
Automatic Optimization of Dialogue Management

Diane J. Litman, Michael S. Kearns, Satinder Singh, Marilyn A. Walker
AT&T Labs { Research

180 Park Avenue
Florham Park, NJ 07932 USA

fdiane,mkearns,baveja,walkerg@research.att.com

Abstract

Designing the dialogue strategy of a spoken dialogue
system involves many nontrivial choices. This pa-
per presents a reinforcement learning approach for
automatically optimizing a dialogue strategy that
addresses the technical challenges in applying re-
inforcement learning to a working dialogue system
with human users. We then show that our approach
measurably improves performance in an experimen-
tal system.

1 Introduction

Recent advances in spoken language understanding
have made it possible to develop dialogue systems
for many applications. The role of the dialogue man-
ager in such systems is to interact in a natural way
to help the user complete the tasks that the system
is designed to support. Typically, an expert designs
a dialogue manager by hand, and has to make many
nontrivial design choices that can seriously impact
system performance. This paper applies reinforce-
ment learning (RL) to automatically learn design
choices that optimize system performance for a cho-
sen performance measure (Levin et al., 2000; Walker
et al., 1998).
Consider the spoken dialogue system named NJ-

Fun, which we built to help users �nd fun places
to go in New Jersey. A sample dialogue with NJ-
Fun is shown in Figure 1, with system utterances
labeled Si and user utterances labeled Ui. When
NJFun greets the user, it can provide an open greet-
ing such as utterance S1, expecting that the user
will take the initiative. Alternatively, it can pro-
vide a directive greeting in which the system takes
the initiative, as in \Welcome to NJFun. Please say
an activity name or say `list activities' for a list of
activities I know about." After the user's response
U1, NJFun must decide whether it should explicitly
con�rm its understanding, as in utterances S2 and
S3. NJFun can also simply continue on with the di-
alogue, as when it does not explicitly con�rm that
the user wants to �nd out about wineries. In NJFun,
as shown in more detail below, decisions about ini-
tiative and con�rmation strategies alone result in a

S1: Welcome to NJFun. How may I help you?
U1: I'd like to �nd um winetasting in Lambertville

in the morning. (ASR output: I'd like to �nd
out wineries the in the Lambertville in the
morning.)

S2: Did you say you are interested in Lambertville?
U2: Yes.
S3: Did you say you want to go in the morning?
U3: Yes.
S4: I found a winery near Lambertville that is

open in the morning. It is [: : : ] Please give
me feedback by saying `good', `so-so', or `bad'.

U4: Good.

Figure 1: An example dialogue with NJFun.

search space of 242 potential global dialogue strate-
gies. Furthermore, the performance of a dialogue
strategy depends on many other factors, such as
the user population, the robustness of the automatic
speech recognizer (ASR), and task di�culty (Kamm
et al., 1998; Danieli and Gerbino, 1995).
In the main, previous research has treated the

speci�cation of the dialogue management strategy
as an iterative design problem: several versions of a
system are created, dialogue corpora are collected
with human users interacting with di�erent ver-
sions of the system, a number of evaluation met-
rics are collected for each dialogue, and the di�er-
ent versions are statistically compared (Danieli and
Gerbino, 1995; Sanderman et al., 1998). Due to the
costs of experimentation, only a few global strategies
are typically explored in any one experiment.
However, recent work has suggested that dialogue

strategy can be designed using the formalism of
Markov decision processes (MDPs) and the algo-
rithms of RL (Biermann and Long, 1996; Levin et
al., 2000; Walker et al., 1998; Singh et al., 1999).
More speci�cally, the MDP formalism suggests a
method for optimizing dialogue strategies from sam-
ple dialogue data. The main advantage of this ap-
proach is the potential for computing an optimal di-
alogue strategy within a much larger search space,
using a relatively small number of training dialogues.
This paper presents an application of RL to the



problem of optimizing dialogue strategy selection in
the NJFun system, and experimentally demonstrates
the utility of the approach. Section 2 explains how
we apply RL to dialogue systems, then Section 3
describes the NJFun system in detail. Section 4 de-
scribes how NJFun optimizes its dialogue strategy
from experimentally obtained dialogue data. Sec-
tion 5 reports results from testing the learned strat-
egy demonstrating that our approach improves task
completion rates (our chosen measure for perfor-
mance optimization). A companion paper provides
only an abbreviated system and dialogue manager
description, but includes additional results not pre-
sented here (Singh et al., 2000), such as analysis es-
tablishing the veracity of the MDP we learn, and
comparisons of our learned strategy to strategies
hand-picked by dialogue experts.

