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Abstract ston et al., 1997). In order to achieve this, an ef-

gfective method for integration of content from dif-

Multi | interf ire effecti ing an :
ultimodal interfaces require effective parsing %‘erent modes is needed. Johnston (1998b) shows

understanding of utterances whose content is di
tributed across multiple input modes. Johnston 199
presents an approach in which strategies for mul
timodal integration are stated declaratively using

unification-based grammar that is used by a multi

ow techniques from natural language processing
unification-based grammars and chart parsing) can
e adapted to support parsing and interpretation of
_utterances distributed over multiple modes. In that

dimensional chart parser to compose inputs. Thi@PProach, speech and gesture recognition produce

approach is highly expressive and supports a broaBest lists of recognition results which are assigned
PP ghy &xp Pp typed feature structure representations (Carpenter,

4992) and passed to a multidimensional chart parser
that uses a multimodal unification-based grammar to

subject to significant concerns in terms of computa- ; . . .
tional complexity, and complicates selection amongcomblne the representations assigned to the input el-

alternative multimodal interpretations of the input. €MeNts. Possible multimodal interpretations are then
In this paper, we present an alternative approac anked and the optimal interpretation is passed on

in which multimodal parsing and understanding arel®” €xecution. This approach overcomes many of
achieved using a weighted finite-state device whicﬁhe limitations of previous approaches to multimodal

; i 1980; Neal and Shapiro
takes speech and gesture streams as inputs and olfjiégration such as (Bolt, ) '
puts their joint interpretation. This approach is sig-+291) (See (Johnston et al., 1997)(p. 282)). It sup-

nificantly more efficient, enables tight-coupling of PO speech with multiple gestures, visual parsing
multimodal understanding with speech recognition,Of unimodal gestures, and its declarative nature fa-

and provides a general probabilistic framework forCilitates rapid prototyping and iterative development
multimodal ambiguity resolution. of multimodal systems. Also, the unification-based

approach allows for mutual compensation of recog-
1 Introduction nition errors in the individual modalities (Oviatt,

. : . 1999).

Multimodal interfaces are systems that allow input
and/or output to be conveyed over multiple different However, the unification-based approach does not
channels such as speech, graphics, and gesture. Thajow for tight-coupling of multimodal parsing with
enable more natural and effective interaction sincespeech and gesture recognition. Compensation ef-
different kinds of content can be conveyed in thefects are dependent on the correct answer appear-
modes to which they are best suited (Oviatt, 1997)ing in the n-best list of interpretations assigned to
Our specific concern here is with multimodal inter- each mode. Multimodal parsing cannot directly in-
faces supporting input by speech, pen, and touch, bdluence the progress of speech or gesture recognition.
the approach we describe has far broader applicabilFhe multidimensional parsing approach is also sub-
ity. These interfaces stand to play a critical role in theject to significant concerns in terms of computational
ongoing migration of interaction from the desktop complexity. In the worst case, the multidimensional
to wireless portable computing devices (PDAs, next-parsing algorithm (Johnston, 1998b) (p. 626) is ex-
generation phones) that offer limited screen real esponential with respect to the number of input ele-
tate, and other keyboard-less platforms such as pulments. Also this approach does not provide a nat-
lic information kiosks. ural framework for combining the probabilities of

To realize their full potential, multimodal inter- speech and gesture events in order to select among
faces need to support not just input from multiple multiple competing multimodal interpretations. Wu
modes, but synergistic multimodal utterances opti-et.al. (1999) present a statistical approach for select-
mally distributed over the available modes (John-ing among multiple possible combinations of speech



and gesture. However, it is not clear how the ap2 Finite-state Language Processing

