
XML and Multilingual Document Authoring: Convergent Trends

Marc Dymetman Veronika Lux
Xerox Research Centre Europe

6, chemin de Maupertuis
38240 Meylan, France

{dymetman,lux}@xrce.xerox.com

Aarne Ranta
Department of Computing Science
Chalmers University of Technology

and Göteborg University
S-412 96 Göteborg, Sweden

aarne@cs.chalmers.se

Abstract
Typical approaches to XML authoring view a XML doc-
ument as a mixture of structure (the tags) and surface
(text between the tags). We advocate a radical approach
where the surface disappears from the XML document
altogether to be handled exclusively by rendering mech-
anisms. This move is based on the view that the author’s
choices when authoring XML documents are best seen
as language-neutral semantic decisions, that the struc-
ture can then be viewed as interlingual content, and that
the textual output should be derived from this content by
language-specific realization mechanisms, thus assimi-
lating XML authoring to MultilingualDocument Author-
ing. However, standard XML tools have important limi-
tations when used for such a purpose: (1) they are weak
at propagating semantic dependencies between different
parts of the structure, and, (2) current XML rendering
tools are ill-suited for handling the grammatical combi-
nation of textual units. We present two related proposals
for overcoming these limitations: one (GF) originating
in the tradition of mathematical proof editors and con-
structive type theory, the other (IG), a specialization of
Definite Clause Grammars strongly inspired by GF.

1 Introduction

The typical approach to XML authoring views an XML
document as a mixture of tree-likestructure, expressed
through balanced labelled parentheses (the tags), and
of surface, expressed through free text interspersed be-
tween the tags (PCDATA). A Document Type Defini-
tion (DTD) is roughly similar to a context-free gram-
mar1 with exactly one predefined terminal. It defines a
set of well-formed structures, that is, alanguage over
trees, where eachnonterminal node can dominate either
the empty string, or a sequence of occurrences of nonter-
minal nodes and of the terminal nodepcdata. The ter-
minalpcdata has a special status: it can in turn dominate
any character string (subject to certain restrictions on the
characters allowed). Authoring is typically seen as a top-
down interactive process of step-wise refinement of the
root nonterminal (corresponding to the whole document)
where the author iteratively chooses a rule for expanding

1But see (Prescod, 1998) for an interesting discussion of the differ-
ences.

a nonterminal already present in the tree,2 and where in
addition the author can choose an arbitrary sequence of
characters (roughly) for expanding thepcdata node.

One can observe the following trends in the XML
world:

� A move towards more typing of the surface:
Schemas(W3C, 1999a), which are an influential
proposal for the replacement of DTD’s, provide for
types such asfloat, boolean, uri, etc., instead of
the single typepcdata;

� A move, already constitutive of the main purpose
of XML as opposed to HTML for instance, towards
clearer separation between content and form, where
the original XML document is responsible for con-
tent, and powerful styling mechanisms (e.g. XSLT
(W3C, 1999b)) are available for rendering the doc-
ument to the end-user.

We advocate an approach in which these two moves
are radicalized in the following ways:

Strongly typed, surface-free XML documents.The
whole content of the document is a tree where eachnode
is labelled and typed. For internal nodes, the type is just
the usual nonterminal name (or category), and the label
is a name for the expansion chosen for this nonterminal,
that is, an identifier of which rule was chosen to expand
this nonterminal. For leaves, the type is a semantically
specific category such asInteger,Animal, etc., and the
label is a specific concept of this type, such asthree or
dog.3

Styling responsible for producing the text itself.
The styling mechanism is not only responsible for ren-
dering the layout of the text (typography, order and pre-
sentation of the elements), but also for producingthe text
itself from the document content.

What are the motivations behind this proposal?
Authoring choices carry language-independent

meaning. First, let us note that the expansion choices

2We are ignoring here the aspects of this process relating to the
regular nature of the right-hand sides of rules, but these particulars are
unessential to the main argument.

3Note that Integer is of “logical type”e, whereas Animal is of log-
ical type he; ti: there is no restriction on the denotational status of
leaves.