2 Reinforcement Learning for
Dialogue

Due to space limitations, we present only a brief
overview of how dialogue strategy optimization can
be viewed as an RL problem; for more details,
see Singh et al. (1999), Walker et al. (1998), Levin
et al. (2000). A dialogue strategy is a mapping from
a set of states (which summarize the entire dialogue
so far) to a set of actions (such as the system's utter-
ances and database queries). There are multiple rea-
sonable action choices in each state; typically these
choices are made by the system designer. Our RL-
based approach is to build a system that explores
these choices in a systematic way through experi-
ments with representative human users. A scalar
performance measure, called a reward, is then cal-
culated for each experimental dialogue. (We dis-
cuss various choices for this reward measure later,
but in our experiments only terminal dialogue states
have nonzero rewards, and the reward measures are
quantities directly obtainable from the experimental
set-up, such as user satisfaction or task completion.)
This experimental data is used to construct an MDP
which models the users' interaction with the system.
The problem of learning the best dialogue strategy
from data is thus reduced to computing the optimal
policy for choosing actions in an MDP | that is, the
system's goal is to take actions so as to maximize
expected reward. The computation of the optimal
policy given the MDP can be done e�ciently using
standard RL algorithms.
How do we build the desired MDP from sample

dialogues? Following Singh et al. (1999), we can
view a dialogue as a trajectory in the chosen state
space determined by the system actions and user
responses:

s1 !a1;r1 s2 !a2;r2 s3 !a3;r3 � � �

Here si !ai;ri si+1 indicates that at the ith ex-

change, the system was in state si, executed action
ai, received reward ri, and then the state changed
to si+1. Dialogue sequences obtained from training
data can be used to empirically estimate the transi-
tion probabilities P (s0js; a) (denoting the probabil-
ity of a transition to state s0, given that the system
was in state s and took action a), and the reward
function R(s; a). The estimated transition probabil-
ities and reward function constitute an MDP model
of the user population's interaction with the system.
Given this MDP, the expected cumulative reward

(or Q-value) Q(s; a) of taking action a from state s
can be calculated in terms of the Q-values of succes-
sor states via the following recursive equation:

Q(s; a) = R(s; a) +
X

s0

P (s0js; a)max
a0

Q(s0; a0):

These Q-values can be estimated to within a desired
threshold using the standard RL value iteration al-
gorithm (Sutton, 1991), which iteratively updates
the estimate of Q(s; a) based on the current Q-values
of neighboring states. Once value iteration is com-
pleted, the optimal dialogue strategy (according to
our estimated model) is obtained by selecting the
action with the maximum Q-value at each dialogue
state.
While this approach is theoretically appealing, the

cost of obtaining sample human dialogues makes it
crucial to limit the size of the state space, to mini-
mize data sparsity problems, while retaining enough
information in the state to learn an accurate model.
Our approach is to work directly in a minimal but
carefully designed state space (Singh et al., 1999).
The contribution of this paper is to empirically

validate a practical methodology for using RL to
build a dialogue system that optimizes its behav-
ior from dialogue data. Our methodology involves
1) representing a dialogue strategy as a mapping
from each state in the chosen state space S to a
set of dialogue actions, 2) deploying an initial train-
ing system that generates exploratory training data
with respect to S, 3) constructing an MDP model
from the obtained training data, 4) using value iter-
ation to learn the optimal dialogue strategy in the
learned MDP, and 4) redeploying the system using
the learned state/action mapping. The next section
details the use of this methodology to design the
NJFun system.

