Theory Refinement and Natural Language Learning

Hervé Déjean*
Seminar fiir Sprachwissenschaft
Universitat Tiibingen
dejean@sfs.nphil.uni-tuebingen.de

Abstract

This paper presents a learning system for identify-
ing syntactic structures. This system relies on the
use of background knowledge and default values in
order to build up an initial grammar and the use of
theory refinement in order to improve this grammar.
This combination provides a good machine learning
framework for Natural Language Learning. We il-
lustrate this point with the presentation of ALLAIS,
a learning system which generates a regular expres-
sion grammar of non-recursive phrases from brack-
eted corpora.

1 Introduction

Applying Machine Learning techniques to Natural
Language Processing is a booming domain of re-
search. One of the reasons is the development of cor-
pora with morpho-syntactic and syntactic annota-
tion (Marcus et al., 1993), (Sampson, 1995). One re-
cent popular subtask is the learning of non-recursive
Nouns Phrases (NP) (Ramshaw and Marcus, 1995),
(Tjong Kim Sang and Veenstra, 1999), (Mufioz et
al., 1999), (Group, 1998), (Cardie and Pierce, 1999),
(Buchholz et al., 1999).

When other learning techniques (symbolic or sta-
tistical) are widely used in Natural Language Learn-
ing, theory refinement (Abecker and Schmid, 1996),
(Mooney, 1993) seems to be ignored (except (Brunk
and Pazzani, 1995)). Theory refinement consists of
improving an existing knowledge base so that it bet-
ter accords with data. No work using theory re-
finement applied to the grammar learning paradigm
seems to have been developed. We would like to
point out in this article the adequacy between the-
ory refinement and Natural Language Learning.

To illustrate this claim, we present ALLiS (Archi-
tecture for Learning Linguistic Structures), a learn-
ing system which uses theory refinement in order to
learn non-recursive noun phrases (also called base
noun phrases) and non-recursive verbal phrases. We
will show that this technique combined with the

* This research is funded be the TMR network Learning
Computational Grammars www.lcg-www.uia.ac.be/lcg/

use of default values provides a good architecture
to learn natural language structures.

This article is organised as follows: Section 2 gives
an overview of theory refinement. Section 3 explains
the advantage of combining default values and the-
ory refinement to build a learning system. Section 4
describes the general characteristics of ALLIiS, and
Section 5 explains the learning algorithm. The eval-
uation of ALLIS is described Section 6. The exam-
ples which illustrate this article correspond to En-
glish NPs.

2 Theory Refinement

We present here a brief introduction to theory re-
finement. For a more detailed presentation, we refer
the reader to (Abecker and Schmid, 1996), (Brunk,
1996) or (Ourston and Mooney, 1990). (Mooney,
1993) defines it as:

Theory refinement systems developed in
Machine Learning automatically modify a
Knowledge Base to render it consistent
with a set of classified training examples.

This technique thus consists of improving a given
Knowledge Base (here a grammar) on the basis
of examples (here a treebank). Some impose to
modify the initial knowledge base as little as pos-
sible. Applied in conjunction with existing learning
techniques (Explanation-Based Learning, Inductive
Logic Programming), TR seems to achieve better
results than these techniques used alone (Mooney,
1997). Theory refinement is mainly used (and has its
origin) in Knowledge Based Systems (KBS) (Craw
and Sleeman, 1990). It consists of two main steps:

1. Build a more or less correct grammar on the
basis of background knowledge.

2. Refine this grammar using training examples:

(a) Identify the revision points
(b) Correct them
The first step consists of acquiring an initial gram-

mar (or more generally a knowledge base). In this
work, the initial grammar is automatically induced

from a tagged and bracketed corpus. The second
step (the refinement) compares the prediction of the
initial grammar with the training corpus in order to
firstly identify the revision points, i.e. points that
are not correctly described by the grammar, and
secondly, to correct these revision points. The er-
ror identification and refinement operations are ex-
plained Section 5.3.

The main difference between a TR system and
other symbolic learning systems is that a TR system
must be able to revise existing rules given to the
system as background knowledge. (A system such
as TBL (Brill, 1993) can not be considered as TR
since it only acquires new rules). In the case of other
techniques, new rules are learned in order to improve
the general efficiency of the system (selection of the
“best rule” according to a preference function) and
not in order to correct a specific rule.

