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Abstract

Srinivas (97) enriches traditional
morpho-syntactic POS tagging with
syntactic information by introducing
Supertags. Unfortunately, words are
assigned on average a much higher number
of  Supertags  than traditional POS. In this
paper, we develop the notion of Hypertag,
first introduced in Kinyon (00a) and in
Kinyon (00b), which allows to factor the
information contained in several Supertags
into a single structure and to encode
functional information in a systematic
manner. We show why other possible
solutions based on mathematical properties
of trees are unsatisfactory and also discuss
the practical usefulness of this approach.

Introduction

As a first step prior to parsing, traditional  Part
of Speech  (POS) tagging assigns limited
morpho-syntactic information to lexical items.
These labels can be more or less fine-grained
depending on the tagset , but syntactic
information is often absent or limited. Also, most
lexical items are assigned several POS. Although
lexical ambiguities are dealt with by POS taggers,
either in a rule-based or in probabilistic manner, it
is useful to delay this decision at a further parsing
step (e.g. Giguet (98) shows that knowing
constituent boundaries is crucial for solving
lexical ambiguity correctly). In order to do so, it
would help to be able to encode several POS into
one compact representation.

In order to assign richer syntactic information
to lexical items Joshi & Srinivas (94) and
Srinivas (97) introduce the notion of Supertags,
developed within the framework of Tree
Adjoining Grammars (TAG). The idea behind
Supertags is to assign to each word in a sentence,
instead of a traditional POS,  an "elementary
tree", which constitutes a primitive syntactic
structure within the TAG framework. A
supertagged text can then be inputed to a parser
or shallow parser, thus alleviating the task of the
parser. Several problems remain though:

• Even when no lexical ambiguity occurs, each
word can anchor several trees (several hundreds
for some verbs)1. On average for English a word
is associated with 1.5 POS and with 9 supertags
(Joshi (99)). One common solution to the
problem is to only retain the "best" supertag for
each word, or eventually the 3 best supertags for
each word, but then early decision has an adverse
effect on the quality of parsing if the wrong
supertag(s) have been kept : one typically obtains
between 75% and 92% accuracy when
supertagging, depending on the type of text being
supertagged and on the technique used) (cf
Srinivas (97), Chen & al (99), Srinivas & Joshi
(99)). This means that it may be the case that
every word in 4 will be assigned the wrong
supertag, whereas typical POS taggers usually
achieve an accuracy above 95%.

• Supertagged texts rely heavily on the TAG
framework and therefore may be difficult to
exploit without being familiar with this
formalism.
• Supertagged texts are difficult to read and
thus difficult to annotate manually.
• Some structural information contained in
Supertags is redundant
• Some information is missing, especially with
respect to syntactic functions2.
So our idea is to investigate how  supertags can
be underspecified so that instead of associating a
set of supertags to each word, one could associate
one single structure, which we call hypertag, and
which contains the same information as a set of
supertags as well as functional information

Our practical goal is fourfolds :
a) delaying decision for parsing
b) obtaining a compact and readable
representation, which can be manually annotated

                                                     
1 See Barrier & al. (00) for precise data for French, using
the FTAG wide-coverage grammar developped at
TALANA, University of Paris 7.
2 The usefulness of functional information in POS tagging
has also been discussed within the reductionist paradigm
(cf Voutilainen & Tapanainen (93)).



as a step towards building a treebank for French
(cf Abeillé & al. (00a), Clément & Kinyon (00)).
c) extracting linguistic information on a large
scale such as lexical preferences for verb
subcategorization frames. (cf Kinyon (99a))
d) Building an efficient, but nonetheless
psycholinguistically motivated, processing model
for TAGs (cf Kinyon (99b))

 Thus, in addition of being well-defined
computational objects (Point a), hypertags should
be "readable" (point b) and also motivated from a
linguistic point of view (Points c & d).