3 The NJFun System

NJFun is a real-time spoken dialogue system that
provides users with information about things to do
in New Jersey. NJFun is built using a general pur-
pose platform for spoken dialogue systems (Levin
et al., 1999), with support for modules for auto-
matic speech recognition (ASR), spoken language



Action Prompt
GreetS Welcome to NJFun. Please say an activity name or say `list activities' for a list of activities I know

about.
GreetU Welcome to NJFun. How may I help you?
ReAsk1S I know about amusement parks, aquariums, cruises, historic sites, museums, parks, theaters,

wineries, and zoos. Please say an activity name from this list.
ReAsk1M Please tell me the activity type.You can also tell me the location and time.
Ask2S Please say the name of the town or city that you are interested in.
Ask2U Please give me more information.
ReAsk2S Please tell me the name of the town or city that you are interested in.
ReAsk2M Please tell me the location that you are interested in. You can also tell me the time.

Figure 2: Sample initiative strategy choices.

understanding, text-to-speech (TTS), database ac-
cess, and dialogue management. NJFun uses a
speech recognizer with stochastic language and un-
derstanding models trained from example user ut-
terances, and a TTS system based on concatena-
tive diphone synthesis. Its database is populated
from the nj.online webpage to contain information
about activities. NJFun indexes this database using
three attributes: activity type, location, and time of
day (which can assume values morning, afternoon,
or evening).

Informally, the NJFun dialogue manager sequen-
tially queries the user regarding the activity, loca-
tion and time attributes, respectively. NJFun �rst
asks the user for the current attribute (and possibly
the other attributes, depending on the initiative).
If the current attribute's value is not obtained, NJ-
Fun asks for the attribute (and possibly the later
attributes) again. If NJFun still does not obtain
a value, NJFun moves on to the next attribute(s).
Whenever NJFun successfully obtains a value, it
can con�rm the value, or move on to the next at-
tribute(s). When NJFun has �nished acquiring at-
tributes, it queries the database (using a wildcard
for each unobtained attribute value). The length of
NJFun dialogues ranges from 1 to 12 user utterances
before the database query. Although the NJFun di-
alogues are fairly short (since NJFun only asks for
an attribute twice), the information access part of
the dialogue is similar to more complex tasks.

As discussed above, our methodology for using RL
to optimize dialogue strategy requires that all poten-
tial actions for each state be speci�ed. Note that at
some states it is easy for a human to make the cor-
rect action choice. We made obvious dialogue strat-
egy choices in advance, and used learning only to
optimize the di�cult choices (Walker et al., 1998).
In NJFun, we restricted the action choices to 1) the
type of initiative to use when asking or reasking for
an attribute, and 2) whether to con�rm an attribute
value once obtained. The optimal actions may vary
with dialogue state, and are subject to active debate
in the literature.

The examples in Figure 2 show that NJFun can
ask the user about the �rst 2 attributes1 using three
types of initiative, based on the combination of the
wording of the system prompt (open versus direc-
tive), and the type of grammar NJFun uses during
ASR (restrictive versus non-restrictive). If NJFun
uses an open question with an unrestricted gram-
mar, it is using user initiative (e.g., GreetU). If NJ-
Fun instead uses a directive prompt with a restricted
grammar, the system is using system initiative (e.g.,
GreetS). If NJFun uses a directive question with a
non-restrictive grammar, it is using mixed initiative,
because it allows the user to take the initiative by
supplying extra information (e.g., ReAsk1M).
NJFun can also vary the strategy used to con�rm

each attribute. If NJFun asks the user to explicitly
verify an attribute, it is using explicit con�rmation
(e.g., ExpConf2 for the location, exempli�ed by S2
in Figure 1). If NJFun does not generate any con-
�rmation prompt, it is using no con�rmation (the
NoConf action).
Solely for the purposes of controlling its operation

(as opposed to the learning, which we discuss in a
moment), NJFun internally maintains an operations
vector of 14 variables. 2 variables track whether the
system has greeted the user, and which attribute
the system is currently attempting to obtain. For
each of the 3 attributes, 4 variables track whether
the system has obtained the attribute's value, the
system's con�dence in the value (if obtained), the
number of times the system has asked the user about
the attribute, and the type of ASR grammar most
recently used to ask for the attribute.
The formal state space S maintained by NJFun

for the purposes of learning is much simpler than
the operations vector, due to the data sparsity con-
cerns already discussed. The dialogue state space
S contains only 7 variables, as summarized in Fig-
ure 3. S is computed from the operations vector us-
ing a hand-designed algorithm. The \greet" variable

1\Greet" is equivalent to asking for the �rst attribute. NJ-
Fun always uses system initiative for the third attribute, be-
cause at that point the user can only provide the time of day.



