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Abstract

Since most previous works for HMM-based tag-
ging consider only part-of-speech information in
contexts, their models cannot utilize lexical in-
formation which is crucial for resolving some
morphological ambiguity. In this paper we in-
troduce uniformly lexicalized HMMs for part-
of-speech tagging in both English and Korean.
The lexicalized models use a simpli�ed back-o�
smoothing technique to overcome data sparse-
ness. In experiments, lexicalized models achieve
higher accuracy than non-lexicalized models
and the back-o� smoothing method mitigates
data sparseness better than simple smoothing
methods.

1 Introduction

Part-of-speech(POS) tagging is a process in
which a proper POS tag is assigned to each word
in raw texts. Even though morphologically am-
biguous words have more than one POS tag,
they belong to just one tag in a context. To
resolve such ambiguity, taggers have to consult
various sources of information such as lexical
preferences (e.g. without consulting context,
table is more probably a noun than a verb or
an adjective), tag n-gram contexts (e.g. after a
non-possessive pronoun, table is more probably
a verb than a noun or an adjective, as in they ta-
ble an amendment), word n-gram contexts (e.g.
before lamp, table is more probably an adjective
than a noun or a verb, as in I need a table lamp),
and so on(Lee et al., 1999).
However, most previous HMM-based tag-

gers consider only POS information in con-
texts, and so they cannot capture lexical infor-
mation which is necessary for resolving some
morphological ambiguity. Some recent works
have reported that tagging accuracy could
be improved by using lexical information in

their models such as the transformation-based
patch rules(Brill, 1994), the maximum entropy
model(Ratnaparkhi, 1996), the statistical lex-
ical rules(Lee et al., 1999), the HMM consid-
ering multi-words(Kim, 1996), the selectively
lexicalized HMM(Kim et al., 1999), and so on.
In the previous works(Kim, 1996)(Kim et al.,
1999), however, their HMMs were lexicalized se-
lectively and restrictively.
In this paper we propose a method of uni-

formly lexicalizing the standard HMM for part-
of-speech tagging in both English and Korean.
Because the sparse-data problem is more seri-
ous in lexicalized models than in the standard
model, a simpli�ed version of the well-known
back-o� smoothing method is used to overcome
the problem. For experiments, the Brown cor-
pus(Francis, 1982) is used for English tagging
and the KUNLP corpus(Lee et al., 1999) is
used for Korean tagging. The experimental re-
sults show that lexicalized models perform bet-
ter than non-lexicalized models and the simpli-
�ed back-o� smoothing technique can mitigate
data sparseness better than simple smoothing
techniques.

2 The \standard" HMM

We basically follow the notation of (Charniak
et al., 1993) to describe Bayesian models. In
this paper, we assume that fw1; w2; : : : ; w!g is
a set of words, ft1; t2; : : : ; t�g is a set of POS
tags, a sequence of random variables W1;n =
W1W2 : : :Wn is a sentence of n words, and a
sequence of random variables T1;n = T1T2 : : : Tn
is a sequence of n POS tags. Because each of
random variables W can take as its value any
of the words in the vocabulary, we denote the
value of Wi by wi and a particular sequence of
values for Wi;j (i � j) by wi;j. In a similar way,
we denote the value of Ti by ti and a particular



sequence of values for Ti;j (i � j) by ti;j. For
generality, terms wi;j and ti;j (i > j) are de�ned
as being empty.
The purpose of Bayesian models for POS tag-

ging is to �nd the most likely sequence of POS
tags for a given sequence of words, as follows:

T (w1;n) = argmax
t1;n

Pr(T1;n = t1;n j W1;n = w1;n)

Because reference to the random variables
themselves can be omitted, the above equation
becomes:

T (w1;n) = argmax
t1;n

Pr(t1;n j w1;n) (1)

Now, Eqn. 1 is transformed into Eqn. 2 since
Pr(w1;n) is constant for all t1;n.

T (w1;n) = argmax
t1;n

Pr(t1;n; w1;n)

Pr(w1;n)

= argmax
t1;n

Pr(t1;n; w1;n) (2)

Then, the probability Pr(t1;n; w1;n) is broken
down into Eqn. 3 by using the chain rule.

Pr(t1;n; w1;n) =
nY
i=1

�
Pr(ti j t1;i�1; w1;i�1)
�Pr(wi j t1;i; w1;i�1)

�
(3)

Because it is diÆcult to compute Eqn. 3, the
standard HMM simpli�ed it by making a strict
Markov assumption to get a more tractable
form.

