
Formal Syntax and Semantics of Case Stacking Languages

Christian Ebert
Lehrstuhl f�ur Computerlinguistik

Universit�at Heidelberg
Karlstr. 2

D-69117 Heidelberg

Marcus Kracht
II. Mathematisches Institut
Freie Universit�at Berlin

Arnimallee 3
D-14195 Berlin

Abstract

In this paper the phenomenom of case stack-
ing is investigated from a formal point of view.
We will de�ne a formal language with idealized
case marking behaviour and prove that stacked
cases have the ability to encode structural in-
formation on the word thereby allowing for un-
restricted word order. Furthermore, the case
stacks help to compute this structure with a low
complexity bound. As a second part we propose
a compositional semantics for languages with
stacked cases and show how this proposal may
work for our formal language as well as for an
example from Warlpiri.

1 Introduction

Case stacking is a phenomenom that occurs in
many Australian languages (such as Warlpiri
and Kayardild) and e.g. Old Georgian. Case
stacking is known to pose problems for the
treatment of case in many formal frameworks
today1. In (Nordlinger, 1997) the problem was
attacked by extending the framework of LFG.
Nordlinger claims that case morphology can
construct grammatical relations and larger syn-
tactic contexts.
In Section 2 we will introduce an ideal lan-

guge, which exhibits perfect marking. This lan-
guage captures Nordlinger's idea of case as con-
structors of grammatical relations, but is inde-
pendent of any syntactic framework. We will
prove of this language that the case stacks pro-
vide all the information needed for reconstruct-
ing the functor-argument relations and the syn-
tactic context a word appears in. Additionally,
since structure lies encoded in these case stacks
there is no need to assume any phrase structure

1see (Nordlinger, 1997) and (Malouf, 1999) for a dis-
cussion on LFG and HPSG respectively.

or restriction on word order. At the end of this
section we consider the computational complex-
ity of our language and draw some conclusions
about grammar formalisms that are able to gen-
erate it.
In Section 3 we propose a compositional se-

mantics for our case stacking languages. Un-
like Montague semantics, where the manage-
ment of variables is not made explicit, we will
use referent systems to keep track of variables
and to make semantic composition eÆcently
computable2. The proposal will be applied to
our formal language and to an example from
Warlpiri.

2 Syntax

In this section a perfectly case marked formal
language will be de�ned and investigated. The
de�nition of this language is based on terms con-
sisting of functors and arguments and thus cases
will be taken to mark arguments.
In the following we let N denote the set of

non-negative integers and _ the concatenation
of strings, which is often omitted. We shall use
typewriter font to denote true characters in
print for a formal language.

2.1 Basic De�nitions

An abstract de�nition of terms runs as follows.
Let F be a set of symbols and 
: F ! N a
function. The pair hF;
i is called a signature.
We shall often write 
 in place of hF;
i. An
element f 2 F is called a functor and 
(f) the
arity of f . We let ! := maxf
(f) j f 2 Fg
denote the maximal arity. Terms are denoted
here by strings in Polish Notation, for simplicity.

De�nition 1. Let 
 be a signature. A term

over 
 is inductively de�ned as follows.

2see (Vermeulen, 1995) and (Kracht, 1999) on these
issues.



1. If 
(f) = 0, then f is a term.

2. If 
(f) > 0 and ti; 1 � i � 
(f), are
terms, so is ft1 : : : t
(f).

The set C of case markers will be the set
f1; : : : ; !g, which we assume to be disjoint from
F . Given a term, each functor will be case
marked according to the argument position it
occupies. This is achieved through the notion
of a unit, which consists of a functor and a se-
quence of case markers called case stack.

De�nition 2. Let t be a term over a signature

. The corresponding bag, �(t), is induc-
tively de�ned as follows.

1. If t = f , then �(t) := ftg.
2. If t = ft1 : : : tn, then �(t) := ffg [Sn

i=1fz_i j z 2 �(ti)g.
An element f
 2 �(t) is called a unit and 
 2
C� its case stack.