greet attr conf val times gram hist
0,1 1,2,3,4 0,1,2,3,4 0,1 0,1,2 0,1 0,1

Figure 3: State features and values.

tracks whether the system has greeted the user or
not (no=0, yes=1). \Attr" speci�es which attribute
NJFun is currently attempting to obtain or ver-
ify (activity=1, location=2, time=3, done with at-
tributes=4). \Conf" represents the con�dence that
NJFun has after obtaining a value for an attribute.
The values 0, 1, and 2 represent the lowest, middle
and highest ASR con�dence values.2 The values 3
and 4 are set when ASR hears \yes" or \no" after a
con�rmation question. \Val" tracks whether NJFun
has obtained a value for the attribute (no=0, yes=1).
\Times" tracks the number of times that NJFun has
asked the user about the attribute. \Gram" tracks
the type of grammar most recently used to obtain
the attribute (0=non-restrictive, 1=restrictive). Fi-
nally, \hist" (history) represents whether NJFun had
trouble understanding the user in the earlier part of
the conversation (bad=0, good=1). We omit the full
de�nition, but as an example, when NJFun is work-
ing on the second attribute (location), the history
variable is set to 0 if NJFun does not have an ac-
tivity, has an activity but has no con�dence in the
value, or needed two queries to obtain the activity.
As mentioned above, the goal is to design a small

state space that makes enough critical distinctions to
support learning. The use of S reduces the number
of states to only 62, and supports the construction of
an MDP model that is not sparse with respect to S,
even using limited training data.3 The state space
that we utilize here, although minimal, allows us
to make initiative decisions based on the success of
earlier exchanges, and con�rmation decisions based
on ASR con�dence scores and grammars.
The state/action mapping representing NJFun's

initial dialogue strategy EIC (Exploratory for Ini-
tiative and Con�rmation) is in Figure 4. Only the
exploratory portion of the strategy is shown, namely
those states for which NJFun has an action choice.
For each such state, we list the two choices of actions
available. (The action choices in boldface are the
ones eventually identi�ed as optimal by the learning
process, and are discussed in detail later.) The EIC
strategy chooses randomly between these two ac-

2For each utterance, the ASR output includes not only the
recognized string, but also an associated acoustic con�dence
score. Based on data obtained during system development,
we de�ned a mapping from raw con�dence values into 3 ap-
proximately equally populated partitions.

362 refers to those states that can actually occur in a di-
alogue. For example, greet=0 is only possible in the initial
dialogue state \0 1 0 0 0 0 0". Thus, all other states beginning
with 0 (e.g. \0 1 0 0 1 0 0") will never occur.

State Action Choices
g a c v t g h
0 1 0 0 0 0 0 GreetS,GreetU
1 1 0 0 1 0 0 ReAsk1S,ReAsk1M
1 1 0 1 0 0 0 NoConf,ExpConf1
1 1 0 1 0 1 0 NoConf,ExpConf1
1 1 1 1 0 0 0 NoConf,ExpConf1
1 1 1 1 0 1 0 NoConf,ExpConf1
1 1 2 1 0 0 0 NoConf,ExpConf1
1 1 2 1 0 1 0 NoConf,ExpConf1
1 1 4 0 0 0 0 ReAsk1S,ReAsk1M
1 1 4 0 1 0 0 ReAsk1S,ReAsk1M
1 2 0 0 0 0 0 Ask2S,Ask2U
1 2 0 0 0 0 1 Ask2S,Ask2U
1 2 0 0 1 0 0 ReAsk2S,ReAsk2M
1 2 0 0 1 0 1 ReAsk2S,ReAsk2M
1 2 0 1 0 0 0 NoConf,ExpConf2
1 2 0 1 0 0 1 NoConf,ExpConf2
1 2 0 1 0 1 0 NoConf,ExpConf2
1 2 0 1 0 1 1 NoConf,ExpConf2
1 2 1 1 0 0 0 NoConf,ExpConf2
1 2 1 1 0 0 1 NoConf,ExpConf2
1 2 1 1 0 1 0 NoConf,ExpConf2
1 2 1 1 0 1 1 NoConf,ExpConf2
1 2 2 1 0 0 0 NoConf,ExpConf2
1 2 2 1 0 0 1 NoConf,ExpConf2
1 2 2 1 0 1 0 NoConf,ExpConf2
1 2 2 1 0 1 1 NoConf,ExpConf2
1 2 4 0 0 0 0 ReAsk2S,ReAsk2M
1 2 4 0 0 0 1 ReAsk2S,ReAsk2M
1 2 4 0 1 0 0 ReAsk2S,ReAsk2M
1 2 4 0 1 0 1 ReAsk2S,ReAsk2M
1 3 0 1 0 0 0 NoConf,ExpConf3
1 3 0 1 0 0 1 NoConf,ExpConf3
1 3 0 1 0 1 0 NoConf,ExpConf3
1 3 0 1 0 1 1 NoConf,ExpConf3
1 3 1 1 0 0 0 NoConf,ExpConf3
1 3 1 1 0 0 1 NoConf,ExpConf3
1 3 1 1 0 1 0 NoConf,ExpConf3
1 3 1 1 0 1 1 NoConf,ExpConf3
1 3 2 1 0 0 0 NoConf,ExpConf3
1 3 2 1 0 0 1 NoConf,ExpConf3
1 3 2 1 0 1 0 NoConf,ExpConf3
1 3 2 1 0 1 1 NoConf,ExpConf3