<!ELEMENT Risk (Caution | Warning) > risk-rule1: Risk --> Caution
risk-rule2: Risk --> Warning

<!ELEMENT Caution (... | ... | ...) > caution-rule1: Caution --> ...
caution-rule2: Caution --> ...
caution-rule3: Caution --> ...

...

Figure 1: Context-free rules (shown on the right) corresponding to the aircraft DTD (shown on the left); for illustration
purposes, we have assumed that there are in turn three semantic varieties of cautions. The rule identifier on the left
can be seen as a semantic label for each expansion choice (in practice, the rule identifiers are given mnemonic names
directly related to their meaning).

made during the authoring of an XML document gener-
ally carry language-independent meaning. For instance,
the DTD for an aircraft maintenance manual might be
legally required to distinguish between risk instructions
of two kinds:caution (risk related to material damages)
andwarning (risk to the operator). Or a DTD describing
a personal list of contacts might provide a choice of gen-
der (male, female), title (dr, prof, default), country
(ger, fra,...), etc. Each such authoring choice, which
formally consists in selecting among different rules for
expanding the same nonterminal (see Figure 1), corre-
sponds to asemantic decisionwhich is independent of
the language chosen for expressing the document. A
given DTD has an associatedexpressive spaceof tree
structures which fall under itsexplicit control, and the
author is situating herself in this space through top-down
expansion choices. There is then a tension between on
the one hand these explicitely controlled choices, which
should be rendered differently in different languages
(thusger asGermany, Allemagne, Deutschland..., and
Warning by a paragraph starting withWarning! ...; At-
tention, Danger! ...; Achtung, Lebensgefahr! ...), and
on the other hand the uncontrolled inclusion in the XML
document of free PCDATA strings, which are written in
a specific language.

Surface-free XML documents. We propose to com-
pletely remove these surface strings from the XML doc-
ument, and replace them with explicit meaning labels.4

The tree structure of the document then becomes the sole
repository of content, and can be viewed as a kind ofin-
terlingua for describing a point in the expressive space
of the DTD (a strongly domain-dependent space); it is
then the responsability of the language-specific rendering
mechanisms to “display” such content in each individual
language where the document is needed.

XML and Multilingual Document Authoring. In
this conception, XML authoring has a strong connection
to the enterprise ofMultilingual Document Authoringin
which the author is guided in the specification of the
document content, and where the system is responsible

4There are authoring situations in which it may be necessary for
the user to introduce new semantic labels corresponding to expres-
sive needs not foreseen by the creator of the original DTD. To handle
such situations, it is useful to view the DTD’s as open-ended objects to
which new semantic labels and types can be added at authoring time.

for generating from this content textual output in several
languages simultaneously (see (Power and Scott, 1998;
Hartley and Paris, 1997; Coch, 1996)).

Now there are some obvious problems with this view,
due to the current limitations of XML tools.

Limitations of XML for multilingual document au-
thoring. The first, possibly most serious, limitation
originates in the fact that a standard DTD is severely re-
stricted in the semantic dependencies it can express be-
tween two subtrees in the document structure. Thus, if
in the description of a contact, a city of residence is in-
cluded, one may want to constrain such an information
depending on the country of residence; or, in the air-
craft maintenance manual example, one might want to
automatically include some warning in case a dangerous
chemical is mentioned somewhere else in the document.
Because DTD’s are essentially of context-free expressive
power, the only communication between a subtree and its
environment has to be mediated through the name of the
nonterminal rooting this subtree (for instance the nonter-
minalCountry), which presents a bottleneck to informa-
tion flow.

The second limitation comes from the fact that the cur-
rent styling tools for rendering an XML document, such
as CSS (Cascading Style Sheets), which are a strictly
layout-oriented language, or XSLT (XSL transformation
language), which is a more generic tool for transforming
an XML document into another one (such as a display-
oriented HTML file) are poorly adapted to linguistic pro-
cessing. In particular, it seems difficult in such for-
malisms to express such basic grammatical facts as num-
ber or gender agreement. But such problems become
central as soon as semantic elements corresponding to
textual units below the sentence level have to be com-
bined and rendered linguistically.