 In the first part of this paper, we briefly
introduce the LTAG framework and give
examples of supertags. In a second part, we
investigate several potential ways to underspecify
supertags, and show why these solutions are
unsatisfactory. In a third part, we explain the
solution we have adopted, building up on the
notion of MetaGrammar introduced by Candito
(96) and Candito (99). Finally, we discuss how
this approach can be used in practice, and why it
is interesting for frameworks other than LTAGs.

1 Brief Overview of LTAGs

A LTAG consists of a finite set of
elementary trees of finite depth. Each
elementary tree must “anchor” one or more
lexical item(s). The principal anchor is called
“head”, other anchors are called “co-heads”. All
leaves in elementary trees are either “anchor”,
“foot node” (noted *) or “substitution node”
(noted ↓).. These trees are of 2 types : auxiliary
or initial 3. A tree has at most 1 foot-node. A tree
with a foot node is an auxiliary tree. Trees that
are not auxiliary are initial. Elementary trees
combine with 2 operations : substitution and
adjunction, but we won't develop this point since
it is orthogonal to our concern and refer to Joshi
(87) for more details. Morphosyntactic features
are encoded in atomic feature structures
associated to nodes in elementary trees, in order
to handle phenomena such as agreement.
Moreover, linguistic constraints on the well-
formedness of elementary trees have been
formulated :

• Predicate Argument Cooccurence Principle :
there must be a leaf node for each realized
argument of the head of an elementary tree.

                                                     
3 Traditionally initial trees are called α, and auxiliary trees
β

• Semantic consistency : No elementary tree is
semantically void
• Semantic minimality : an elementary tree
corresponds at most to one semantic unit

Figure 1 shows a non exhaustive set of
Supertags (i.e. elementary trees) which can be
assigned to "beats"4 , which is a verb in trees α1
(canonical tree),  α2 (object extraction), β1
(object relative) and β2 (subject relative) and a
noun in tree α3. So an LTAG can be seen as a
large dictionary, were in addition of traditional
POS, lexical entries are associated with several
structures encoding their morphological as well
as some of their syntactic properties, these
structures being very similar to small constituent
trees.

FIGURE 1 : some supertags for "beats"

2 Underspecifying Supertags

The idea of underspecifying constituent trees
(and thus elementary trees) is not new. Several
solutions have been proposed in the past. We will
now investigate how these solutions could
potentially be used to encode a set of supertags in
a compact manner.

2.1 Parse forest
 Since elementary trees are constituent

structures, one could represent a set of elementary
trees with a graph instead of a tree (cf. Tomita
(91)). This approach is not particularly interesting
though. For example, if one considers the trees
α1 and β1 from figure 1, it is obvious that they
hardly have any structural information in
common, not even the category of their root.
Therefore, representing these 2 structures in a
graph would not help. Moreover, packed

                                                     
4 For sake of readability, morphological features are not
shown.
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structures are notoriously difficult to manipulate
and yield unreadable output.

2.2 Logical formulae
With this approach, developped for instance in

Kallmeyer (99), a tree can be represented by a
logical formula, where each pair of nodes is either
in relation of dominance, or in relation of
precedance.  This allows to resort to 1st order
logic to represent a set of trees by
underspecifying dominance and/or precedence
relations . Unfortunately,  this yields an output
which is difficult to read. Also, the approach
relies only on mathematical properties of trees
(i.e. no linguistic motivations)

2.3 Linear types of trees
This approach, introduced in Srinivas (97),

used in other work (e.g. Halber (99))  is more
specific to TAGs. The idea is to relax  constraints
on the order of nodes in a tree as well as on
internal nodes. A linear type consists in a 7-tuple
<A,B,C,D,E,F,G> where A is the root of the tree,
B is the category of the anchor,  C is the lexical
anchor, D is a set of nodes which can receive an
adjunction, E is a set of co-anchors, F  a set of
nodes marked for substitution, and G a potential
foot node (or nil in case the tree is initial). In
addition,  elements of E and F are marked + if
they are to the left of the anchor, - if they are to
the right.