Figure 4: Exploratory portion of EIC strategy.

tions in the indicated state, to maximize exploration
and minimize data sparseness when constructing our
model. Since there are 42 states with 2 choices each,
there is a search space of 242 potential global di-
alogue strategies; the goal of RL is to identify an
apparently optimal strategy from this large search
space. Note that due to the randomization of the
EIC strategy, the prompts are designed to ensure
the coherence of all possible action sequences.

Figure 5 illustrates how the dialogue strategy in
Figure 4 generates the dialogue in Figure 1. Each
row indicates the state that NJFun is in, the ac-



State Action Turn Reward
g a c v t g h
0 1 0 0 0 0 0 GreetU S1 0
1 1 2 1 0 0 0 NoConf - 0
1 2 2 1 0 0 1 ExpConf2 S2 0
1 3 2 1 0 0 1 ExpConf3 S3 0
1 4 0 0 0 0 0 Tell S4 1

Figure 5: Generating the dialogue in Figure 1.

tion executed in this state, the corresponding turn
in Figure 1, and the reward received. The initial
state represents that NJFun will �rst attempt to ob-
tain attribute 1. NJFun executes GreetU (although
as shown in Figure 4, GreetS is also possible), gen-
erating the �rst utterance in Figure 1. After the
user's response, the next state represents that NJ-
Fun has now greeted the user and obtained the ac-
tivity value with high con�dence, by using a non-
restrictive grammar. NJFun then chooses the No-
Conf strategy, so it does not attempt to con�rm
the activity, which causes the state to change but
no prompt to be generated. The third state repre-
sents that NJFun is now working on the second at-
tribute (location), that it already has this value with
high con�dence (location was obtained with activity
after the user's �rst utterance), and that the dia-
logue history is good.4 This time NJFun chooses the
ExpConf2 strategy, and con�rms the attribute with
the second NJFun utterance, and the state changes
again. The processing of time is similar to that of lo-
cation, which leads NJFun to the �nal state, where it
performs the action \Tell" (corresponding to query-
ing the database, presenting the results to the user,
and asking the user to provide a reward). Note that
in NJFun, the reward is always 0 except at the ter-
minal state, as shown in the last column of Figure 5.

4 Experimentally Optimizing a
Strategy

We collected experimental dialogues for both train-
ing and testing our system. To obtain training di-
alogues, we implemented NJFun using the EIC dia-
logue strategy described in Section 3. We used these
dialogues to build an empirical MDP, and then com-
puted the optimal dialogue strategy in this MDP (as
described in Section 2). In this section we describe
our experimental design and the learned dialogue
strategy. In the next section we present results from
testing our learned strategy and show that it im-
proves task completion rates, the performance mea-
sure we chose to optimize.
Experimental subjects were employees not associ-

ated with the NJFun project. There were 54 sub-

4Recall that only the current attribute's features are in the
state. However, the operations vector contains information
regarding previous attributes.

jects for training and 21 for testing. Subjects were
distributed so the training and testing pools were
balanced for gender, English as a �rst language, and
expertise with spoken dialogue systems.