We will present two related proposals for overcom-
ing these limitations. The first, theGrammatical Frame-
work (GF)(Ranta, 2000), originates in constructive type-
theory (Martin-Löf, 1984; Ranta, 1994) and in mathe-
matical proof editors (Magnusson and Nordström, 1994).
The second,Interaction Grammars (IG), is a specializa-
tion of Definite Clause Grammars strongly inspired by
GF. The two approaches present certain formal differ-
ences that will not be examined in detail in this paper,

but they share a number of important assumptions:

� The semantic representations arestrongly typed
trees, and rich dependencies between subtrees can
be specified;

� The abstract tree isindependentof the different tex-
tual realization languages;

� The surface realization in each language is obtained
by a semantics-driven compositional process; that
is, the surface realizations are constructed by a
bottom-up recursive process which associates sur-
face realizations to abstract tree nodes by recur-
sively combining the realizations of daugther nodes
to obtain the realization of the mother node.

� The grammars arereversible, that is, can be used
both for generation and for parsing;

� The authoring process is an interactive process
of repeatedly asking the author to further specify
nodes in the abstract tree of which only the type is
known at the point of interaction (type refinement).
This process is mediated through text in the lan-
guage of the author, showing the types to be refined
as specially highlighted textual units.

2 GF — the Grammatical Framework
The Grammatical Framework (GF; (Ranta, 2000)) is a
special-purpose programming language combiningcon-
structive type theorywith an annotation language for
concrete syntax. Agrammar, in the sense of GF, defines,
on one hand, anabstract syntax(a system of types and
typed syntax trees), and on the other hand, a mapping of
the abstract syntax into aconcrete syntax. The abstract
syntax hascategorydeclarations, such as

cat Country ; cat City ;

andcombinator(or function) declarations, such as

fun Ger : Country ; fun Fra : Country ;
fun Ham : City ; fun Par : City ;
fun cap : Country -> City ;

The type of a combinator can be either a basic type, such
as the typeCity of the combinatorHam, or a function
type, such as the type of the combinatorcap. Syntax
trees formed by combinators of function types are com-
plex functional terms, such as

cap Fra

of typeCity.
The concrete syntax part of a GF grammar giveslin-

earization rules, which assign strings (or, in general,
more complex linguistic objects) to syntax trees. For the
abstract syntax above, we may have

lin Ger = "Germany" ; lin Fra = "France" ;
lin Ham = "Hamburg" ; lin Par = "Paris" ;
lin cap Co = "the capital of" ++ Co ;

Thus the linearization ofcap Fra is

the capital of France

2.1 GF in XML
Functional terms have a straightforward encoding in
XML, representing a term of the form

f a1 : : : an

by the XML object

<f> a0

1
: : : a0

n </f>

where eacha0

i is the encoding ofai. In this encoding,
cap Fra is

<cap>
<Fra>
</Fra>
</cap>

The simple encoding does not pay attention to the
types of the objects, and has no interesting DTD. To
express type distinctions, we will hence use a slightly
more complicated representation, in which the category
and combinator declarations of GF are represented as
DTDs in XML, so that GFtype checkingbecomes equiv-
alent with XML validation. The representation of the GF
grammar of the previous section is the DTD

<!ELEMENT Country (Ger | Fra) >
<!ELEMENT Ger EMPTY >
<!ELEMENT Fra EMPTY >
<!ELEMENT City (Ham | Par | (cap,Country))>
<!ELEMENT Ham EMPTY >
<!ELEMENT Par EMPTY >
<!ELEMENT cap EMPTY >

In this DTD, each category is represented as an ELE-
MENT definition, listing all combinators producing trees
of that category. The combinators themselves are repre-
sented as EMPTY elements. The XML representation of
the capital of France is

<City>
<cap />
<Country>
<Fra />
</Country>
</City>

which is a valid XML object w.r.t. the given DTD.
The latter encoding of GF in XML enjoys two impor-

tant properties:

� All well-typed GF trees are represented by valid
XML objects.

� An XML represents a unique GF tree.