proach will scale to more complex verbal languageginjte_state transducers (FST) are finite-state au-
and combinations of speech with multiple gestures. tomata (FSA) where each transition consists of an
input and an output symbol. The transition is tra-
versed if its input symbol matches the current sym-
In this paper, we propose an alternative approacipol in the input and generates the output symbol as-
that addresses these limitations: parsing, understangociated with the transition. In other words, an FST
ing, and integration of speech and gesture are pegan be regarded as a 2-tape FSA with an input tape
formed by a single finite-state device. With certainfrom which the input symbols are read and an output
simplifying assumptions, multidimensional parsingtape where the output symbols are written.
and understanding with multimodal grammars can Finite-state machines have been extensively ap-
be achieved using a weighted finite-state automaplied to many aspects of language processing in-
ton (FSA) running on three tapes which representluding, speech recognition (Pereira and Riley, 1997;
speech input (words), gesture input (gesture symRiccardi et al., 1996), phonology (Kaplan and Kay,
bols and reference markers), and their combined in1994), morphology (Koskenniemi, 1984), chunk-
terpretation. We have implemented our approach inng (Abney, 1991; Joshi and Hopely, 1997; Ban-
the context of a multimodal messaging applicationgalore, 1997), parsing (Roche, 1999), and machine
in which users interact with a company directory translation (Bangalore and Riccardi, 2000).
using synergistic combinations of speech and pen Finite-state models are attractive mechanisms for
input; a multimodal variant of VPQ (Buntschuh et language processing since they are (a) efficiently
al., 1998). For example, the user might sayail learnable from data (b) generally effective for decod-
this person and this person and gesture ing and (c) associated with a calculus for composing
with the pen on pictures of two people on a user interimachines which allows for straightforward integra-
face display. In addition to the user interface client,tion of constraints from various levels of language
the architecture contains speech and gesture recogrocessing. Furthermore, software implementing
nition components which process incoming streamghe finite-state calculus is available for research pur-
of speech and electronic ink, and a multimodal lan{oses (Mohri et al., 1998). Another motivation for

guage processing component (Figure 1). our choice of finite-state models is that they enable
tight integration of language processing with speech
ul and gesture recognition.
/\ : 3 Finite-state Multimodal Grammars
ASR Gesture Recognizer Multimodal integration involves merging semantic

A A content from multiple streams to build a joint inter-
Y Y pretation for a multimodal utterance. We use a finite-
Multimodal Parser/Understander state device to parse multiple input streams and to
combine their content into a single semantic repre-
Y sentation. For an interface withh modes, a finite-
Backend state device operating over-1 tapes is needed. The
first n tapes represent the input streams angd 1 is
i i ) an output stream representing their composition. In
Figure 1. Multimodal architecture the case of speech and pen input there are three tapes,
Section 2 provides background on finite-state lan-one for speech, one for pen gesture, and a third for
guage processing. In Section 3, we define and exentheir combined meaning.
plify multimodal context-free grammars (MCFGS) As an example, in the messaging application
and their approximation as multimodal FSAs. Wedescribed above, users issue spoken commands
describe our approach to finite-state representatioauch as email this person and that
of meaning and explain how the three-tape finiteorganization and gesture on the appropriate
state automaton can be factored out into a numbegperson and organization on the screen. The struc-
of finite-state transducers. In Section 4, we explairture and interpretation of multimodal commands of
how these transducers can be used to enable tighthis kind can be captured declaratively in a multi-
coupling of multimodal language processing with modal context-free grammar. We present a fragment
speech and gesture recognition. capable of handling such commands in Figure 2.




S— VNP el NP — DETN GestureSymbols ={G,, Go, Gpf, Gpm, ...} and

CONJ— r?mdz:, . NP— DET N CONJ NP a finite collections of EventSymbols ={ej,eq,
V — emailz:email([ DET — thisz:e ...,en}. M is the vocabulary to represent meaning
V — pagez:page([ DET— thate:e and includes event symbol&{entSymbols C M).
N — personGp:person(  ENTRY In general a context-free grammar can be approx-
“ - grgamzanotgﬂ%org( EN?;:(( imated by an FSA (Pereira and Wright 1997, Neder-
— departmen,:dept( hof 1997). The transition symbols of the approx-
ENTRY — cleyle; eie) imated FSA are the terminals of the context-free
E“$S¥ :; i;?;? ggg grammar and in the case of multimodal CFG as de-
ENTRY — . 3= fined above, these terminals contain three compo-
nents,W, G and M. The multimodal CFG frag-
Figure 2: Multimodal grammar fragment ment in Figure 2 translates into the FSA in Figure 3,