For example, if f; g, and x are functors of
arity 2; 1 and 0, respectively, the bag �(fxgx)
is ff; x1; g2; x12g. The meaning of a unit x12
could be described by `x is the functor of the
�rst argument of the second argument of the
term'.

De�nition 3. Let t be a term over a signature

, �(t) the corresponding bag and �(t) = fÆi j
i � ng an arbitrary enumeration of its units.
Then the string Æ1

_Æ2
_ : : :_Æn�1

_Æn is said to
be a �(t)-string.

Some of the �(fxgx)-strings are e.g.
fx1g2x12 and g2x1fx12. We are now prepared
to de�ne a formal language over the alphabet
F [ C by collecting all �(t)-strings for a given
signature:

De�nition 4. Let 
 be a signature. The ideal
case marking language ICML
 over this

signature consists of all �(t)-strings such that
t is a term over 
.

2.2 Trees and Unique Readability

There is a strong correspondence between bags
and labelled trees since case stacks can be iden-
ti�ed with tree addresses:

De�nition 5. A nonempty �nite set D � N
�
+

is a tree domain if the following hold:

1. � 2 D.

2. If d1d2 2 D then d1 2 D.

3. If di 2 D; i 2 N then dj 2 D for all j < i.

The elements of a tree domain are called tree

addresses. A 
-labelled tree is a pair hD; �i
such that D is a tree domain and � : D ! F
a labelling function such that the number of
daughters of d 2 D is exactly 
(�(d)).

To formalize the correspondence we de�ne a
function T that assigns every bag �(t) a 
-
labelled tree:

T (ff1
1; : : : ; fn
ng) := hf
Ri j 1 � i � ng;
� : 
Ri 7! fi (1 � i � n)i

The function T reverses the case stacks of all
units to get a set of tree addresses. Then the
functor of the unit is assigned to the tree ad-
dress. E.g. if the bag contains a unit g321 the
resulting tree domain will contain a tree address
123 and the labelling function will assign g to
it.
Similarly one can de�ne an inverse function

assigning a bag to each 
-labelled tree. Thus
there is a bijection between 
-labelled trees and
bags. Therefore di�erent bags correspond to
di�erent ordered labelled trees. This shows that
we have unique readability for bags and since
every ICML
 string can be uniquely decom-
posed into its units we may state the following
proposition.

Proposition 6. Let 
 be a signature. Then ev-
ery ICML
 string is uniquely readable.

2.3 Pumpability and Semilinearity

We will �rst consider the property of being
�nitely pumpable as de�ned in (Groenink, 1997).

De�nition 7. A language L is �nitely

pumpable if there is a constant c such that
for any w 2 L with jwj > c, there are a �nite
number k and strings u0; : : : ; uk and v1; : : : ; vk
such that w = u0v1u1v2u2 � � � vkuk and for each
i; 1 � jvij < c and for any p � 0 the string
u0v

p
1u1v

p
2u2 � � � vpkuk belongs to L.

Proposition 8. Let 
 be a signature. Then
ICML
 is not �nitely pumpable.



Proof. It is easy to observe that the pumpable
parts cannot contain a functor since that would
lead to pumped strings containing the same
units more than once. Hence the number of
units cannot be increased by pumping and all
pumpable parts must consist of case markers
solely. But since the length of an ICML
 string
consisting of a �xed number of units is bounded
each pumpable string could be pumped up such
that it exceeds this bound. Thus ICML
 is not
�nitely pumpable at all.

Now we are concerned with semilinearity.

De�nition 9. Let M � N
n . Then M is a

1. linear set, if for some k 2 N there are
u0; : : : ; uk 2 N

n , such that M = fu0 +Pk
i=1 niui j ni 2 Ng,

2. semilinear set, if for some k 2 N there
are linear sets M1; : : : ;Mk � N

n , such that

M =
Sk
i=1Mi.