During both training and testing, subjects carried
out free-form conversations with NJFun to complete
six application tasks. For example, the task exe-
cuted by the user in Figure 1 was: \You feel thirsty
and want to do some winetasting in the morning.
Are there any wineries close by your house in Lam-
bertville?" Subjects read task descriptions on a web
page, then called NJFun from their o�ce phone.
At the end of the task, NJFun asked for feedback
on their experience (e.g., utterance S4 in Figure 1).
Users then hung up the phone and �lled out a user
survey (Singh et al., 2000) on the web.

The training phase of the experiment resulted in
311 complete dialogues (not all subjects completed
all tasks), for which NJFun logged the sequence
of states and the corresponding executed actions.
The number of samples per state for the initial ask
choices are:
0 1 0 0 0 0 0 GreetS=155 GreetU=156
1 2 0 0 0 0 0 Ask2S=93 Ask2U=72
1 2 0 0 0 0 1 Ask2S=36 Ask2U=48

Such data illustrates that the random action choice
strategy led to a fairly balanced action distribution
per state. Similarly, the small state space, and the
fact that we only allowed 2 action choices per state,
prevented a data sparseness problem. The �rst state
in Figure 4, the initial state for every dialogue, was
the most frequently visited state (with 311 visits).
Only 8 states that occur near the end of a dialogue
were visited less than 10 times.

The logged data was then used to construct the
empirical MDP. As we have mentioned, the measure
we chose to optimize is a binary reward function
based on the strongest possible measure of task com-
pletion, called StrongComp, that takes on value
1 if NJFun queries the database using exactly the
attributes speci�ed in the task description, and 0
otherwise. Then we computed the optimal dialogue
strategy in this MDP using RL (cf. Section 2). The
action choices constituting the learned strategy are
in boldface in Figure 4. Note that no choice was
�xed for several states, meaning that the Q-values
were identical after value iteration. Thus, even when
using the learned strategy, NJFun still sometimes
chooses randomly between certain action pairs.

Intuitively, the learned strategy says that the op-
timal use of initiative is to begin with user initia-
tive, then back o� to either mixed or system ini-
tiative when reasking for an attribute. Note, how-
ever, that the speci�c backo� method di�ers with
attribute (e.g., system initiative for attribute 1, but
generally mixed initiative for attribute 2). With
respect to con�rmation, the optimal strategy is to



mainly con�rm at lower con�dence values. Again,
however, the point where con�rmation becomes un-
necessary di�ers across attributes (e.g., con�dence
level 2 for attribute 1, but sometimes lower levels
for attributes 2 and 3), and also depends on other
features of the state besides con�dence (e.g., gram-
mar and history). This use of ASR con�dence by the
dialogue strategy is more sophisticated than previ-
ous approaches, e.g. (Niimi and Kobayashi, 1996;
Litman and Pan, 2000). NJFun can learn such �ne-
grained distinctions because the optimal strategy is
based on a comparison of 242 possible exploratory
strategies. Both the initiative and con�rmation re-
sults suggest that the beginning of the dialogue was
the most problematic for NJFun. Figure 1 is an ex-
ample dialogue using the optimal strategy.

5 Experimentally Evaluating the
Strategy

For the testing phase, NJFun was reimplemented to
use the learned strategy. 21 test subjects then per-
formed the same 6 tasks used during training, re-
sulting in 124 complete test dialogues. One of our
main results is that task completion as measured by
StrongComp increased from 52% in training to 64%
in testing (p < :06).5

There is also a signi�cant interaction e�ect
between strategy and task (p<.01) for Strong-
Comp. Previous work has suggested that novice
users perform comparably to experts after only 2
tasks (Kamm et al., 1998). Since our learned strat-
egy was based on 6 tasks with each user, one expla-
nation of the interaction e�ect is that the learned
strategy is slightly optimized for expert users. To
explore this hypothesis, we divided our corpus into
dialogues with \novice" (tasks 1 and 2) and \ex-
pert" (tasks 3-6) users. We found that the learned
strategy did in fact lead to a large and signi�cant
improvement in StrongComp for experts (EIC=.46,
learned=.69, p<.001), and a non-signi�cant degra-
dation for novices (EIC=.66, learned=.55, p<.3).
An apparent limitation of these results is that EIC

may not be the best baseline strategy for comparison
to our learned strategy. A more standard alternative
would be comparison to the very best hand-designed
�xed strategy. However, there is no agreement in the
literature, nor amongst the authors, as to what the
best hand-designed strategy might have been. There
is agreement, however, that the best strategy is sen-
sitive to many unknown and unmodeled factors: the