. . _ a three-tape finite state device capable of composing
The non-terminals in the multimodal grammar aréyy s input streams into a single output semantic rep-
atomic symbols. The multimodal aspects of theiasentation stream.

grammar become apparent in the terminals. Each g approach makes certain simplifying assump-
terminal contains three componem&:G:M corre-  iong with respect to temporal constraints. In multi-

sponding to the: + 1 tapes, wheréV is for the Spo- gesture utterances the primary function of tempo-
ken language streand; is the gesture stream, and (5 constraints is to force an order on the gestures.
M is the combined meaning. The epsilon symbol isjt you saymove this here and make two ges-
used to indicate when one of these is empty ina giveRreg, the first correspondstiis  and the second to

terminal. The symbols itV are words from the pere . Our multimodal grammars encode order but
speech stream. The symbolsGhare of two types. (g not impose explicit temporal constraints. How-

Symbols likeG, indicate the presence of a particular gy general temporal constraints between speech

kind of gesture in the gesture stream, while those likeyq the first gesture can be enforced before the FSA
e1 are used as references to entities referred to by thg applied.

gesture (See Section 3.1). Simple deictic pointing o _ _
gestures are assigned semantic types based on the @il  Finite-state Meaning Representation
tities they are references tG:, represents a gestural A novel aspect of our approach is that in addition
reference to a person on the displéj to an orga- to capturing the structure of language with a finite
nization, andG, to a department. Compared with state device, we also capture meaning. This is very
a feature-based multimodal grammar, these typeBnportant in multimodal language processing where
constitute a set of atomic categories which makehe central goal is to capture how the multiple modes
the relevant distinctions for gesture events predictcontribute to the combined interpretation. Our ba-
ing speech events and vice versa. For example, &ic approach is to write symbols onto the third tape,
the gesture i€z, then phrases likéhis person which when concatenated together yield the seman-
andhim are preferred speech events and vice versaic representation for the multimodal utterance. It
These categories also play a role in constraining theuits our purposes here to use a simple logical repre-
semantic representation when the speech is undegentation with predicatgsred(....)and lists[a,b,...].
specified with respect to semantic type (eegail Many other kinds of semantic representation could
this one ). These gesture symbols can be orgabe generated. In the fragment in Figure 2, the word
nized into a type hierarchy reflecting the ontologyemail ~contributesemail(] to the semantics tape,
of the entities in the application domain. For exam-and the list and predicate are closed when the rule
ple, there might be a general tyewith subtypes S — V NP c«:]) applies. The wordperson
G, andG),, whereG), has subtype&r,,, andG, for  writesperson( on the semantics tape.
male and female. A significant problem we face in adding mean-
A multimodal CFG (MCFG) can be defined for- ing into the finite-state framework is how to repre-
mally as quadruplez N, T, P,S >. N is the set of sent all of the different possible specific values that
nonterminals.P is the set of productions of the form can be contributed by a gesture. For deictic refer-
A — awhereA € Nanda € (NUT)*. Sis ences aunique identifier is needed for each object in
the start symbol for the grammér. is the set of ter- the interface that the user can gesture on. For ex-
minals of the form(W Ue) : (GU¢) : M* where ample, if the interface shows lists of people, there
W is the vocabulary of speechy is the vocabulary needs to be a unique identifier for each person. As
of gesture€estureSymbols U FventSymbols;  part of the composition process this identifier needs



department: Gd:dept( eps.el.el

organization: Go:org(

person:Gp:person(
email:eps.email ([
page:eps:page([

and:eps;,

Figure 3: Multimodal three-tape FSA

to be copied from the gesture stream into the seman

) . N S: emall this person and that organizatipn
tic representation. In the unification-based approac Tex G el G. &

to multimodal integration, this is achieved by fea-—— . L °

ture sharing (Johnston, 1998b). In the finite-state a M: email({ person) org(es) )

proach, we \t/)vlould need tﬁ incorporate all of the difr-] Figure 4: Messaging domain example

ferent possible IDs into the FSA. For a person wit . .. .