A language L over an alphabet � = fwi j
0 � i < ng is called a semilinear language

if its image under the Parikh mapping is a
semilinear set, where the Parikh mapping 	 :
�� ! N

n is de�ned as follows:

� 7! h0; : : : ; 0i
wi 7! e(i) for 0 � i < n
�� 7! 	(�) + 	(�) for all �; � 2 ��

where e(i) is the i + 1-th unit vector, which
consists of zeros except for the i-th component,
which is 1.

Note that { given a term t { the Parikh image
of all �(t)-strings is the same since these are
just concatenations of di�erent permutations of
the units in �(t).
In the following we make use of a proof tech-

nique used in (Michaelis and Kracht, 1997) to
show that Old Georgian is not a semilinear lan-
guage. We cite a special instance of a proposi-
tion given therein:

Proposition 10. Let P (k) = !
2 k

2 + 2�!
2 k and

M be a subset of Nn , where n � 2, which has
the properties

1. For any k 2 N+ there are some numbers

l
(k)
2 ; : : : ; l

(k)
n�1 2 N for which the n-tuple

hk; P (k); l(k)2 ; : : : ; l
(k)
n�1i belongs to M .

2. For any k 2 N+ the value P (k) provides an
upper bound for the second component l1
of any n-tuple hk; l1; : : : ; ln�1i 2 M (that
means l1 � P (k) for any such n-tuple).

Then M is not semilinear.

In order to investigate the semilinearity of
ICML
 we choose distinct symbols f; x 2 F ,
such that 
(f) = ! and 
(x) = 0. We shall
construct terms si by the following inductive
de�nition:

1. s0 := x

2. sn := f(sn�1; x; : : : ; x) for n > 0

It is easy to observe that by virtue of construc-
tion sn consists of n leading functors f and that
in each iteration the number of x increases by
(! � 1).

Lemma 11. Let F [ C = ff; 1; x; 2; : : : ; !,
f1; : : : ; fjF j�2g be an enumeration of the alpha-

bet underlying ICML
, where f1; : : : ; fjF j�2

are the remaining functors in F � ff; xg Then
the Parikh image of some �(sn)-string Æn is

	(Æn) = hn; !
2
n2 +

2� !

2
n;

(! � 1)n+ 1; n; : : : ; n| {z }
!�1

; 0; : : : ; 0| {z }
jF j�2

i

Furthermore, !
2 n

2 + 2�!
2 n imposes an upper

bound on the second component of 	(Æn).

Proof. The �rst part of the lemma can be
proved in a straightforward way by induction
on n. The claim on the upper bound follows
from the observation that the number of occur-
rences of case marker 1 can be maximized by
repeated embedding of terms in the �rst argu-
ment position.

Proposition 12. Let 
 be a signature. Then
ICML
 is not semilinear.

Proof. Let n = ! + jF j and consider the linear,
and hence semilinear, set R :=

f(n2(!�1)+1)e(2)+

!+2X

i=0;i6=2

nie
(i) j ni 2 Ng



Then the full preimage LR of R under the
Parikh map consists of all strings which con-
tain n2((! � 1) + 1) occurrences of the symbol
x (where n2 is any number) and any number of
occurrences of the symbols f; 1; : : : ; !, and no
other symbols. We de�ne the language LM as
the set of all strings belonging to LR and the
ideal case marking languages. Then LM con-
tains all �(sn)-strings.
Considering the Parikh image M of LM we

get

M = 	[LM ] = 	[LR] \	[ICML
]

= R \	[ICML
]

because of the de�nition of LR as the full pre-
image of R. But then the set M ful�lls the
conditions of Proposition 10 due to Lemma 11.
HenceM is not semilinear. SinceR is semilinear
by de�nition and semilinearity is closed under
intersection ICML
 is not semilinear.

2.4 Computational Complexity

In this subsection the computational complex-
ity of ICML
 is considered. The results are
achieved by de�ning a 3-tape-Turing machine
acceptor (depending on a given signature) that
recognizes ICML
.
Proposition 13. Let 
 be a signature. Then

ICML
 2 DTIME(n
p
n log n)

ICML
 2 DSPACE(n):

Proof. In the following we let n denote the
length of the input string. The Turing machine
algorithm can be subdivided into three main
parts:

1. The input string is segmented into its units:
The algorithm steps through the input and
adds separation markers in between two
units. This can be done in O(n) time.

