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Abstract
This paper presents an empirical assessment of the LFG-
DOP model introduced by Bod & Kaplan (1998). The
parser we describe uses fragments from LFG-annotated
sentences to parse new sentences and Monte Carlo
techniques to compute the most probable parse. While
our main goal is to test Bod & Kaplan's model, we will
also test a version of LFG-DOP which treats generalized
fragments as previously unseen events. Experiments with
the Verbmobil and Homecentre corpora show that our
version of LFG-DOP outperforms Bod & Kaplan's
model, and that LFG's functional information improves
the parse accuracy of tree structures.

1  Introduction
We present an empirical evaluation of the LFG-DOP
model introduced by Bod & Kaplan (1998). LFG-DOP is
a Data-Oriented Parsing (DOP) model (Bod 1993, 98)
based on the syntactic representations of Lexical-
Functional Grammar (Kaplan & Bresnan 1982). A DOP
model provides linguistic representations for an unlimit-
ed set of sentences by generalizing from a given corpus
of annotated exemplars. It operates by decomposing the
given representations into (arbitrarily large) fragments
and recomposing those pieces to analyze new sentences.
The occurrence-frequencies of the fragments are used to
determine the most probable analysis of a sentence.

So far, DOP models have been implemented for
phrase-structure trees and logical-semantic represent-
ations (cf. Bod 1993, 98; Sima'an 1995, 99; Bonnema et
al. 1997; Goodman 1998). However, these DOP models
are limited in that they cannot account for underlying
syntactic and semantic dependencies that are not
reflected directly in a surface tree. DOP models for a
number of richer representations have been explored
(van den Berg et al. 1994; Tugwell 1995), but these
approaches have remained context-free in their
generative power. In contrast, Lexical-Functional
Grammar (Kaplan & Bresnan 1982) is known to be
beyond context-free. In Bod & Kaplan (1998), a first
DOP model was proposed based on representations

defined by LFG theory ("LFG-DOP").1 This model was

1 DOP models have recently also been proposed for Tree-
Adjoining Grammar and Head-driven Phrase Structure
Grammar  (cf. Neumann & Flickinger 1999).

studied from a mathematical perspective by Cormons
(1999) who also accomplished a first simple experiment
with LFG-DOP. Next, Way (1999) studied LFG-DOP as
an architecture for machine translation. The current
paper contains the first extensive empirical evaluation
of LFG-DOP on the currently available LFG-annotated
corpora: the Verbmobil corpus and the Homecentre
corpus. Both corpora were annotated at Xerox PARC.

Our parser uses fragments from LFG-annotated
sentences to parse new sentences, and Monte Carlo
techniques to compute the most probable parse.
Although our main goal is to test Bod & Kaplan's LFG-
DOP model, we will also test a modified version of
LFG-DOP which uses a different model for computing
fragment probabilities. While Bod & Kaplan treat all
fragments probabilistically equal regardless whether
they contain generalized features, we will propose a
more fine-grained probability model which treats
fragments with generalized features as previously
unseen events and assigns probabilities to these
fragments by means of discounting. The experiments
indicate that our probability model outperforms Bod &
Kaplan's probability model on the Verbmobil and
Homecentre corpora.

The rest of this paper is organized as follows:
we first summarize the LFG-DOP model and go into our
proposed extension. Next, we explain the Monte Carlo
parsing technique for estimating the most probable LFG-
parse of a sentence. In section 3, we test our parser on
sentences from the LFG-annotated corpora.

2  Summary of LFG-DOP and an Extension
In accordance with Bod (1998), a particular DOP model
is described by specifying settings for the following four
parameters:

•  a formal definition of a well-formed representation for
utterance analyses,

•  a set of decomposition operations that divide a given
utterance analysis into a set of fragments,

•  a set of composition operations  by which such
fragments may be recombined to derive an analysis of a
new utterance, and

•  a probability model that indicates how the probability
of a new utterance analysis is computed.



In defining a DOP model for Lexical-Functional
Grammar representations, Bod & Kaplan (1998) give
the following settings for DOP's four parameters.

2.1  Representations
The representations used by LFG-DOP are directly taken
from LFG: they consist of a c-structure, an f-structure

and a mapping φ between them (see Kaplan & Bresnan
1982). The following figure shows an example
representation for the utterance Kim eats. (We leave out
some features to keep the example simple.)

S

NP VP

Kim eats

PRED   'Kim'

NUM     SG  
SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 1. A representation for Kim eats

Bod & Kaplan also introduce the notion of accessibility
which they later use for defining the decomposition
operations of LFG-DOP:

An f-structure unit f is φ-accessible from a node n iff

either n  is φ-linked to f (that is, f = φ(n) ) or f is

contained within φ(n) (that is, there is a chain of

attributes that leads from φ(n) to f).

According to the LFG representation theory, c-structures
and f-structures must satisfy certain formal well-
formedness conditions. A c-structure/f-structure pair is a
val id  LFG representation only if it satisfies the
Nonbranching Dominance, Uniqueness, Coherence and
Completeness conditions (see Kaplan & Bresnan 1982).