The first property guarantees thattype checkingin the
sense of GF (and type theory) can be used forvalidation
of XML objects. The second property guarantees that GF
objects can be stored in the XML format. (The second
property is already guaranteed by the simpler encoding,
which ignores types.)

Other properties one would desire are the following:

� All valid XML objects represent well-typed GF
trees.

� A DTD represents a unique GF abstract grammar.

These properties cannot be satisfied, in general. The rea-
son is that GF grammars may containdependent types,
i.e. types depending on objects. We will return to this
notion shortly. But let us first consider the use of GF for
multilingual generation.

2.2 Multilingual generation in GF
Multilingual generation in GF is based onparallel gram-
mars: two (or more) GF grammars are parallel, if they
have the same abstract syntax. They may differ in con-
crete syntax. A grammar parallel to the one above is de-
fined by the concrete syntax

param Case = nom | gen ;

oper nom1 : Str -> Case => Str =
\s -> tbl {{nom} => s, {gen} -> s+"n"} ;

oper nom2 : Str -> Case => Str =
\s -> tbl
{{nom} => s+"ki", {gen} -> s+"gin"} ;

lincat Country = Case => Str ;
lincat City = Case => Str ;

lin Ger = nom1 "Saksa" ;
lin Fra = nom1 "Ranska" ;
lin Ham = nom1 "Hampuri" ;
lin Par = nom1 "Pariisi" ;
lin cap Co =
tbl {c => Co!gen ++
nom2 "pääkaupun"!c} ;

This grammar renders GF objects in Finnish. In addition
to linearization rules, it has rules introducing parameters
and operations, and rules defining thelinearization types
corresponding to basic types: the linearization type of
Country, for instance is not just string (Str), but a func-
tion from cases to strings.

Not only the linearization rules proper, but also param-
eters and linearization types vary a lot from one language
to another. In our example, we have the parametre of case
with two values (in larger grammars for Finnish, as many
as 16 may be required!), and two patterns for inflecting
Finnish nouns. The syntax treecap Fra produces the
strings

Ranskan pääkaupunki
Ranskan pääkaupungin

which are the nominative and the genitive form, respec-
tively.

2.3 Dependent types
DTDs in XML are capable of representingsimple types,
i.e. types without dependencies. Even a simple type sys-
tem can contribute a lot to thesemantic controlof doc-
uments. For instance, the above grammar permits the
formation of the English noun phrase

the capital of France

but not of

the capital of Paris

Both of these expressions would be well-formed w.r.t.
an "ordinary" grammar, in which both France and Paris
would be classified simply as noun phrases.

Dependent typesare types depending on objects of
other types. An example is the following alternative dec-
laration ofCountry andCity:

cat Country ; cat City (Co:Country) ;

Under this definition, there are no objects of typeCity
(which is no longer a well-formed type), but of types
City Ger andCity Fra. Thus we define e.g.

fun Ham : City Ger ; fun Par : City Fra ;
fun cap : (Co:Country) -> City Co ;

Observe the use of the variableCo in the type of the com-
binator capital: the variable is bound to the argument
type and then used in the value type. The capital of a
country is by definition a city of the same country. This
involves a generalization of function types with depen-
dent types.

Now consider a simplified format of postal addresses:
an address is a pair of a country and a city. The GF rule
is either

fun addr : Country -> City -> Address ;
lin addr Co C = C ++ "," ++ Co ;

using simple types or

fun addr :
(Co:Country) -> City Co -> Address ;

lin addr Co C = C ++ "," ++ Co ;

using dependent types. The invalid address

Hamburg, France

is well-typed by the former definition but not by the lat-
ter. Using the latter definition gives a simple mechanism
of semantic controlof addresses. The same idea can ob-
viously be extended to full addresses with street names
and numbers. Such dependencies cannot, however, be
expressed in DTDs: both of the address rules above cor-
respond to one and the sameELEMENT definition,

<!ELEMENT Address (addr, Country, City) >

This example also shows that XML validity is not
enough for GF well-formedness: the object

<Address>
<addr />
<Country>
<Fra />
</Country>
<City>
<Ham />
</City>
</Address>

is valid w.r.t. the DTD, but the corresponding GF object

addr Fra Ham

is not well-typed.