FIGURE 2 :
two trees with the same linear type

For example,  the tree NOdonneN1àN2 for
"Jean donne une pomme à Marie"  (J. gives an
apple to M.) and the tree N0donneàN2N1 for
"Jean donne à Marie une pomme" (J. gives M. an
apple) which are shown on Figure 2, yield the
unique linear type (a)

(a) <S,V,donne,{S,V,PP},{à+},{N0-,N1+,N2+}, nil>

(b) <S,V,gives,{S,V,PP}, {to+}, {N0-,N1+,N2+} ,nil>

This approach is robust, but not really
linguistic : it will allow to refer to trees that are
not initially in the grammar. For instance, the
linear type (b) will correctly allow the sentence
"John gives an apple to Mary", but also
incorrectly allow "*John gives to Mary an apple".

Moreover, linear types are not easily readable5.
Finally, trees that have more structural
differences than just the ordering of branches will
yield different linear types. So, the tree
N0giveN1toN2 (J. gives an apple to M.) yields
the linear type (b), whereas the tree N0giveN2N1
(J. gives M. an apple) yields a different linear
type (c), and thus both linear types should label
"gives". Therefore, it is impossible to label
"gives" with one unique linear type.

(c) <S,V,gives,{S,V}, {}, {N0-,N1+,N2+} ,nil>

2.4. Partition approach
This approach, which we have investigated,

consists in building equivalence classes to
partition the grammar, each lexical item then
anchors one class instead of a set of trees. But
building such a partition is prohibitively costly : a
wide coverage grammar for French contains
approx. 5000 elementary trees (cf Abeillé & al.
(99), (00b)), which means that we have 25000

possible subsets. Also, it does not work from a
linguistic point of view :

(a)  Quand Jean a brisé la glace  ?
 (When did J. break the ice ?)

(b)  Jean a brisé la glace  (J. broke the ice)

(c)  Quelle chaise Jean a brisé ce matin ?
 (Which chair did J. break this morning ?)

In (a) brisé potentially  anchors N0briseN1
(canonical transitive), WhN0brise (object
extraction) and N0BriseGlace (tree for idiom).
But in (b), we would like brisé  not to anchor
WhN0brise since there is no Wh element in the
sentence, therefore these three trees should not
belong to the same equivallence class : We can
have class A={N0briseN1,N0BriseGlace} and
ClassB={WhN0brise}. But then,   in (c), brisé
potentially anchors WhN0brise and N0briseN1
but not N0BriseGlace since glace does not appear
in the sentence. So N0VN1 and N0BriseGlace
should not be in the same equivalence class. This
hints that the only realistic partition of the
grammar would be the one were each class
contains only one tree, which is pretty useless.

4. Exploiting a MetaGrammar

Candito (96), (99) has developed a tool to
generate semi-automatically elementary trees She
use an additional layer of linguistic description,
called the metagrammar (MG), which imposes a
general organization for syntactic information in
a 3 dimensional hierarchy :
                                                     
5 This type of format was considered as a step towards
creating a treebank for French (cf Abeillé & al 00a), but
unfortunately proved impossible to manually annotate.
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• Dimension 1: initial subcategorization
• Dimension 2: redistribution of functions and

transitivity alternations
• Dimension 3: surface realization of

arguments, clause type and word order
Each terminal class in dimension 1 describes a

possible initial subcategorization (i.e. a tree
family). Each terminal class in dimension 2
describes a list of ordered redistributions of
functions (e.g. it allows to add an argument for
causatives). Finally, each terminal class in
dimension 3 represents the surface realization of a
(final) function (e.g. cliticized, extracted ...).

Each class in the hierarchy corresponds to the
partial description of a tree (cf. Rogers & Vijay-
Shanker (94)). An elementary tree is generated by
inheriting from one terminal class in dimension 1,
from one terminal class in dimension 2 and from
n terminal classes in dimension 3 (were n is the
number of arguments of the elementary tree). 6

The hierarchy is partially handwritten. Then
crossing of linguistic phenomena (e.g. passive +
extraction), terminal classes, and from there
elementary trees are generated automatically off
line. This allows to obtain a grammar which can
then be used to parse online. When the grammar
is generated, it is straight forward to keep track of
the terminal classes each elementary tree
inherited from : Figure 3 shows seven elementary
trees which can supertag "donne" (gives), as well
as the inheritance patterns7 associated to each of
these supertags. All the examples below will refer
to this figure.