5The experimental design described above consists of 2
factors: the within-in group factor strategy and the between-
groups factor task. We use a two-way analysis of variance
(ANOVA) to compute whether main and interaction e�ects
of strategy are statistically signi�cant (p<.05) or indicative
of a statistical trend (p < .10). Main e�ects of strategy are
task-independent, while interaction e�ects involving strategy
are task-dependent.

Measure EIC Learned p
(n=311) (n=124)

StrongComp 0.52 0.64 .06
WeakComp 1.75 2.19 .02
ASR 2.50 2.67 .04
Feedback 0.18 0.11 .42
UserSat 13.38 13.29 .86

Table 1: Main e�ects of dialogue strategy.

user population, the speci�cs of the task, the par-
ticular ASR used, etc. Furthermore, EIC was care-
fully designed so that the random choices it makes
never results in an unnatural dialogue. Finally, a
companion paper (Singh et al., 2000) shows that the
performance of the learned strategy is better than
several \standard" �xed strategies (such as always
use system-initiative and no-con�rmation).
Although many types of measures have been used

to evaluate dialogue systems (e.g., task success,
dialogue quality, e�ciency, usability (Danieli and
Gerbino, 1995; Kamm et al., 1998)), we optimized
only for one task success measure, StrongComp.
However, we also examined the performance of the
learned strategy using other evaluation measures
(which possibly could have been used as our reward
function). WeakComp is a relaxed version of task
completion that gives partial credit: if all attribute
values are either correct or wildcards, the value is the
sum of the correct number of attributes. Otherwise,
at least one attribute is wrong (e.g., the user says
\Lambertville" but the system hears \Morristown"),
and the value is -1. ASR is a dialogue quality mea-
sure that approximates speech recognition accuracy
for the database query, and is computed by adding
1 for each correct attribute value and .5 for every
wildcard. Thus, if the task is to go winetasting
near Lambertville in the morning, and the system
queries the database for an activity in New Jersey
in the morning, StrongComp=0, WeakComp=1, and
ASR=2. In addition to the objective measures dis-
cussed above, we also computed two subjective us-
ability measures. Feedback is obtained from the
dialogue (e.g. S4 in Figure 5), by mapping good,
so-so, bad to 1, 0, and -1, respectively. User satis-
faction (UserSat, ranging from 0-20) is obtained by
summing the answers of the web-based user survey.
Table 1 summarizes the di�erence in performance

of NJFun for our original reward function and the
above alternative evaluation measures, from train-
ing (EIC) to test (learned strategy for StrongComp).
For WeakComp, the average reward increased from
1:75 to 2:19 (p < 0:02), while for ASR the average
reward increased from 2:5 to 2:67 (p < 0:04). Again,
these improvements occur even though the learned
strategy was not optimized for these measures.
The last two rows of the table show that for the



subjective measures, performance does not signi�-
cantly di�er for the EIC and learned strategies. In-
terestingly, the distributions of the subjective mea-
sures move to the middle from training to testing,
i.e., test users reply to the survey using less extreme
answers than training users. Explaining the subjec-
tive results is an area for future work.

6 Discussion

This paper presents a practical methodology for ap-
plying RL to optimizing dialogue strategies in spo-
ken dialogue systems, and shows empirically that the
method improves performance over the EIC strategy
in NJFun. A companion paper (Singh et al., 2000)
shows that the learned strategy is not only better
than EIC, but also better than other �xed choices
proposed in the literature. Our results demonstrate
that the application of RL allows one to empirically
optimize a system's dialogue strategy by searching
through a much larger search space than can be ex-
plored with more traditional methods (i.e. empiri-
cally testing several versions of a system).