Pr(t1;n; w1;n) �
nY
i=1

�
Pr(ti j ti�K;i�1)
�Pr(wi j ti)

�
(4)

In the standard HMM, the probability of the
current tag ti depends on only the previous K
tags ti�K;i�1 and the probability of the cur-
rent word wi depends on only the current tag1.
Therefore, this model cannot consider lexical in-
formation in contexts.

3 Lexicalized HMMs

In English POS tagging, the tagging unit is a
word. On the contrary, Korean POS tagging
prefers a morpheme2.

1Usually, K is determined as 1 (bigram as in (Char-
niak et al., 1993)) or 2 (trigram as in (Merialdo, 1991)).

2The main reason is that the number of word-unit
tags is not �nite because Korean words can be freely
and newly formed by agglutinating morphemes(Lee et
al., 1999).

$/$

Flies/NNS Flies/VBZ

like/CS like/IN like/JJ like/VB

a/AT a/IN a/NN


ower/NN 
ower/VB

./.

$/$

Figure 1: A word-unit lattice of \Flies like a

ower ."

Figure 1 shows a word-unit lattice of an En-
glish sentence, \Flies like a 
ower.", where each
node has a word and its word-unit tag. Fig-
ure 2 shows a morpheme-unit lattice of a Ko-
rean sentence, \NeoNeun Hal Su issDa.", where
each node has a morpheme and its morpheme-
unit tag. In case of Korean, transitions across
a word boundary, which are depicted by a solid
line, are distinguished from transitions within a
word, which are depicted by a dotted line. In
both cases, sequences connected by bold lines
indicate the most likely sequences.

3.1 Word-unit models

Lexicalized HMMs for word-unit tagging are de-
�ned by making a less strict Markov assump-
tion, as follows:

�(T(K;J);W(L;I)) j= Pr(t1;n; w1;n)

�
nY
i=1

�
Pr(ti j ti�K;i�1; wi�J;i�1)
�Pr(wi j ti�L;i; wi�I;i�1)

�
(5)

In models �(T(K;J);W(L;I)), the probability of
the current tag ti depends on both the previ-
ous K tags ti�K;i�1 and the previous J words
wi�J;i�1 and the probability of the current word
wi depends on the current tag and the previous
L tags ti�L;i and the previous I words wi�I;i�1.
So, they can consider lexical information. In ex-
periments, we set K as 1 or 2, J as 0 or K, L as
1 or 2, and I as 0 or L. If J and I are zero, the
above models are non-lexicalized models. Oth-
erwise, they are lexicalized models.



$/$

Neo/NNP Neol/VV

Neun/PX Neun/EFD

Hal/NNCG Hal/NNBU Ha/VV Ha/VX

l/EFD

Su/NNCG Su/NNBG

iss/VJ iss/VX

Da/EFF Da/EFC

./SS.

$/$

Figure 2: A morpheme-unit lattice of \NeoNeun
Hal Su issDa."(= You can do it.)

In a lexicalized model �(T(2;2);W(2;2)), for ex-
ample, the probability of a node \a/AT" of the
most likely sequence in Figure 1 is calculated as
follows:

Pr(AT j NNS; V B; F lies; like)
�Pr(a j AT;NNS; V B; F lies; like)

3.2 Morpheme-unit models

Bayesian models for morpheme-unit tagging
�nd the most likely sequence of morphemes
and corresponding tags for a given sequence of
words, as follows:

T (w1;n) = argmax
c1;u;m1;u

Pr(c1;u;m1;u j w1;n) (6)

� argmax
c1;u;m1;u

Pr(c1;u; p2;u;m1;u) (7)

In the above equations, u(� n) denotes the
number of morphemes in a sequence corre-
sponding the given word sequence, c denotes
a morpheme-unit tag, m denotes a morpheme,
and p denotes a type of transition from the pre-
vious tag to the current tag. p can have one of
two values, \#" denoting a transition across a
word boundary and \+" denoting a transition
within a word. Because it is diÆcult to calculate
Eqn. 6, the word sequence term w1;n is usually
ignored as in Eqn. 7. Instead, we introduce p in

Eqn. 7 to consider word-spacing3.
The probability Pr(c1;u; p2;u;m1;u) is also bro-

ken down into Eqn. 8 by using the chain rule.