3 Theory Refinement, Default values
and Natural Language Learning

This section explains how default values combined
with theory refinement can provide a good machine
learning framework for NLP.

3.1 The Use of Default Values

The use of default values is not new in NLP (Brill,
1993), (Vergne and Giguet, 1998). We can observe
that often (but not necessarily) in a language, an
element belongs to a predominant class (Vergne and
Giguet, 1998). Some systems such as stochastic
models use this property implicitly. Some others use
it explicitly. For instance, the general principle of
the Transformation-Based Learning (Brill, 1993) is
to assign to each element its most frequent category,
and then to learn transformation rules which cor-
rect its initial categorisation. A second example is:
the parser described in (Vergne and Giguet, 1998).
They first assign to each grammatical word a de-
fault category (default tag), and then might modify
it thanks to local contexts and grammatical relation
assignment (in order to deal with constraints due to
long distance relations which can not be expressed
by local contexts).

The main work is done by the lexicon and by de-
fault values (even if further operations are obviously
necessary)

These approaches are thus different for the disam-
biguation often used in tagging. The default rules
are not numerous (one per tag), easy to automati-
cally generate but they nevertheless produce a sat-
isfactory starting level.

3.2 The Combination of Default Values
with TR

The idea on which ALLiS relies is the following: a

first “naive grammar” is built up using default val-

ues, and then TR is used in order to provide a “more

realistic grammar”. This initial grammar assigns to
each element its default category (the algorithm is
explained in Section 5.2). The rules learned are cat-
egorisation rules: assign a category to an element (a
tag or a word). Since an element is automatically
assigned to its default category, the system has not
to learn the categorisation rules for its category, and
just learns categorisation rules which correspond to
cases in which the element does not belong to its de-
fault category. This minimised the number of rules
that have to be learned. Suppose the element e can
belong to several categories (a frequent case). The
first rule learned is the “default” rule: assign(e,dc),
where dc is the default category of e. Then ALLIS
just learns rules for cases where e does no belong to
its default category. The numerous rules concern-
ing the default category are replaced by the simple
default rule.

4 ALLiS

The goal of ALLiS! is to automatically build a regu-
lar expression grammar from a bracketed and tagged
corpus?. In this training data, only the structures
we want to learn are marked at their boundaries by
square brackets®. The following sentence shows an
example of the training corpus for the NP structure

(only base-NPs occur inside brackets).

In/IN [early/JJ trading/NN] in/IN |
Hong/NNP Kong/NNP | [Monday/NNP
1./, [gold/NN] was/VBD quoted/VBN
at/IN [$/$ 366.50/CD]| [an/DT
ounce/NN | ./.

ALLIS uses an internal formalism in order to rep-
resent the grammar rules. In order to parse a text,
a module converts its formalism into a regular ex-
pression grammar which can be used by a parser us-
ing such representation (two modules exist: one for
the CASS parser (Abney, 1996) and one for XFST
(Karttunen et al., 1997)).

Following the principle of theory refinement, the
learning task is composed of two steps. The first step
is the generation of the initial grammar. This gram-
mar is generated from examples and background
knowledge (Section 5). This initial grammar pro-
vides an incomplete and/or incorrect analysis of the
data. The second step is the refinement of this gram-
mar (Section 5.3). During this step, the validity of
the grammar rules is checked and the rules are im-
proved (refined) if necessary. This improvement cor-
responds to find contexts in which elements which

'http://www.sfbdd1 .uni-tuebingen.de/ dejean/
chunker.html.

2The WSJ corpus (Marcus et al., 1993).

3(Mufioz et al., 1999) showed that this representation
tends to provide better results than the representation used
in (Ramshaw and Marcus, 1995) where each word is tagged
with a tag I(inside), O(outside), or B(breaker).

are considered to be members of the structure do
not belong to this structure (and reciprocally).

We give here a simple example to illustrate the
learning process. The first step (initial grammar
generation) categorises the tag JJ (adjective) as be-
longing by default to the NP structure if it occurs
before a noun. The second step (refinement) finds
out that some adjectives do not obey to these rules*.
The refinement is triggered in order to modify the
default rule so that these exceptions can be correctly
processed.