2.4 Computation rules
In addition to categories and combinators, GF grammars
may containdefinitions, such as

def cap Fra = Par ;

Definitions belong to the abstract syntax. They define
a normal formfor syntax trees (recursively replace de-
fienda by definientes), as well as aparaphraserelation
(sameness of normal form). These notions are, of course
reflected in the concrete syntax: the addresses

the capital of France, France
Paris, France

are paraphrases, and the latter is the normal form of the
former.

Figure 2: GF session for editing a mathematical proof
text.

2.5 GF editing tools
An editing tool has been implemented for GF, using
metavariablesto represent yet undefined parts of expres-
sions. The user can work on any metavariable, in various
different ways, e.g.

� by choosing a combinator from a menu,

� by entering a string that is parsed,

� by reading a previously defined object from a file,

� by using an automatic search of suitable instantia-
tions.

These functionalities and their metatheory have been
used for about a decade in a number of syntax edi-
tors for constructive type theory, usually known asproof
editors (Magnusson and Nordström, 1994). From this
point of view, the GF editor is essentially a proof edi-
tor together with supplementary views, provided by the
concrete syntax. The current implementation of GF
is a plugin module of the proof editor Alfa (Hallgren,
2000). The window dump in Figure 2 shows a GF ses-
sion editing a mathematical proof. Five views are pro-
vided: abstract syntax in type-theoretical notation, En-
glish, French, Finnish, and XML. One metavariable is
seen, expecting the user to find aProof of the proposi-
tion that there exists a numberx0 such thatx is smaller
thanx0, wherex is an arbitrary number given in the con-
text (for the sake of Universal Introduction).

3 IG : Interaction Grammars
We have just described an approach to solving the limita-
tions of usual XML tools for multilingual document au-
thoring which originates in the tradition of constructive
type-theory and mathematical proof editors. We will now
sketch an approach strongly inspired by GF but which
formally is more in the tradition of logic-programming
based unification grammars, and which is currently un-
der development at Xerox Research Centre Europe (see
(Brun et al., 2000) for a more extended description of
this project).

Definite Clause Grammars, or DCG’s, (Pereira and
Warren, 1980), are possibly the simplest unification-
based extension of context-free grammars, and have
good reversibility properties which make them adapted
both to parsing and to generation. A typical view of what
a DCG rule looks like is the following:5

a(a1(B,C,...)) -->
<text1>,
b(B),
<text2>,
c(C),
<text3>,
...
{constraints(B,C,...)}.

This rule expresses the fact that (1) some abstract
structurea1(B,C,...) is in categorya if the structure
B is in categoryb, the structureC in categoryc, ..., and
furthermore a certain number of constraints are satisfied
by the structuresB, C, ...; (2) if the structuresB, C, ... can
be “rendered" by character stringsStringB, StringC,
..., then the structurea1(B,C,...) can be rendered by
the string obtained by concatenating the text<text1>
(that is, a certain constant sequence of terminals), then
StringB, then<text2>, thenStringC, etc.

In this formalism, a grammar for generating English
addresses (see preceding section) might look like:

5Reminder: according to the usual logic programming conventions,
lowercase letters denote predicates and functors, whereas uppercase
letters denote metavariables that will be instantiated with terms.

address(addr(Co,C)) --> city(C), ",",
country(Co).

country(fra) --> "France".
country(ger) --> "Germany".
city(par) --> "Paris".
city(cap(Co)) --> "the capital of",

country(Co).

The analogies with the GF grammars of the previous
section are clear. What is traditionally called a cate-
gory (or nonterminal, or predicate) in the logic program-
ming terminology, can also be seen as a type (address,
country, city) and functors such asger, par, addr,
cap can be seen as combinators.