id objid345 you need an are:objid345:0bjid345 email([person(objid367), org(0bjid893)]).  As

to transfer that piece of information from the ges-MOre recursive semantic phenomena such as pos-
ture tape to the meaning tape. All of the arcs forSessives and other complex noun phrases are added

different IDs would have to be repeated everywherqto the gHrammar 'E[t;]e resultlr][gt_ mai:hlnes become
in the network where this transfer of information is 'ar9€r. However, the computational consequences

f this can be lessened by lazy evaluation tech-
needed. Furthermore, these arcs would have to b ues (Mohri, 1997) and we believe that this finite-

updated as the underlying database was changed Bt‘qt bt ucti i A
updated. Matters are even worse for more complex o approach 1o constructing semantic representa-

pen-based data such as drawing lines and areas in 4R1S IS viable for a broad range of sophisticated lan-
interactive map application (Cohen et al., 1998). Induage interface tasks. We have implemented a size-
this case, the coordinate set from the gesture need®!e multimodal CFG for VPQ (See Section 1): 417
to be incorporated into the semantic representatiorf /€S and a lexicon of 2388 words.
It might not be practical to incorporate the vast num-
ber of different possible coordinate sequences into a
FSA. While a three-tape finite-state automaton is feasi-

Our solution to this problem is to store theseble in principle (Rosenberg, 1964), currently avail-
specific values associated with incoming gestureable tools for finite-state language processing (Mohri
in a finite set of buffers labeled;,es,e3, ... and et al., 1998) only support finite-state transducers
in place of the specific content write in the name(FSTs) (two tapes). Furthermore, speech recogniz-
of the appropriate buffer on the gesture tape. In-ers typically do not support the use of a three-tape
stead of having the specific values in the FSA, weFSA as a language model. In order to implement our
have the transitions:e;:e;, ciesies, €lesies... in approach, we convert the three-tape FSA (Figure 3)
each location where content needs to be transferreitito an FST, by decomposing the transition symbols
from the gesture tape to the meaning tape (See Fignto an input componenty x W) and output compo-
ure 3). These are generated from & T'RY pro-  nentM, thus resulting in a functio:(G x W) —
ductions in the multimodal CFG in Figure 2. The M. This corresponds to a transducer in which ges-
gesture interpretation module empties the buffergure symbols and words are on the input tape and the
and starts back at; after each multimodal com- meaning is on the output tape (Figure 6). The do-
mand, and so we are limited to a finite set of gesimain of this function7 can be further curried to re-
ture events in a single utterance. Returning tosult in a transducer that mapgsG — W (Figure 7).
the exampleemail this person and that This transducer captures the constraints that gesture
organization , assume the user gestures on enplaces on the speech stream and we use it as a lan-
tities objid367 andobjid893. These will be stored guage model for constraining the speech recognizer
in bufferse; andey. Figure 4 shows the speech andbased on the recognized gesture string. In the fol-
gesture streams and the resulting combined meaningpwing section, we explain hoW andR are used in

The elements on the meaning tape are concateonjunction with the speech recognition engine and
nated and the buffer references are replaced to yieldesture recognizer and interpreter to parse and inter-