2.2  Decomposition operations and Fragments
The fragments for LFG-DOP consist of connected

subtrees whose nodes are in φ-correspondence with the
correponding sub-units of f-structures. To give a precise
definition of LFG-DOP fragments, it is convenient to
recall the decomposition operations employed by the
simpler "Tree-DOP" model which is based on phrase-
structure trees only (Bod 1998):

(1)  Root: the Root operation selects any node of a tree
to be the root of the new subtree and erases all
nodes except the selected node and the nodes it
dominates.

(2)  Frontier: the Frontier operation then chooses a set
(possibly empty) of nodes in the new subtree
different from its root and erases all subtrees
dominated by the chosen nodes.

Bod & Kaplan extend Tree-DOP's Root and Frontier
operations so that they also apply to the nodes of the c-

structure in LFG, while respecting the fundamental
principles of c-structure/f-structure correspondence.

When a node is selected by the Root operation,
all nodes outside of that node's subtree are erased, just

as in Tree-DOP. Further, for LFG-DOP, all φ l inks
leaving the erased nodes are removed and all f-structure

units that are not φ-accessible from the remaining nodes
are erased. For example, if Root selects the NP in figure
1, then the f-structure corresponding to the S node is
erased, giving figure 2 as a possible fragment:

NP

Kim

PRED   'Kim'

NUM     SG 

Figure 2. An LFG-DOP fragment obtained by Root

In addition the R o o t  operation deletes from the
remaining f-structure all semantic forms that are local to
f-structures that correspond to erased c-structure nodes,
and it thereby also maintains the fundamental two-way
connection between words and meanings. Thus, if Root
selects the VP node so that the NP is erased, the subject
semantic form "Kim" is also deleted:

VP

eats

NUM     SG SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 3. Another LFG-DOP fragment

As with Tree-DOP, the Frontier operation then selects a
set of frontier nodes and deletes all subtrees they

dominate. Like Root, it also removes the φ links of the
deleted nodes and erases any semantic form that
corresponds to any of those nodes. Frontier does not
delete any other f-structure features, however. For
instance, if the NP in figure 1 is selected as a frontier
node, Frontier erases the predicate "Kim" from the
fragment:

eats

S

NP VP

NUM    SG SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 4. A Frontier-generated fragment

Finally, Bod & Kaplan present a third decomposition
operation, Discard, defined to construct generalizations
of the fragments supplied by Root and Frontier. Discard
acts to delete combinations of attribute-value pairs
subject to the following condition: Discard does not

delete pairs whose values φ-correspond to remaining c-



structure nodes. Discard produces fragments such as in
figure 5, where the subject's number in figure 3 has been
deleted:

VP

eats

SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 5. A Discard -generated fragment

2.3  The composition operation
In LFG-DOP the operation for combining fragments,
indicated by °, is carried out in two steps. First the c-

structures are combined by left-most substitution subject
to the category-matching condition, just as in Tree-DOP
(cf. Bod 1993, 98). This is followed by the recursive
unification of the f-structures corresponding to the
matching nodes. A derivation for an LFG-DOP
representation R is a sequence of fragments the first of
which is labeled with S and for which the iterative
application of the composition operation produces R.

The two-stage composition operation is
illustrated by a simple example. We therefore assume a
corpus containing the representation in figure 1 for the
sentence Kim eats and the representation in figure 6 for
the sentence John fell.

S

NP VP

PRED 'John'

NUM    SG 
SUBJ

TENSE      PAST

PRED       'fall(SUBJ)'John fell

Figure 6. Corpus representation for John fell

Figure 7 shows the effect of the LFG-DOP composition
operation using two fragments from this corpus, resulting
in a representation for the new sentence Kim fell.

S

NP VP

NUM    SG SUBJ

TENSE      PAST

PRED      'fall(SUBJ)'fell

° =
NP

Kim

PRED    'Kim'

NUM     SG 

S

NP VP

PRED 'Kim'

NUM    SG 
SUBJ

TENSE      PAST

PRED      'fall(SUBJ)'Kim fell

Figure 7. Illustration of the composition operation

This representation satisfies the well-formedness
conditions and is therefore valid. Note that the sentence
Kim fell can be parsed by fragments that are generated
by the decomposition operations Root and Frontier only,
without using generalized fragments (i.e. fragments

generated by the Discard operation). Bod & Kaplan
(1998) call a sentence "grammatical with respect to a
corpus" if it can be parsed without generalized
fragments. Generalized fragments are needed only to
parse sentences that are "ungrammatical with respect to
the corpus".