If, in this DCG, we “forget” all the constant strings
by replacing them with the empty string, we obtain the
following “abstract grammar":

address(addr(Co,C)) --> city(C), country(Co).
country(fra) --> [].
country(ger) --> [].
city(par) --> [].
city(cap(Co)) --> country(Co).

which is in fact equivalent to the definite clausepro-
gram:6

address(addr(Co,C)) :- city(C), country(Co).
country(fra).
country(ger).
city(par).
city(cap(Co)) :- country(Co).

This program is language-independent and recursively
defines a set of well-formed trees to which it assigns
types (thuscap(fra) is a well-formed tree of type
city).

As they stand, such definite clause grammars and pro-
grams, although suitable for simple generation tasks, are
not directly adapted for the process of interactive multi-
lingual document authoring. In order to make them more
appropriate for that task, we need to specialize and adapt
DCGs in the way that we now describe.

Parallel grammars. The first move is to allow for
parallel English, French, ..., grammars, which all have
the same underlying abstract grammar (program). So in
addition to the English grammar given above, we have
the French grammar:

address(addr(Co,C)) --> city(C), ",",
country(Co).

country(fra) --> "la France".
country(ger) --> "l'Allemagne".
city(par) --> "Paris".
city(cap(Co)) --> "la capitale de",

country(Co).

6In the sense that rewriting the nonterminal goal
address(addr(Co,C)) to the empty string in the DCG is equivalent
to proving the goaladdress(addr(Co,C)) in the program (Deransart
and Maluszynski, 1993).

Dependent Categories.The grammars we have given
are deficient in one important respect: there is no de-
pendency between the city and the country in the same
address. In order to remedy this problem, a stan-
dard logic programming move would be to reformulate
the abstract grammar (and similarly for the language-
dependent ones) as:

address(addr(Co,C)) --> city(C,Co),
country(Co).

country(fra) --> [].
country(ger) --> [].
city(par,fra) --> [].
city(cap(Co),Co) --> country(Co).

The expressioncity(C,Co) is usually read as the re-
lation “C is a city of Co", which is fine for computational
purposes, but this reading obscures the notion that the
objectC is beingtypedas acity; more precisely, it is
being typed as acity of Co. In order to make this read-
ing more apparent, we will write the grammar as:

address(addr(Co,C)) --> cityCo(C),
country(Co).

country(fra) --> [].
country(ger) --> [].
cityfra(par) --> [].
cityCo(cap(Co)) --> country(Co).

That is, we allow the categories to be indexed by terms
(a move which is a kind of “currying" of a relation into
a type for its first argument). Dependent categories are
similar to the dependent types of constructive type the-
ory.

Heterogeneous trees.Natural language authoring is
different from natural language generation in one cru-
cial respect. Whenever the abstract tree to be generated
is incomplete (for instance the treecap(Co)), that is,
has some leaves which are yet uninstantiated variables,
the generation process should not proceed withnonde-
terministically enumerating texts for all the possible in-
stantiations of the initial incomplete structure. Instead it
should display to the author as much of the text as it can
in its present “knowledge state", and enter into an inter-
action with the author to allow her to further refine the
incomplete structure, that is, to further instantiate some
of the uninstantiated leaves. To this purpose, it is use-
ful to introduce along with the usual combinators (addr,
fra, cap, etc.) new combinators of arity 0 calledtype-
names, which are notatedtype, and are of typetype.
These combinators are allowed to stand as leaves (e.g. in
the treecap(country)) and the trees thus obtained are
said to beheterogeneous. The typenames are treated by
the text generation process as if they were standard se-
mantic units, that is, they are associated with text units
which are generated “at their proper place" in the gen-
erated output. These text units are specially phrased and
highlighted to indicate to the author that some choice has
to be made to refine the underlying type (e.g. obtaining

the text “la capitale de PAYS"). This choice has the effect
of further instantiating the incomplete tree with “true"
combinators, and the generation process is iterated.