The key idea then is to represent a set of
elementary trees by a disjunction for each
dimension of the hierarchy. Therefore, a hypertag
consists in 3 disjunctions (one for dimension 1,
one for dimension 2 and one for dimension 3).
The cross-product of the disjunctions can then be
performed automatically and from there the set of
elementary trees referred to by the hypertag will

                                                     
6 The idea to use the MG to obtain a compact
representation of a set of SuperTags was briefly sketched
in Candito (99) and Abeillé & al. (99), by resorting to
MetaFeatures, but the approach here is slightly different
since only information about the classes in the  hierarchy is
used .
7 We call inheritance patterns the structure used to store all
the terminal classes a tree has inherited from.
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 FIGURE 3 : SuperTags and associated
inheritance patterns

be automatically retrieved  We will now illustrate
this, first by showing how hypertags are built, and
then by explaining how a set of trees (and thus of
supertags) is retrieved from the information
contained in a hypertag.

4.1 Building hypertags : a detailed example
Let us start with a simple exemple were  we

want "donner" to be assigned the supertags α1 (J.
donne une pomme à M./ J. gives an apple to M.)
and  α2 (J donne à M. une pomme/J. gives M. an



apple). On figure 3, one notices that these 2 trees
inherited exactly from the same classes : the
relative order of the two complements is left
unspecified in the hierarchy, thus one same
description will yield both trees. In this case, the
hypertag will thus simply be identical to the
inheritance pattern of these 2 trees :

Let's now add tree α3 (J. donne une pomme /
J. gives an apple) to this hypertag. This tree had
its second object declared empty in dimension 2
(thus it inherits only two terminal classes from
dimension 3, since it has only 2 arguments
realized). The hypertag now becomes8 :

Let's now add the tree β4 for the object
relative to this hypertag. This tree has been
generated by inheriting in dimension 3 from the
terminal class "nominal inverted" for its subject
and from the class "relativized object" for its
object. This information is simply added in the
hypertag, which now becomes :

Also note that for this last example the
structural properties of β4 were quite different
than those of α1, α2 and α3 (for instance, it has a
root of category N and not S). But this has little
importance since a generalization is made in
linguistic terms without explicitly relying on the
shape of trees.

It is also clear that hypertags are built in a
monotonic fashion : each supertag added to a
hypertag just adds information. Hypertags allow
to label each word with a unique structure9. and
                                                     
8 What has been added to a supertag is shown in bold
characters.
9 We presented a simple example for sake of clarity, but
traditional POS ambiguity is handled in the same way,
except that disjunctions are then added in dimension 1 as

contain rich syntactic and functional information
about lexical items (For our example here the
word donne/gives). They are linguistically
motivated, but also yield a readable output. They
can be enriched or modified by human annotators
or easily fed to a parser or shallow parser.

4.2  Retrieving information from hypertags
Retrieving information from hypertags is

pretty straightforward. For example, to recover
the set of supertags contained in a hypertag, one
just needs to perform the cross-product between
the 3 dimensions of the hypertag, as shown on
Figure 4, in order to obtain all inheritance
patterns. These inheritance patterns are then
matched with the inheritance patterns contained
in the grammar (i.e. the right column in Figure 3)
to recover all the appropriate supertags.
Inheritance patterns which are generated but don't
match any existing trees in the grammar are
simply discarded.

We observe that the 4 supertags α1, α2 and
α3 and β4 which we had  explicitly added to the
hypertag in 4.1  are correctly retrieved. But also,
the supertags β5, β6 and β7 are retrieved, which
we did not explicitly intend since we never added
them to the hypertag. But if a word can anchor
the 4 first trees, then it will also necessarily
anchor the three last ones : for instance we had
added the canonical tree without a second object
realized  into the hypertag (tree α2 ), as well as
the tree for the object relative with a second
object realized realized (tree β4 ), so it is
expected that the tree for the object relative
without a second object realized can be retrieved
from the hypertag (tree β6) even though we never
explicitly added it. In fact, the automatic crossing
of disjunctions in the hypertag insures
consistency.