2. The units are sorted according to their
case stacks: More formally a 2-way straight
merge sort is performed. This sorting algo-
rithm is known for its worst case optimal
complexity: it performs the sort of k keys
in O(k log k) steps. In our case the keys
are units and thus their number is clearly
bounded by n. The additional square root

factor comes from the comparison step.
One can show that the maximal length of
a case stack occuring in an ICML
 string
of length n is bounded above by O(

p
n).

Hence a comparison of two units takes at
most O(

p
n) steps. Thus the overall com-

plexity of the sorting part is O(n
p
n log n).

3. The sorted sequence of units is checked:
The algorithm successively generates case
stacks according to the functors it has read.
Each case stack is compared to the unit of
the input. If they coincide the algorithm
advances to the next unit on the input and
generates the next case stack. After all case
stacks have been generated the whole input
string must have been worked through. In
this case the algorithm accepts. This can
be done in O(n) time.

Summing up the complexities of these three
parts shows that the time complexity is as
claimed in the proposition. Furthermore, the
algorithm uses only the cells needed by the in-
put plus at most k � 1 cells for additional sep-
aration markers (due to the �rst part), where
k is the number of units the input string con-
sists of. This shows that the space complexity
is linear.

2.5 Discussion

A �rst conclusion we may draw is that cases
have the ability to construct the context they
appear in. ICML
 strings encode the same
structural information as ordered labelled trees
do thereby allowing unconstrained order of
units. Additionally each such string can be read
unambigously. This was shown by means of
a bijection between bags and ordered labelled
trees.
The fact that ideal case marking languages

are neither �nitely pumpable nor semilinear
means that they fall out of a lot of hierarchies of
formal languages. As (Weir, 1988) shows, multi-
component tree adjoining grammars3 generate
only semilinear languages. Consequently, ideal
case marking languages are not MCTALs. How-
ever, (Groenink, 1997) de�nes a class of gram-
mars, called simple literal movement grammars,

3and hence linear context-free rewrite systems, which
are shown to be weakly equivalent to MCTAGs in (Weir,
1988)



which generate all and only the PTIME recog-
nizable languages. Ideal case marking languages
should therefore be generated by some simple
literal movement grammar.
We note furthermore that the (theoretical)

time complexity is signi�cantly better than the
best known for recognizing context-free gram-
mars. In fact, we implemented a practically ap-
plicable algorithm which constructs the corre-
sponding tree out of a given ICML
 string in
linear time (in average).

3 Semantics

We are now going to propose a semantics for
languages with stacked cases. The basic prin-
ciple is rather easy: we are going to identify
variables by case stacks thereby making use of
referent systems.

3.1 Referent Systems

The semantics uses two levels: a DRS-level,
which contains DRSs, and a referent level,
which talks about the names of the referents
used by the DRS. Referent systems were intro-
duced in (Vermeulen, 1995). We keep the idea
of a referent system as a device which adminis-
trates the variables (or referents) under merge.
The technical apparatus is however quite di�er-
ent. In particular, the referent systems we use
de�ne explicit global string substitutions over
the referent names.
There is one additional symbol Æ. It is a vari-

able over names of referents. If we assume that
a functor g has meaning g a simple lexical entry
for g looks like this:

/g/
Æ : Æ
?

Æ :
= g(1_Æ; 2_Æ; : : : ;
(g)_Æ)

Here, the upper part is the referent system, and
the lower part an ordinary DRS, with a head
section, containing a set of referents, and a body
section, containing a set of clauses. This means
that the semantics of a functor g is given by
the application of g to its arguments. However,
instead of variables x; y, etc. we �nd 1_Æ; 2_Æ,
etc. The semantics of a 0-ary functor x and a
case marker, say 2, are:

/x/ /2/
Æ : Æ
?

Æ :
= x

Æ : 2_Æ
?

?

