Although niversitit Miinchen.

this is not an elegant solution, it seems that other alterna- o
tives such as analyzing and transforming the entire gramAPdennadher, S., Bhiwirth, T. and Meuss, H. (1996).
mar or posting the empty constraints while traversing the ©n confluence of constraint handling rulesNCS
input string are not appealing either since they give up 1118 Springer.
the one-to-one correspondence between the rules of th@arpenter, B. and Penn, G. (1998). ALE: The attribute
CF grammar and the constraint program which is advan- logic engine, version 3.1)ser manualCarnegie Mel-
tageous in debugging. lon University, Pittsburgh.

With this technique, the parsing times achieved wer C
better by a factor of a third compared to the Shieber et a(IECho?‘rTC]:iﬁlerﬁS(tlu?j?g;-:—nhﬁr':/gﬂ:gggjtl'rp g)r%rslSTVOI. 28
implementation. Although now the process of the com-
pilation obscures the direct connection between parsing=rihwirth, T. (1998). Theory and practice of constraint
as-deduction and constraint propagation somewhat, the handling rulesJournal of Logic Programming?.

increase in speed makes it a worthwhile exercise. G6tz, T. and Meurers, D. (1997). Interleaving universal
. principles and relational constraints over typed feature
4 Conclusion logic, ACL/EACL Conference '9Madrid, Spain.

In the paper, the similarity between parsing-as-deductioiGraham, G., Harrison, M. G. and Ruzzo, W. L. (1980).
and constraint propagation is used to propose a flexible An improved context—free recogniz&fCM Transac-
and simple system which is easy to implement and there- tions on Programming Languages and Systems 2 (3)

fore offers itself as a testbed for different parsing Strate'Manandhar, S. (1994). An attributive logic of set descrip-

gies (such as top-down or bottom-up), for varying modes ", :)
of processing (such as left-to-right or right-to-left) or for tions and set operation&(L. Conference '94

different types of grammars (such as for example min-Matiasek, J. (1994)Principle-Based Processing of Nat-
imalist grammars). Compared to the Shieber approach, uralLanguage Using CLP Techniqué¥D thesis, TU
the pure version seems to be lacking in efficiency. This Wien.

can be remedied by providing an automatic compilationyiorawietz, F. (1995). A Unification-Based ID/LP Pars-
into more efficient specialized parsers. ing SchemaProceedings of the 4th IWPPrag.

While the paper has shown that existing constrain . .
systems are powerful enough to allow chart parsin t'Perelra, F. C. N. and Warren, D. H. D. (1983). Parsing as

more work has to be invested in the realization of such d€ductionACL Conference '83

a larger system combining these techniques with conShieber, S. M., Schabes, Y. and Pereira, F. C. N. (1995).
straint solvers for existing constraint-based natural lan- Principles and implementation of deductive parsing,
guage theories to see whether further benefits can be got- Journal of Logic Programming@4(1-2).

ten from using parsing as constraint propagation. D”et%ikkel, K. (1997). Parsing Schemata: A Framework

the flexibility of the .CHR system, One can now use the for Specification and Analysis of Parsing Algorithms
constraint propagation approach to drive other constraint ETACS Series, Springer

solving or constraint resolution techniques (also imple- . i
mented in CHR) resulting in a homogenous environmenSmolka, G. (1995). The Oz programming modiel,
which combines both classical constraint solving with a J. van Leeuwen (ed fiomputer Science TodayNCS
more operational generator. 100Q Springer.

Specifically, one can use each created edge to poSitabler, E. (1997). Derivational minimalisin,C. Retog
other constraints, for example about the well-formedness (ed.), Logical Aspects of Computational Linguistjcs
of associated typed feature structures. By posting them, | NAI 1328 Springer.
they become available for other constraint handling rules S .

; : ; ; Stabler, E. (2000). Minimalist grammars and recogni-
In particular, systems directly implementing HPSG seem tion, Presented at the Workshajnguistic Form and

to suffer from the problem how to drive the constraint .) . . .
resolution process efficiently. Some systems, as for ex- Its C_o_mpgtz_anomf the SFB 340 in Bad Teinach, Uni-
versitit Tubingen. Draft.

ample ALE (Carpenter and Penn, 1998) use a phrase