Thus, the learning algorithm simply consists of
categorising the elements of the corpus (tags and
words) into specific categories, and this categorisa-
tion allows the extraction of the structures we want
to learn. These categories are explained in the next
section.

5 The Learning System
5.1 The Background Knowledge

In order to ease the learning, the system uses back-
ground knowledge. This knowledge provides a for-
mal and general description of the structures that
ALL;S can learn. We suppose that the structures are
composed of a nucleus with optional left and right
adjuncts. We here give informal definitions, the for-
mal/distributional ones are given in Section 5.2.

The nucleus is the head of the structure. We
authorise the presence of several nuclei in the same
structure.

All the other elements in the structure (except
the linker) are considered as adjuncts. They are
in dependence relation with the head of the struc-
ture. The adjuncts are characterised by their posi-
tion (left/right) relative to the nucleus.

A linker is a special element which builds an en-
docentric structure with two elements. It usually
corresponds to coordination®.

An element (nucleus or adjunct) might possess the
break property. This notion is introduced (as in
(Ramshaw and Marcus, 1995), (Munoz et al., 1999))
in order to deal with sequences where adjacent nuclei
compose several structures (Section 5.2.4).

This pattern can be seen as a variant of the X-
bar template (Head, Spec and Comp), which was
already used in a learning system (Berwick, 1985)
(although Comp is not useful for the non-recursive
structures).

The possible different categories of an element are
summarised in Figure 5.1.

The following sentence shows an example of cat-
egorisation (elements which do not appear in the
structure (NP) are tagged O):

4For example: [the/DT 7/CD %/NN benchmark/NN is-
sue/NN | due/JJ [October/NNP 1999/CD].

50nly linkers occurring between the two coordinated ele-
ments are processed.

CAT
ouT IN

A NU
+V/[B +/- B

Figure 1: The different categories.

Ing earlyyg, tradingyy ing Hongyy Kongyy
Mondayyuyg, ,0 goldyy wasg quotedg atg $p
366.50yy anpg, ounceyy .o

The structure is formally defined as:
* * * *
S— A [Al,b- NUb- Ar,b— 1+ Ar,b+

Lb+
% % * %
| A A NUb+ Ar b A

Lb+ “Lb- b bt
The symbol * corresponds to the Kleene star. For
the sake of legibility, we do not introduce linkers in
this expression. But each symbol X (NU, A) can
be defined by the rule® X — X | X | X where [is
the list of linkers. The symbols B+ and B— indicate
whether the element has the breaker property or not.
Since the corpus does not contain information
about these distributional categories, ALLiS has to
figure them out. This categorisation relies on the
distributional behaviour of the elements, and can be
automatically achieved.

5.2 The Initial Categorisation

The general idea to categorise elements is to use spe-
cific contexts which point out some of the distribu-
tional properties of the category. The categorisation
is a sequential process. First the nuclei have to be
found out. For each tag of the corpus, we apply
the function f (described below). This function
selects a list of elements which are categorised as
nuclei. The function fb is applied to this list in or-
der to figure out nuclei which are breakers. Then
the adjuncts are found out, and the function fb is
also applied to them to figure out breakers.

5.2.1 Categorisation of Nuclei

The context used to find out the nuclei relies on this
simple following observation: A structure requires
at least one nucleus’. Thus, the elements that oc-
cur alone in a structure are assimilated to nucleus,
since a structure requires a nucleus. For example,
the tags PRP (pronouns) and NNP (proper nouns)
may compose alone a structure (respectively 99%

6The regular expression formalism does not allow such
rule, and then, this recursion is simulated.