Pr(c1;u; p2;u;m1;u)

=
uY
i=1

�
Pr(ci; pi j c1;i�1; p2;i�1;m1;i�1)
�Pr(mi j c1;i; p2;i;m1;i�1)

�
(8)

Because Eqn. 8 is not easy to compute, it is
simpli�ed by making a Markov assumption to
get a more tractable form.
In a similar way to the case of word-unit tag-

ging, lexicalized HMMs for morpheme-unit tag-
ging are de�ned by making a less strict Markov
assumption, as follows:

�(C[s](K;J);M[s](L;I)) j= Pr(c1;u; p2;u;m1;u)

�
uY
i=1

Pr(ci[; pi] j
ci�K;i�1[; pi�K+1;i�1];
mi�J;i�1

)

�Pr(mi j ci�L;i[; pi�L+1;i];mi�I;i�1)
(9)

In models �(C[s](K;J);M[s](L;I)), the probabil-
ity of the current morpheme tag ci depends
on both the previous K tags ci�K;i�1 (option-
ally, the types of their transition pi�K+1;i�1)
and the previous J morphemes mi�J;i�1 and
the probability of the current morpheme mi de-
pends on the current tag and the previous L
tags ci�L;i (optionally, the types of their tran-
sition pi�L+1;i) and the previous I morphemes
mi�I;i�1. So, they can also consider lexical in-
formation.
In a lexicalized model �(Cs(2;2);M(2;2)) where

word-spacing is considered only in the tag prob-
abilities, for example, the probability of a node
\Su/NNBG" of the most likely sequence in Fig-
ure 2 is calculated as follows:

Pr(NNBG;# j V V;EFD;+;Ha ; l)
�Pr(Su j V V;EFD;NNBG;Ha ; l)

3.3 Parameter estimation

In supervised learning, the simpliest parameter
estimation is the maximum likelihood(ML) es-
timation(Duda et al., 1973) which maximizes
the probability of a training set. The ML esti-
mate of tag (K+1)-gram probability, PrML(ti j
ti�K;i�1), is calculated as follows:

Pr
ML

(ti j ti�K;i�1) =
Fq(ti�K;i)

Fq(ti�K;i�1)
(10)

3Most previous HMM-based Korean taggers except
(Kim et al., 1998) did not consider word-spacing.



where the function Fq(x) returns the frequency
of x in the training set. When using the max-
imum likelihood estimation, data sparseness is
more serious in lexicalized models than in non-
lexicalized models because the former has even
more parameters than the latter.
In (Chen, 1996), where various smoothing

techniques was tested for a language model
by using the perplexity measure, a back-o�
smoothing(Katz, 1987) is said to perform bet-
ter on a small traning set than other methods.
In the back-o� smoothing, the smoothed prob-
ability of tag (K+1)-gram PrSBO(ti j ti�K;i�1)
is calculated as follows:

Pr
SBO

(ti j ti�K;i�1) =�
dr PrML(ti j ti�K;i�1) if r > 0
�(ti�K;i�1) PrSBO(ti j ti�K+1;i�1)if r = 0

(11)

where r = Fq(ti�K;i); r
� = (r + 1)

nr+1

nr

dr =
r�

r
� (r+1)�nr+1

n1

1� (r+1)�nr+1
n1

nr denotes the number of (K+1)-gram whose
frequency is r, and the coeÆcient dr is called
the discount ratio, which re
ects the Good-
Turing estimate(Good, 1953)4. Eqn. 11 means
that PrSBO(ti j ti�K;i�1) is under-etimated by
dr than its maximum likelihood estimate, if
r > 0, or is backed o� by its smoothing term
PrSBO(ti j ti�K+1;i�1) in proportion to the
value of the function �(ti�K;i�1) of its condi-
tional term ti�K;i�1, if r = 0.
However, because Eqn. 11 requires compli-

cated computation in �(ti�K;i�1), we simplify
it to get a function of the frequency of a condi-
tional term, as follows:

�(Fq(ti�K;i�1) = f) =

��
E[Fq(ti�K;i�1) = f ]P
1

f=0 E[Fq(ti�K;i�1) = f ]
(12)

where � = 1�
X

ti�K;i ;r>0

Pr
SBO

(tijti�K;i�1);

E[Fq(ti�K;i�1) = f ] =X
ti�K+1;i;r=0;F q(ti�K;i�1)=f

Pr
SBO

(tijti�K+1;i�1)

In Eqn. 12, the range of f is bucketed into 7
4Katz said that dr = 1 if r > 5.