RL has been appled to dialogue systems in pre-
vious work, but our approach di�ers from previous
work in several respects. Biermann and Long (1996)
did not test RL in an implemented system, and the
experiments of Levin et al. (2000) utilized a simu-
lated user model. Walker et al. (1998)'s methodol-
ogy is similar to that used here, in testing RL with
an implemented system with human users. However
that work only explored strategy choices at 13 states
in the dialogue, which conceivably could have been
explored with more traditional methods (as com-
pared to the 42 choice states explored here).

We also note that our learned strategy made di-
alogue decisions based on ASR con�dence in con-
junction with other features, and also varied initia-
tive and con�rmation decisions at a �ner grain than
previous work; as such, our learned strategy is not
a standard strategy investigated in the dialogue sys-
tem literature. For example, we would not have pre-
dicted the complex and interesting back-o� strategy
with respect to initiative when reasking for an at-
tribute.

To see how our method scales, we are applying RL
to dialogue systems for customer care and for travel
planning, which are more complex task-oriented do-
mains. As future work, we wish to understand
the aforementioned results on the subjective reward
measures, explore the potential di�erence between
optimizing for expert users and novices, automate
the choice of state space for dialogue systems, inves-
tigate the use of a learned reward function (Walker
et al., 1998), and explore the use of more informative
non-terminal rewards.

Acknowledgements
The authors thank Fan Jiang for his substantial e�ort
in implementing NJFun, Wieland Eckert, Esther Levin,
Roberto Pieraccini, and Mazin Rahim for their technical
help, Julia Hirschberg for her comments on a draft of this
paper, and David McAllester, Richard Sutton, Esther
Levin and Roberto Pieraccini for helpful conversations.

References
A. W. Biermann and P. M. Long. 1996. The composition

of messages in speech-graphics interactive systems. In
Proc. of the International Symposium on Spoken Dia-
logue, pages 97{100.

M. Danieli and E. Gerbino. 1995. Metrics for evaluating
dialogue strategies in a spoken language system. In
Proc. of the AAAI Spring Symposium on Empirical
Methods in Discourse Interpretation and Generation,
pages 34{39.

C. Kamm, D. Litman, and M. A. Walker. 1998. From
novice to expert: The e�ect of tutorials on user exper-
tise with spoken dialogue systems. In Proc. of the In-
ternational Conference on Spoken Language Process-
ing, ICSLP98.

E. Levin, R. Pieraccini, W. Eckert, G. Di Fabbrizio, and
S. Narayanan. 1999. Spoken language dialogue: From
theory to practice. In Proc. IEEE Workshop on Au-
tomatic Speech Recognition and Understanding, AS-
RUU99.

E. Levin, R. Pieraccini, and W. Eckert. 2000. A stochas-
tic model of human machine interaction for learning
dialog strategies. IEEE Transactions on Speech and
Audio Processing, 8(1):11{23.

D. J. Litman and S. Pan. 2000. Predicting and adapting
to poor speech recognition in a spoken dialogue sys-
tem. In Proc. of the Seventeenth National Conference
on Arti�cial Intelligence, AAAI-2000.

Y. Niimi and Y. Kobayashi. 1996. A dialog control strat-
egy based on the reliability of speech recognition. In
Proc. of the International Symposium on Spoken Dia-
logue, pages 157{160.

A. Sanderman, J. Sturm, E. den Os, L. Boves, and
A. Cremers. 1998. Evaluation of the dutchtrain
timetable information system developed in the arise
project. In Interactive Voice Technology for Telecom-
munications Applications, IVTTA, pages 91{96.

S. Singh, M. S. Kearns, D. J. Litman, and M. A. Walker.
1999. Reinforcement learning for spoken dialogue sys-
tems. In Proc. NIPS99.

S. B. Singh, M. S. Kearns, D. J. Litman, and
M. A. Walker. 2000. Empirical evaluation of a rein-
forcement learning spoken dialogue system. In Proc.
of the Seventeenth National Conference on Arti�cial
Intelligence, AAAI-2000.

R. S. Sutton. 1991. Planning by incremental dynamic
programming. In Proc. Ninth Conference on Machine
Learning, pages 353{357.

M. A. Walker, J. C. Fromer, and S. Narayanan. 1998.
Learning optimal dialogue strategies: A case study of
a spoken dialogue agent for email. In Proc. of the 36th
Annual Meeting of the Association of Computational
Linguistics, COLING/ACL 98, pages 1345{1352.