"The partial structures (structures without nucleus) repre-
sent 2% of all the structures in the training corpus, and then
introduce little noise.

and 48% of these tags appear alone in NP) but the
tag JJ appears alone only 0.009%. We deduce that
PRP and NNP belong to the nuclei and not JJ. But
this criterion does not allow the identification of all
the nuclei. Some often appear with adjuncts (an En-
glish noun (NN) often® occurs with a determiner or
an adjective and thus appears alone only 13%). The
single use of this characteristic provides a continuum
of values where the automatic set up of a threshold
between adjuncts and nuclei is problematic and de-
pends on the structure. To solve this problem, the
idea is to decompose the categorisation of nuclei in
two steps. First we identify characteristic adjuncts.
The adjuncts can not appear alone since they de-
pend on a nucleus. The function f is built so
that it provides a very small value for adjuncts. If
the value of an element is lower than a given thresh-
old (Gchar = 0.05), then it is categorised as a char-

acteristic adjunct.

f 2o]

char(X) B ZC X

> P corresponds to the number of occurrences of
the pattern P in the corpus C. For example the
number of occurrences in the training corpus of the
pattern [J.J] is 99, and the number of occurrences of
the pattern JJ (including the pattern [JJ]) is 11097.
So fchar(JJ) = 0.009, value being low enough to
consider JJ as a characteristic adjunct. The list pro-
vided by fcha.r for English NP is:

Achar ={DT,PRPS$,POS,JJ,JJR,JJS, ", "}

These elements can correspond to left or right ad-
juncts. All the adjuncts are not identified, but this
list allows the identification of the nuclei as ex-
plained in the next paragraph.

The second step consists of introducing these ele-
ments into a new pattern used by the function fnu.
This pattern matches elements surrounded by these
characteristic adjuncts. It thus matches nuclei which
often appear with adjuncts. Since a sequence of ad-
juncts (as an adjunct alone) can not alone compose a
complete structure, X only matches elements which
correspond to a nucleus.

— EC [Achar* X Achar*]

o) g

nu
c

The function fIlu is a good discrimination function

between nuclei and adjuncts and provides very low
values for adjuncts and very high values for nuclei
(table 1).

5.2.2 Categorisation of Adjuncts

Once the nuclei are identified, we can easily find out
the adjuncts. They correspond to all the other ele-
ments which appear in the context: There are two

8 At least, in the training corpus.

X Freq(x) fpy(z) nucleus
POS 1759 0.00 1no
PRP$ 1876 0.01 no
JJ 11097 0.02 no
DT 18097 0.03 no
RB 919 0.06 no
NNP 11046 0.74 yes
NN 21240 0.87 yes
NNPS 164 0.93 yes
NNS 7774 0.95 yes
WP 527 0.97 yes
PRP 3800 0.99 yes

Table 1: Detection of some nuclei of the English NP
(nouns and pronouns).

kinds of adjuncts: the left and the right adjuncts.
The contexts used are:

[-NU] for the left adjuncts
[A*NU _|] for the right adjuncts

If an element appears at the position of the under-
score, it is categorised as adjunct. Once the left
adjuncts are found out, they can be used for the cat-
egorisation of the right adjuncts. They thus appear
in the context as optional elements (this is helpful
to capture circumpositions).

Since the Adjective Phrase occurring inside an NP
is not marked in the Upenn treebank, we introduce
the class of adjunct of adjunct. The contexts used
to find out the adjuncts of the left adjunct are:

[-A]NU] for the left adjuncts of A
[1* A] - NU] for the right adjuncts of A}

The contexts are similar for adjuncts of right ad-
juncts.

5.2.3 The Linkers

By definition, a linker connects two elements, and
appears between them. The contexts used to find
linkers are:

[NU_NU] linker of nuclei
[A_ANU] linker of left adjuncts
[NUA_A] linker of right adjuncts

Elements which occur in these contexts but which
have already been categorised as nucleus or adjuncts
are deleted from the list.

5.2.4 The Break Property

A sequence of several nuclei (and the adjuncts which
depend on them) can belong to a unique structure
or compose several adjacent structures. An element
is a breaker if its presence introduces a break into a
sequence of adjacent nuclei. For example, the pres-
ence of the tag DT in the sequence NN DT JJ NN
introduces a break before the tag DT, although the

sequence NN JJ NN (without DT) can compose a
single structure in the training corpus.

...[the/DT coming/VBG week/NN]
[the/DT foreign/JJ exchange/NN mar-

ket/NN] ...

The tag DT introduces a break on its left, but some
tags can introduce a break on their right or on their
left and right. For instance, the tag WDT (NU by
default) introduces a break on its left and on its
right. In other words, this tag can not belong to
the same structure as the preceding adjacent nucleus
and to the same structure as the following adjacent
nucleus.