regions such as f = 0; 1; 2; 3; 4; 5 and f � 6 since
it is also diÆcult to compute this equation for
all possible values of f .
Using the formalism of our simpli�ed back-o�

smoothing, each of probabilities whose ML es-
timate is zero is backed o� by its corresponding
smoothing term. In experiments, the smooth-
ing terms of PrSBO(ti j ti�K;i�1; wi�J;i�1) are
determined as follows:8>>>><
>>>>:

PrSBO(ti j
ti�K+1;i�1;

wi�J+1;i�1
) if K � 1; J > 1

PrSBO(ti j ti�K;i�1) if K � 1; J = 1
PrSBO(ti j ti�K+1;i�1) if K � 1; J = 0
PrAD(ti) if K = 0; J = 0

(13)

Also, the smoothing terms of PrSBO(wi j
ti�L;i; wi�I;i�1) are determined as follows:

8>>>>>><
>>>>>>:

PrSBO(wi j
ti�L+1;i;

wi�I+1;i�1
) if L � 1; I > 1

PrSBO(wi j ti�L;i) if L � 1; I = 1
PrSBO(wi j ti�L+1;i) if L � 1; I = 0
PrSBO(wi) if L = 0; I = 0
PrAD(wi) if L = �1; I = 0

(14)

In Eqn. 13 and 14, the smoothing term of a
unigram probability is calculated by using an
additive smoothing with Æ = 10�2 which is cho-
sen through experiments. The equation for the
additive smoothing(Chen, 1996) is as follows:

Pr
AD

(ti j ti�K;i�1) =
Fq(ti�K;i) + ÆP
ti
(Fq(ti�K;i) + Æ)

(15)

In a similar way, the smoothing terms of param-
eters in Eqn. 9 are determined.

3.4 Model decoding

From the viewpoint of the lattice structure, the
problem of POS tagging can be regarded as the
problem of �nding the most likely path from the
start node ($/$) to the end node ($/$). The
Viterbi search algorithm(Forney, 1973), which
has been used for HMM decoding, can be e�ec-
tively applied to this task just with slight mod-
i�cation5.

4 Experiments

4.1 Environment

In experiments, the Brown corpus is used for
English POS tagging and the KUNLP corpus

5Such modi�cation is explained in detail in (Lee,
1999).



Brown KUNLP

NW 1,113,189 167,115
NS 53,885 15,211
NT 82 65
DA 1.64 3.41
RUA 61.54% 26.72%

NW Number of words. NS Number of sen-
tences. NT Number of tags (morpheme-unit
tag for KUNLP). DA Degree of ambiguity
(i.e. the number of tags per word). RUA
Ratio of unambiguous words.

Table 1: Information about the Brown corpus
and the KUNLP corpus

Inside-test Outside-test

ML 95.57 94.97

AD(Æ = 1) 93.92 93.02
AD(Æ = 10�1) 95.02 94.79
AD(Æ = 10�2) 95.42 95.08

AD(Æ = 10�3) 95.55 95.05
AD(Æ = 10�4) 95.57 94.98
AD(Æ = 10�5) 95.57 94.94
AD(Æ = 10�6) 95.57 94.91
AD(Æ = 10�7) 95.57 94.89
AD(Æ = 10�8) 95.57 94.87

SBO 95.55 95.25

MLMaximum likelihood estimate (with sim-
ple smoothing). AD Additive smoothing.
SBO Simpli�ed back-o� smoothing.

Table 2: Tagging accuracy of �(C(1:0);M(0:0))

for Korean POS tagging. Table 1 shows some
information about both corpora6. Each of them
was segmented into two parts, the training set
of 90% and the test set of 10%, in the way that
each sentence in the test set was extracted from
every 10 sentence. According to Table 1, Ko-
rean is said to be more diÆcult to disambiguate
than English.
We assume \closed" vocabulary for English

and \open" vocabulary for Korean since we do
not have any English morphological analyzer
consistent with the Brown corpus. Therefore,
for morphological analysis of English, we just

6Note that some sentences, which have composite
tags(such as \HV+TO" in \hafta"), \ILLEGAL" tag,
or \NIL" tag, were removed from the Brown corpus and
tags with \*"(not) such as \BEZ*" were replaced by cor-
responding tags without \*" such as \BEZ".
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Figure 3: Results of English tagging



looked up the dictionary tailored to the Brown
corpus. In case of Korean, we have used a Ko-
rean morphological analyzer(Lee, 1999) which
is consistent with the KUNLP corpus.