When two such structures come together they
will be merged. The merge operation � takes
two structures and results in a new one thereby
using the referent systems to substitute the
names of referents if necessary and then tak-
ing the union of the sets of clauses. E.g. the
result of the merge /g/ � /2/ is

/g2/
Æ : Æ
?

2_Æ :
= g(12_Æ; 22_Æ; : : : ;
(g)2_Æ)

The meaning of Æ : 2_Æ is as follows. If some
structure A is merged with one bearing that ref-
erent system, then all occurrences of the vari-
able Æ in A are replaced by 2_Æ. As the re-
sulting referent system we get Æ : Æ. This is
exactly what is done in the merge shown above.
We shall call a structure with referent system
Æ : Æ plain. Merge is only de�ned if at least on
structure is plain.

3.2 Semantics for ICML
To see how the semantics works we shall repro-
duce an earlier example and take the ICML

string g2x1fx12. Motivated by the de�nition of
the ideal case marking language we shall agree
to the conventions that

1. Case markers may only be suÆxes

2. Case markers may only be attached to
functors or case marked functors

By these conventions the string under consid-
eration must be parsed as (g2)(x1)(f)((x1)2).
They force us to combine the functors with
their case stacks �rst and afterwards combine
the units. We shall understand that this is a
syntactic restriction and not due to any seman-
tics.
The composition of g and 2 was already

shown above and is repeated on the left hand
side, using that 
(g) = 1. The result of com-
posing x and 1 is shown to the right.



/g2/ /x1/
Æ : Æ
?

2_Æ :
= g(12_Æ)

Æ : Æ
?

1_Æ :
= x

Merging these two structures we get

/g2x1/
Æ : Æ
?

2_Æ :
= g(12_Æ)
1_Æ :

= x

Together with f this gives

/g2x1f/
Æ : Æ
?

2_Æ :
= g(12_Æ)
1_Æ :

= x
Æ :
= f(1_Æ; 2_Æ)

By composing the structures for x and 1 we get
the structure /x1/ shown above. We merge this
one with that for 2 and get

/x12/
Æ : Æ
?

12_Æ :
= x

The merge of the two structures above �nally
gives

/g2x1fx12/
Æ : Æ
?

12_Æ :
= x

2_Æ :
= g(12_Æ)
1_Æ :

= x
Æ :
= f(1_Æ; 2_Æ)

We shall verify that the value of Æ is actually
the same as the value of f(x; g(x)). Notice �rst
that in the body of the DRS we �nd that 12_Æ
and 1_Æ have the same value as x. We may
therefore reduce the body of this structure to

2_Æ :
= g(x)

Æ :
= f(x; 2_Æ)

Finally we may replace 2_Æ by g(x) in the sec-
ond line. We get then

Æ :
= f(x; g(x))

which is the intended result.
After the semantics of the units has been com-

puted the order of merge is unimportant. If we
choose to merge these semantics in an order dif-
ferent from the one above, we get the same re-
sult.

3.3 An example from Warlpiri

To show how this proposal may work for natural
languages we give an example from Warlpiri4

in which case stacking occurs. We have to
deal with the four case markers ergative (erg),
past tense (pst), absolutive (abs), and locative
(loc).

Japanangka-rlu

Japanangka-erg
luwa-rnu

shoot-pst
marlu

kangaroo-abs

pirli-ngka-rlu

rock-loc-erg

Japanangka shot the kangaroo (while) on the
rock

We extend the proposal by taking into ac-
count that cases may not only function as argu-
ment markers but have a semantics, too. This
actually does not make much of a di�erence
for this calculus. We propose the following se-
mantics for the locative and the past tense case
marker

/loc/ /pst/
Æ : loc_Æ

?

located'(Æ; loc_Æ)

Æ : Æ
?

past'(Æ)
So, when the locative is attached, it says that
the thing to which it attaches is located some-
where. Here, Æ represents the thing that is
located, while loc

_Æ is the location. The
past tense semantics simply says that the thing
which it attaches to happened in the past.
We construe the meaning of the ergative as

being the actor and the meaning of the absolu-
tive as being the theme5.