ﬁ.Z Multimodal Finite-state Transducers



pret multimodal input. the information both from the speech stream and
. _ from the gesture stream. The next step is to gen-
4 Applying Multimodal Transducers erate the combined meaning representation. To
There are number of different ways in which multi- achieve thisGestSpeechFS{Z : W) is converted
modal finite-state transducers can be integrated witinto an FSM GestSpeechFSNdy combining out-
speech and gesture recognition. The best approagiut and input on one tape5(x W) (Figure 12).
to take depends on the properties of the particulatGestSpeechFSNs then composed with/™ (Fig-
interface to be supported. The approach we outlinaire 6), which relates speech and gesture to mean-
here involves recognizing gesture first then using théng, yielding the result transducBesult(Figure 13).
observed gestures to modify the language model fofhe meaning is read from the output tape vyield-
speech recognition. This is a good choice if thereng email([person(ey), org(ez)]). We have imple-
is limited ambiguity in gesture recognition, for ex- mented this approach and applied it in a multimodal
ample, if the majority of gestures are unambiguousdnterface to VPQ on a wireless PDA. In prelimi-
deictic pointing gestures. nary speech recognition experiments, our approach
The first step is for the gesture recognition andyielded an average of 23% relative sentence-level er-
interpretation module to process incoming pen gesror reduction on a corpus of 1000 utterances (John-
tures and construct a finite state machf@esture ston and Bangalore, 2000).
corresponding to the range of gesture interpretations.
In our example case (Figure 4) the gesture input i Conclusion

unambiguous and th&esturefinite state machine
will be as in Figure 5. If the gestural input involves W& have presented here a novel approach to mul-

gesture recognition or is otherwise ambiguous it isimodal language processing in which spoken lan-
represented as a lattice indicating all of the possiduage and gesture are parsed and integrated by a

ble recognitions and interpretations of the gesturé&ingle weighted finite-state device. This device pro-
stream. This allows speech to compensate for ges/des language models for speech and gesture recog-
ture errors and mutual compensation. nition and composes content from speech and ges-

ture into a single semantic representation. Our ap-
@ Sp @ = @ co @ =2 @ proach is novel not just in addressing multimodal
_ o _ language but also in the encoding of semantics as
Figure 5:Gesturefinite-state machine well as syntax in a finite-state device.

This Gesturefinite state machine is then com- Compared to previous approaches (Johnston etal.,
posed with the transducé® which represents the 1997; Johnston, 1998a; Wu et al., 1999) which com-
relationship between speech and gesture (Figure 7pose elements from-best lists of recognition re-
The result of this composition is a transdugest-  sults, our approach provides an unprecedented po-
Lang (Figure 8). This transducer represents the retential for mutual compensation among the input
lationship between this particular stream of gesturesnodes. It enables gestural input to dynamically
and all of the possible word sequences that could caalter the language model used for speech recogni-
occur with those gestures. In order to use this intion. Furthermore, our approach avoids the com-
formation to guide the speech recognizer, we therputational complexity of multidimensional muilti-
take a projection on the output tape (speectGest- modal parsing and our system of weighted finite-
Lang to yield a finite-state machine which is used state transducers provides a well understood prob-
as a language model for speech recognition (Figabilistic framework for combining the probability
ure 9). Using this model enables the gestural indistributions associated with speech and gesture in-
formation to directly influence the speech recog-put and selecting among multiple competing multi-
nizer's search. Speech recognition yields a latticenodal interpretations. Since the finite-state approach
of possible word sequences. In our example case is more lightweight in computational needs, it can
yields the word sequencamail this person more readily be deployed on a broader range of plat-
and that organization (Figure 10). We forms.
now need to reintegrate the gesture information that In ongoing research, we are collecting a corpus of
we removed in the projection step before recog-multimodal data in order to formally evaluate the ef-
nition.  This is achieved by composin@Gest- fectiveness of our approach and to train weights for
Lang (Figure 8) with the result lattice from speech the multimodal finite-state transducers. While we
recognition (Figure 10), yielding transduc&est- have concentrated here on understanding, in princi-
SpeechFSTFigure 11). This transducer contains ple the same device could be applied to multimodal
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