.. [railroads/NNS and/CC trucking/NN
companies/NNS]| [that/WDT | be-
gan/VBD in/IN [1980/CD | ...

...in/IN [which/WDT] [people/NNS]
generally/RB are/VBP ...

In order to detect which tag has the break property,

we build up two functions f and f

b left b right

Y NUT[X

(X)_Zz NU X
wb

YL X1INU

fbright(X)_EO X NU

. wb
C | : corpus without brackets
wb

NU : {nuclei}

These functions are used to compute the break prop-
erty for nuclei, but also for adjuncts (In this case,
the pattern X is completed by adding the element
NU to the left or to the right of X (the potential
adjunct) according to the kind of adjunct (left or
right adjunct)). The table 2 shows some values for
some tags. An element can be a left breaker (DT), a
right breaker (no example for English NP at the tag
level), or both (PRP). The break property is gener-
ally well-marked and the threshold is easy to set up
(0.66 in practice).

TAG f tert fh, right

DT 0.97 (yes) 0.00(no)
PRP 0.97 (yes) 0.68(yes)
POS 0.95 (yes) 0.00(no)
PRP$ 0.94 (ves) 0.00(no)
JJ 0.44 (no) 0.00(no)
NN 0.04 (no) 0.11(no)
NNS 0.03 (no) 0.14(no)

Table 2: Breaker determination. Values of the func-

tions fb left and fb right for some elements.

In the refinement step (Section 5.3), the breaker
property can be extended to words. Thus, the word

yesterday is considered as a right breaker, although
its tag (NN) is not.

5.3 The Refinement Step
5.3.1 The notion of reliability

The preceding functions identify the category of an
element when it occurs in the structure. But an ele-
ment can occur in the structure as well as out of the
structure. For example, the tag VBG is only consid-
ered as adjunct when it occurs in the structure. Nev-
ertheless, it mainly occurs out of the structure (84%
of its occurrences). If an element mainly? occurs out
of the structure, it is considered as non-reliable and
its default category is OUT. For each element occur-
ring inside the structure, its reliable is tested. The
initial grammar corresponds to the grammar which
only contains the reliable elements. Its precision and
its recall are around 86%.

How is determined the reliability of an element?
This notion of reliable element is contextual and de-
pends on the category of the element.

For the nuclei, the context is empty. We just com-
pute the ratio between the number of occurrences in
the structure over the number of occurrences occur-
ring outside of the structure.

For the adjuncts, the context includes an adja-
cent nucleus (on the right for left adjuncts or on the
left for right adjuncts). For instance, the tag JJ is
categorised as left adjunct for the English NP. It ap-
pears 9617 times before a nucleus and 9489 times
in the structure. It is thus considered as reliable,
and its default category is left adjunct. In the case
where the tag JJ occurs without nucleus on its right
(a predicative use), it is not considered as adjunct
and this kind of occurrences is not used to deter-
mine the reliability of the element. On the contrary,
the tag VBG appears 468 times before a nucleus,
but, in this context, it occurs only 138 times in the
structure. This is not enough (29%) to consider the
element as a reliable left adjunct, and thus its de-
fault category is OUT. For the adjunct of adjunct,
the context includes adjunct and nucleus.

5.3.2 Detection of errors

Once the initial grammar is built up, its errors have
to be corrected. The detection of the errors corre-
sponds to a miscategorisation of a tag. An automatic
error done by the initial grammar is to wrongly anal-
yse the structures composed with non-reliable ele-
ments (false negative examples). Each time that a
non-reliable element occurs in the structure corre-
sponds to an error. For instance, the initial grammar
can not correctly recognise the following sequence as
an NP, the default category of the tag VBG being
OUT (outside the structure):

...[the/DT coming/VBG week/NN] ...

9The threshold used is of 50%.

The second kind of errors corresponds to se-
quences wrongly recognised as structures (false pos-
itive examples). This kind of error is generated by
reliable elements which exceptionally do not occur in
the structure. In the following example, order/NN
occurs outside of the structure, although the default
category of the tag NN is NU (nucleus), and thus
the initial grammar recognises an NP.

...in/IN order/NN to/TO pay/VB ...