4This example is taken from (Nordlinger, 1997), p.171
5In fact, ergative and absolutive should mark for

grammatical functions, but since linking of grammati-
cal functions and actants is quite a complicated matter
(see (Kracht, 1999)) we make this simpli�cation.



/erg/ /abs/
Æ : erg_Æ

?

actor'(Æ) :
= erg

_Æ

Æ : abs_Æ
?

theme'(Æ) :
= abs

_Æ
Again, we shall agree in using the conventions
stated in subsection 3.2. First we have to attach
the case markers to compose the resulting struc-
tures afterwards. The semantics of the proper
noun Japanangka is taken to be a plain structure
with body Æ :

= japanangka0. The composition of
this structure and the ergative semantics yields

/Japanangka-erg/
Æ : Æ
?

erg
_Æ :

= japanangka0

actor'(Æ) :
= erg

_Æ
We assume that the nominals /pirli/ and
/marlu/ have the following lexical entries:

/pirli/ /marlu/
Æ : Æ
fÆg

rock'(Æ)

Æ : Æ
fÆg

kangaroo'(Æ)
Thus the semantic composition of pirli, loc,
and erg gives:

/pirli-loc-erg/
Æ : Æ

floc_erg_Æg
rock'(loc_erg_Æ)
actor'(Æ) :

= erg
_Æ

located'(erg_Æ, loc_erg_Æ)
Similarly we can compose marlu with the abso-
lutive case:

/marlu-abs/
Æ : Æ

fabs_Æg
kangaroo'(abs_Æ)
theme'(Æ) :

= abs
_Æ

The semantics of the verb is shown on the left
hand side and its composition with /pst/ on
the right hand side.

/luwa/ /luwa-pst/

Æ : Æ
?

shoot'(Æ)

Æ : Æ
?

shoot'(Æ)
past'(Æ)

Finally by merging the structures /Japanangka-
erg/, /luwa-pst/, /marlu-abs/, and /pirli-
loc-erg/ in any order, we get the following
result.

Æ : Æ
fabs_Æ, loc_erg_Æg
erg

_Æ :
= japanangka0

shoot'(Æ)
past'(Æ)

actor'(Æ) :
= erg

_Æ
theme'(Æ) :

= abs
_Æ

kangaroo'(abs_Æ)
rock'(loc_erg_Æ)

located'(erg_Æ, loc_erg_Æ)
It says that there was an event of shooting in
the past, whose actor is Japanangka and whose
theme is something that is a kangaroo, and that
there is a rock, such that Japanangka is located
on it. Note that the only syntactic restriction
were the conventions stated in subsection 3.2
and that we did not make any further assump-
tions on syntactic structure or word order.

References

Annius Groenink. 1997. Surface without struc-
ture. Ph.D. thesis, Centrum voor Wiskunde
en Informatica, Amsterdam.

Marcus Kracht. 1999. Agreement morphology,
argument structure and syntax. Course ma-
terial ESSLLI '99.

Robert Malouf. 1999. A head-driven account
of long-distance case assignment. Paper pre-
sented on HPSG '99.

Jens Michaelis and Marcus Kracht. 1997. Semi-
linearity as a syntactic invariant. In Chris-
tian Retor�e, editor, Proceedings of the 1st In-
ternational Conference on Logical Aspects of
Computational Linguistics (LACL-96), vol-
ume 1328 of LNCS, pages 329{345, Berlin,
September 23{25. Springer.

Rachel Nordlinger. 1997. Constructive Case.
Dependent-Marking Noncon�gurality in Aus-
tralia. Ph.D. thesis, Department of Linguis-
tics, Stanford University, Stanford.

Kees F. M. Vermeulen. 1995. Merging without
mystery or: Variables in dynamic semantics.
Journal of Philosophical Logic, 24:405{450.

David J. Weir. 1988. Characterizing Mildly
Context-Sensitive Grammar Formalisms.
Ph.D. thesis, University of Pennsylvania, PA.