Extended semantics-driven compositionality.The
simple DCG view presented at the beginning of this sec-
tion sees the process of generating text from an abstract
structure as basically a compositional process on strings,
that is, a process where strings are recursively associated
with subtrees and concatenated to produce strings at the
next subtree level. But such a direct process of construct-
ing strings has well-known limitations when the seman-
tic and syntactic levels do not have such a direct corre-
spondence (simple example: ordering a list of modifiers
around a noun). We are currently experimenting with a
powerful extension of string compositionality where the
objects compositionally associated with abstract subtrees
are not strings, but syntactic representations with rich in-
ternal structure. The text itself is obtained from the syn-
tactic representation associated with the total tree by sim-
ply enumerating its leaves.

The picture we get of an IG grammar is finally the
following:

aD;:::(a1(B,C,...))-Syn -->
bE;:::(B)-SynB,
cF;:::(C)-SynC,
...
{constraints(B,C,...,D,E,F,...)},
{compose_english(SynB, SynC, Syn)}.

The rule shown is a rule for English: the syntactic
representations are language dependent; Parallel rules
for the other languages are obtained by replacing the
compose_english constraint (which is unique to this
rule) by constraints appropriate to the other languages
under consideration.

4 Conclusion

XML-based authoring tools are more and more widely
used in the business community for supporting the pro-
duction of technical documentation, controlling their
quality and improving their reusability. In this paper,
we have stressed the connections between these practices
and current research in natural language generation and
authoring. We have described two related formalisms
which are proposals for removing some of the limitations
of XML DTD’s when used for the production of multi-
lingual texts.

From a computational linguist’s point of view, there
might be little which seems novel or exciting in XML
representations. Still XML has a great potential as alin-
gua francaand in driving a large community of users
towards authoring practices where content is becoming
more and more explicit. There may be a great opportu-
nity here for researchers in natural language generation
to connect to a growing source of applications.

Acknowledgements
Thanks for contributions, discussions and comments to
Ken Beesley, Caroline Brun, Jean-Pierre Chanod, Marie-
Hélène Corréard, Pierre Isabelle, Bengt Nordström, Syl-
vain Pogodalla and Annie Zaenen.

References
C. Brun, M. Dymetman, and V. Lux. 2000. Document

structure and multilingual authoring. InProceedings of
First International Natural Language Generation Confer-
ence (INLG ’2000), Mitzpe Ramon, Israel, June.

J. Coch. 1996. Evaluating and comparing three text production
techniques. InProceedingsof the 16th International Confer-
ence on Computational Linguistics.

P. Deransart and J. Maluszynski. 1993.A Grammatical View
of Logic Programming. MIT Press.

Thomas Hallgren. 2000. Alfa Home Page. Available from
http://www.cs.chalmers.se/~hallgren/Alfa/

A. Hartley and C. Paris. 1997. Multili ngual document produc-
tion: from support for translating to support for authoring.
In Machine Translation, Special Issue on New Tools for Hu-
man Translators, pages 109–128.

L. Magnusson and B. Nordström. 1994. The ALF proof editor
and its proof engine. InLecture Notes in Computer Science
806. Springer.

P. Martin-Löf. 1984.Intuitionistic Type Theory. Bibliopolis,
Naples.

W. Pardi. 1999.XML in Action. Microsoft Press.
Fernando C. N. Pereira and David H. D. Warren. 1980. Defi-

nite clause grammars for language analysis.Artificial Intel-
ligence, 13:231–278.

R. Power and D. Scott. 1998. Multili ngual authoring using
feedback texts. InProceedings of the 17th International
Conference on Computational Linguistics and 36th Annual
Meeting of the Association for Computational Linguistics,
pages 1053–1059.

P. Prescod. 1998. Formalizing SGML and XML In-
stances and Schemata with Forest Automata Theory.
http://www.prescod.net/forest/shorttut/.

A. Ranta. 1994.Type-Theoretical Grammar. Oxford Univer-
sity Press.

Aarne Ranta. 2000. GF Work Page. Available from
http://www.cs.chalmers.se/~aarne/GF/

pub/work-index/

W3C, 1998.Extensible Markup Language (XML) 1.0, Febru-
ary. W3C recommendation.

W3C, 1999a. XML Schema - Part 1: Structures, Part 2 :
Datatypes -, December. W3C Working draft.

W3C, 1999b.XSL Transformations (XSLT), November. W3C
recommendation.