4.2 Results and evaluation

Table 2 shows the tagging accuracy of the sim-
plest HMM, �(C(1:0);M(0:0)), for Korean tag-
ging, according to various smoothing meth-
ods7. Note that ML denotes a simple smooth-
ing method where ML estimates with prob-
ability less than 10�9 are smoothed and re-
placed by 10�9. Because, in the outside-test,
AD(Æ = 10�2) performs better than ML and
AD(Æ 6= 10�2), we use Æ = 10�2 in our ad-
ditive smoothing. According to Table 2, SBO
performs well even in the simplest HMM.
Figure 3 illustrates 4 graphs about the results

of English tagging: (a) the number of param-
eters in each model, (b) the accuracy of each
model for the training set, (c) the accuracy of
each model for the test set, and (d) the accuracy
of each model with SBO for both training and
test set. Here, labels in x-axis specify models
in the way that K;J

L;I
denotes �(T(K;J);W(L;I)).

Therefore, the �rst 6 models are non-lexicalized
models and the others are lexicalized models.
Actually, SBO uses more parameters than

others. The three smoothing methods, ML,
AD, SBO, perform well for the training set
since the inside-tests usually have little data
sparseness. On the other hand, for the un-
seen test set, the simple methods, ML and
AD, cannot mitigate the data sparseness prob-
lem, especially in sophisticated models. How-
ever, our method SBO can overcome the prob-
lem, as shown in Figure 3(c). Also, we can
see in Figure 3(d) that some lexicalized mod-
els achieve higher accuracy than non-lexicalized
models. We can say that the best lexicalized
model, �(T(1;1);W(1;1)) using SBO, improved
the simple bigram model, �(T(1;0);W(0;0)) us-
ing SBO, from 97.19% to 97.87% (the error re-
duction ratio of 24.20%). Interestingly, some
lexicalized models (such as �(T(1;1);W(0;0)) and
�(T(1;1);W(1;0))), which have a relatively small
number of parameters, perform better than
non-lexicalized models in the case of outside-
tests using SBO. Unfortunately, we cannot ex-

7Inside-test means an experiment on the training set
itself and outside-test an experiment on the test set.
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(b) Considering word-spacing
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Figure 4: Results of Korean tagging

pect the result of outside-tests from that of
inside-tests because there is no direct relation
between them.

Figure 4 includes 2 graphs about the re-
sults of Korean tagging: (a) the outside ac-
curacy of each model �(C(K;J);M(L;I)) and
(b) the outside accuracy of each model
�(C[s](K;J);M[s](L;I)) with/without considering
word-spacing when using SBO. Here, labels in
x-axis specify models in the way that K;J

L;I
de-

notes �(C[s](K;J);M[s](L;I)) and, for example,
Cs;M in (b) denotes �(Cs(K;J);M(L;I)).

As shown in Figure 4, the simple meth-
ods, ML and AD, cannot mitigate that sparse-
data problem, but our method SBO can over-
come it. Also, some lexicalized models per-
form better than non-lexicalized models. On
the other hand, considering word-spacing gives
good clues to the models sometimes, but yet
we cannot say what is the best way. From
the experimental results, we can say that the
best model, �(C(2;2);M(2;2)) using SBO, im-
proved the previous models, �(C(1;0);M(0;0)) us-



ing ML(Lee, 1995), and �(Cs(1;0);M(0;0)) using
ML(Kim et al., 1998), from 94.97% and 95.05%
to 96.98% (the error reduction ratio of 39.95%
and 38.99%) respectively.

5 Conclusion

We have presented uniformly lexicalized HMMs
for POS tagging of English and Korean. In
the models, data sparseness was e�ectively mit-
igated by using our simpli�ed back-o� smooth-
ing. From the experiments, we have observed
that lexical information is useful for POS tag-
ging in HMMs, as is in other models, and
our lexicalized models improved non-lexicalized
models by the error reduction ratio of 24.20%
(in English tagging) and 39.95% (in Korean tag-
ging).
Generally, the uniform extension of models

requires rapid increase of parameters, and hence
su�ers from large storage and sparse data. Re-
cently in many areas where HMMs are used,
many e�orts to extend models non-uniformly
have been made, sometimes resulting in notice-
able improvement. For this reason, we are try-
ing to transform our uniform models into non-
uniform models, which may be more e�ective
in terms of both space complexity and reliable
estimation of paremeters, without loss of accu-
racy.
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