Also note that no particular mechanism is
needed for dimension 3 to handle arguments
which are not realized : if àObj-empty is inherited
from dimension 2, then only subject and object
will inherit from dimension three (since only
arguments that are realized  inherit from that
dimension when the grammar is generated).

Information can be modified at runtime in a
hypertag, depending on the context of lexical
items. For example "relativized-object" can be
suppressed in dimension 2  from the hypertag
shown on Figure 4, in case no Wh element is
encountered in a sentence. Then, the  correct set
of supertags will still be retrieved from the
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hypertag by automatic crossing (that is, trees α1,
α2 and α3), since the other inheritance patterns
generated won't refer to any tree in the grammar
(here, no tree inherits in dimension 3
subject:inverted-nominal, without inheriting also
object: relativized-object)

4.3  Practical use
We have seen that an LTAG can be seen as a

dictionary, in which each lexical entry is
associated to a set of elementary trees. With
hypertags, each lexical entry is now paired with
one unique structure. Therefore, automatically
hypertagging a text is easy and involves a simple
dictionary lookup. The equivalent of finding the
"right" supertag for each lexical item in a text (i.e.
reducing ambiguity) then consists in dynamically
removing information from hypertags (i.e.
suppressing elements in disjunctions). This can be
achieved by specific rules, which are currently
being developed. The resulting output can then
easily be manually annotated in order to build a
gold-standard corpus : manually removing
linguistically relevant pieces from information in
a disjunction from a single structure is simpler
than dealing with a set of trees. In addition of
obvious advantages in terms of display (tree
structures, especially when presented in a non
graphical way, are unreadable), the task itself
becomes easier because topological problems are
solved automatically:  annotators need just
answer questions such as "does this verb have an

extracted object ?", "is the subject of this verb
inverted ?" to decide which terminal classe(s)
must be kept10 .We believe that these questions
are easier to answer than "Which of these trees
have a node N1 marked wh+ at address 1.1 ?"
(for an extracted object).

Moreover, supertagged text are difficult to use
outside of an LTAG framework, contrary to
hypertagged texts, which contain higher level
general linguistic information. An example would
be searching and extracting syntactic data on a
large scale : suppose one wants to extract all the
occurrences where a given verb V has a
relativized object. To do so on a hypertagged text
simply involves performing a "grep" on all lines
containing  a V whose hypertag contains
dimension 3 : objet:relativized-object , without
knowing anything about the LTAG framework.
Performing the same task with a supertagged text
involves knowing how LTAGs encode relativized
objects in elementary trees and scanning potential
trees associated with V. Another example would
be using a hypertagged text as an input to a parser
based on a framework other than LTAGs : for
instance, information in hypertags could be used
by an LFG parser to constrain the construction of
an F-structure, whereas it's unclear how this could
be achieved with supertags.

                                                     
10 This of course implies that one must be very careful in
choosing evocative names for  terminal classes.
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FIGURE 4 : Retrieving Inheritance patterns and Supertags
from a Hypertag



The need to "featurize" Supertags, in order to
pack ambiguity and add functional information
has also been discussed for text generation in
Danlos (98) and more recently in Srinivas &
Rambow (00). It would be interesting to compare
their approach with that of hypertags.

Conclusion

We have introduced the notion of Hypertags.
Hypertags allow to assign one unique structure to
lexical items. Moreover this structure is readable,
linguistically and computationally  motivated,
and contains much richer syntactic information
than traditional POS, thus a hypertagger would be
a good candidate as the front end of a parser. It
allows in practice to build large annotated
resources which are useful for extracting
syntactic information on a large scale, without
being dependant on a given grammatical
formalism.

We have shown how hypertags are built, how
information can be retrieved from them. Further
work will investigate how hypertags can be
combined directly.
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