5.3.3 Correction

In both kinds of errors, the same technique is used
to correct them. For this purpose, ALLiS disposes
of two operators, the contextualisation and the lex-
icalisation.

The contextualisation consists of finding out con-
texts in order to fix the errors. The idea is to add
constraints for recategorising non-reliable elements
as reliable!®. The presence of some specific elements
can completely change the behaviour of a tag. The
table 3 shows the list of contexts where the tag VBN
is not categorised as OUT but as left Adjunct.

PRPS VBG NU
IN[VBG NU
DT VBG NU
1] VBG NU
POS VBG NU
VBG|[VBG NU

Table 3: Some contexts where the non-reliable ele-
ment VBN becomes reliable.

For each tag occurring in the structure, all the
possible contexts!! are generated. For the non-
reliable tags (first kind of error), we evaluate the
reliability of them contextually, and we delete the
contexts in which the tag is still non-reliable (the
list of contexts can be empty, and in this case the
error can not be fixed). For the reliable tags (second
kind of error), we keep the contexts in which the tag
is categorised OUT.

The lexicalisation consists of introducing lexical
information: the word level. Some words can have
a specific behaviour which does not appear at the
Part-Of-Speech (POS) level. For instance, the word
yesterday is a left breaker, behaviour which can not
be figured out at the POS level (Table 4). The in-
troduction of the lexicalisation improves the result
by 2% (Section 6).

The lexicalisation and the contextualisation can
be combined when both separately are not powerful
enough to fix the error. For example, the word about
tagged RB (default category of RB: OUT) followed

10The same technique is used in (Sima’an, 1997).
1 The contexts depend on the category of the tag, but are
just composed of one element.

word (context) default cat. new cat.
about/RB (- CD) OUT AL B+
order (IN _ TO) NU ouT
yesterday /NN NUB. NUB+
operating/VBG ouT AlB-
last/JJ ALB- Al B+

Table 4: Some specific lexical behaviours.

by the tag CD is recategorised as left adjunct and
left breaker (Table 4).

6 Evaluation

We now show some results and give some compar-
isons with other works (Table 5). The results are
quite similar to other approaches. Two rates are
measured: precision an recall.
R = Number of correct proposed patterns
Number of correct patterns

P= Number of correct proposed patterns
- Number of proposed patterns

The training data are composed of the sections
15-18 of the Wall Street Journal Corpus (Marcus et
al., 1993), and we use the section 20 for the test
corpus'?. The data is tagged with the Brill tag-
ger. The works generating symbolic rules like ALLiS
are (Ramshaw and Marcus, 1995) (Transformation-
Based learning) and (Cardie and Pierce, 1998)
(error-driven pruning of treebank grammars). AL-
LiS provides better results than them. (Argamon
et al., 1998) use a Memory-Based Shallow Learning
system, (Tjong Kim Sang and Veenstra, 1999) the
Memory-Based Learning method and (Muiloz et al.,
1999) uses a network of linear functions. The latter
work seems to integrate better lexical information
since ALLIS gets better results with POS only.

POS only with words

NP MPRZ99 90.3/90.9 92.40/93.10

ALLiS 91.0/91.2 92.56/92.36

TV99 92.50/92.25
ADK98 91.6/91.6

RM95 90.7/90.5 92.3/91.8
CP98 91.1/90.7

VP ALLiS 91.39/90.52 92.15/91.95

Table 5: Results for NP and VP structures (preci-
sion/recall).

The main errors done by ALLiS are due to er-
rors of tagging (the corpus is tagged with the Brill
tagger) or errors in the bracketing of the training
corpus. Then, the second type of errors concerns

12This data set is available via ftp://ftp.cis.upenn.edu/
pub/chunker/.

the coordinated structures. These two types errors
correspond to 51% of the overall errors. We can find
the same typology in other works (Ramshaw and
Marcus, 1995), (Cardie and Pierce, 1998). We did
some tries in order to manually improve the final
grammar, but the only type of errors which can be
manually improved concerns the problem of the quo-
tation marks (the improvement is about of 0.2% in
precision and recall).

Error types # %

tagging /bracketing errors 57 28.5%
coordination 45 22.5%
gerund 15 7.5%
adverb 13 6.5%
appositives 13 6.5%
quotation marks, punctuation 10 5 %
past participle 9 4.5%
that (IN) 6 3%

Table 6: Typology of the 200 first errors.

References

Andreas Abecker and Klaus Schmid. 1996. From
theory refinement to kb maintenance: a position
statement. In ECAI’96, Budapest, Hungary.

Steven Abney. 1996. Partial parsing via finite-state
cascades. In Proceedings of the ESSLLI 96 Robust
Parsing Workshop.

Shlomo Argamon, Ido Dagan, and Yuval Kry-
molowski. 1998. A memory-based approach to
learning shallow natural language patterns. In
COLING’98, Montréal.

Robert C. Berwick. 1985. The acquisition of syntac-
tic knowledge. MIT press, Cambridge.

Eric Brill. 1993. A Corpus-Based Approach to
Language Learning. Ph.D. thesis, Department of
Computer and Information Science, University of
Pennsylvania.

Clifford Alan Brunk and Michael Pazzani. 1995.
A lexically based semantics bias for theory revi-
sion. In Morgan Kauffman, editor, Twelfth Inter-
national Conference on Machine Learning, pages
81-89.

Clifford Alan Brunk. 1996. An investigation
of Knowledge Intensive Approaches to Concept
Learning and Theory Refinement. Ph.D. thesis,
University of California, Irvine.

Sabine Buchholz, Jorn Veenstra, and Walter Daele-
mans. 1999. Cascaded grammatical relation as-
signment. In Proceedings of EMNLP/VLC-99,
pages pp. 239-246, University of Maryland, USA.

Claire Cardie and David Pierce. 1998. Error-driven
pruning of treebank grammars for base noun
phrase identification. In Proceedings of the 17th

International Conference on Computational Lin-
guistics (COLING-ACL ’98).

Claire Cardie and David Pierce. 1999. The role of
lexicalization and pruning for base noun phrase
grammars. In Proceedings of the Sizteenth Na-
tional Conference on Artificial Intelligence.

Susan Craw and D. Sleeman. 1990. Automating the
refinement of knowledge-based systems. In Pro-
ceedings of the ECAI’90 Conference, pages 167—
172.

The XTAG Research Group. 1998. A lexicalized
tree adjoining grammar for english. Technical Re-
port IRCS 98-18, University of Pennsylvania.

Lauri Karttunen, Tam&s Gal, and André Kempe.
1997. Xerox finite-state tool. Technical report,
Xerox Research Centre Europe, Grenoble.

Mitchell Marcus, Béatrice Santorini, and Marc Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: the penn treebank. Computa-
tional Linguistics, 19(2):313-330.

Raymond J. Mooney. 1993. Induction over the un-
explained: Using overly-general domain theories
to aid concept learning. Machine Learning, 10:79.

Raymond J. Mooney. 1997. Inductive logic pro-
gramming for natural language processing. In
Sizth International Inductive Logic Programming
Workshop, pages 205224, Stockholm,Sweden.

Marcia Munoz, Vasin Punyakanok, Dan Roth, and
Dav Zimak. 1999. A learning approach to shallow
parsing. In Proceedings of EMNLP-WVLC’99.

Dirk Ourston and Raymond Mooney. 1990. Chang-
ing the rules: A comprehensive approach to theory
refinement. In Proceedings of the FEight National
Conference on Artificial Intelligence, pages 815—
820.

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text chunking using transformation-based learn-
ing. In ACL Third Workshop on Very Large Cor-
pora, pages 82-94.

Geoffrey Sampson. 1995. English for the Computer.
The SUSANNE Corpus and Analytic Scheme.
Oxford: Clarendon Press.

Khalil Sima’an. 1997. Explanation-based learning
of data oriented parsing. In T. Mark Ellison, ed-
itor, Computational Natural Language Learning
(CoNLL), ACL/EACL-97, Madrid.

Erik Tjong Kim Sang and Jorn Veenstra. 1999.
Representing text chunks. In Proceedings of
EACL’99, Association for Computational Lin-
guistics, Bergen.

Jacques Vergne and Emmanuel Giguet. 1998. Re-
gards théoriques sur le ”tagging”. In proceed-
ings of Traitement Automatique des Langues Na-
turelles (TALN 1998), Paris.