2.4  Probability models
As in Tree-DOP, an LFG-DOP representation R  can
typically be derived in many different ways. If each
derivation D has a probability P(D), then the probability
of deriving R  is the sum of the individual derivation
probabilities, as shown in (1):

(1) P(R)  =  ΣD derives R P(D)

An LFG-DOP derivation is produced by a stochastic
process which starts by randomly choosing a fragment
whose c-structure is labeled with the initial category
(e.g. S). At each subsequent step, a next fragment is
chosen at random from among the fragments that can be
composed with the current subanalysis. The chosen
fragment is composed with the current subanalysis to
produce a new one; the process stops when an analysis
results with no non-terminal leaves. We will call the set
of composable fragments at a certain step in the
stochastic process the competition set at that step. Let
CP(f | CS) denote the probability of choosing a fragment
f from a competition set CS containing f, then the
probability of a derivation D = <f1, f2 ... fk> is

(2) P(<f1, f2 ... fk>)  =  Π i CP(fi  | CSi )

where the competition probability CP(f | CS) is ex-
pressed in terms of fragment probabilities P(f):

Σf'∈ CS P(f')

P(f)  

(3) CP(f | CS)  =

Bod & Kaplan give three definitions of increasing
complexity for the competition set: the first definition
groups all fragments that only satisfy the Category-
matching condition of the composition operation (thus
leaving out the Uniqueness, Coherence and Complete-
ness conditions); the second definition groups all
fragments which satisfy both Category-matching and
Uniqueness; and the third definition groups all fragments
which satisfy Category-matching, Uniqueness and
Coherence. Bod & Kaplan point out that the
Completeness condition cannot be enforced at each step
of the stochastic derivation process. It is a property of
the final representation which can only be enforced by
sampling valid representations from the output of the
stochastic process.

In this paper, we will only deal with the third
definition of competition set, as it selects only those



fragments at each derivation step that may finally result
in a valid LFG representation, thus reducing the off-line
validity checking just to the Completeness condition.

Notice that the computation of the competition
probability in (3) still requires a definition for the
fragment probability P(f). Bod & Kaplan define the
probability of a fragment simply as its relative frequency
in the bag of all fragments generated from the corpus.
Thus Bod & Kaplan do not distinguish between
Root /Frontier-generated fragments and Discard -
generated fragments, the latter being generalizations
over Root/Frontier-generated fragments. Although Bod
& Kaplan illustrate with a simple example that their
probability model exhibits a preference for the most
specific representation containing the fewest feature
generalizations (mainly because specific representations
tend to have more derivations than generalized
representations), they do not perform an empirical
evaluation of their model. We will assess their model on
the LFG-annotated Verbmobil and Homecentre corpora
in section 3 of this paper.

However, we will also assess an alternative
definition of fragment probability which is a refinement
of Bod & Kaplan's model. This definition d o e s
distinguish between fragments supplied by Root/Frontier
and fragments supplied by Discard. We will treat the
first type of fragments as seen events, and the second
type of fragments as previously unseen events. We thus
create two separate bags corresponding to two separate
distributions: a bag with fragments generated by Root
and Frontier, and a bag with fragments generated by
Discard. We assign probability mass to the fragments of
each bag by means of d i scoun t ing : the relative
frequencies of seen events are discounted and the
gained probability mass is reserved for the bag of unseen
events (cf. Ney et al. 1997). We accomplish this by a
very simple estimator: the Turing-Good estimator (Good
1953) which computes the probability mass of unseen
events as n1/N  where n1 is the number of singleton

events and N  is the total number of seen events. This
probability mass is assigned to the bag of Discard-

generated fragments. The remaining mass (1 − n1/N) is

assigned to the bag of R o o t /Front ier - g e n e r a t e d
fragments. Thus the total probability mass is
redistributed over the seen and unseen fragments. The
probability of each fragment is then computed as its

relative frequency2 in its bag multiplied by the proba-
bility mass assigned to this bag. Let | f | denote the
frequency of a fragment f, then its probability is given
by:

2 Bod (2000) discusses some alternative fragment probability
estimators, e.g. based on maximum likelihood.

| f |

Σf': f' is generated by Root/Frontier | f'|
(1 − n1/N)

(4) P(f | f is generated by Root /Frontier)  =

(5) P(f | f is generated by Discard)  =

(n1/N)
| f |

Σf': f' is generated by Discard  | f' |

Note that this probability model assigns less probability
mass to Discard-generated fragments than Bod &
Kaplan's model. For each Root /Frontier-generated
fragment there are exponentially many Discard -
generated fragments (exponential in the number of
features the fragment contains), which means that in
Bod & Kaplan's model the Discard-generated fragments
absorb a vast amount of probability mass. Our model, on
the other hand, assigns a fixed probability mass to the
distribution of Discard -generated fragments and
therefore the exponential explosion of these fragments
does not affect the probabilities of Root /Frontier-
generated fragments.

3  Testing the LFG-DOP model
3.1 Computing the most probable analysis
In his PhD-thesis, Cormons (1999) describes a parsing
algorithm for LFG-DOP which is based on the Tree-DOP
parsing technique given in Bod (1998). Cormons first
converts LFG-representations into more compact
indexed trees: each node in the c-structure is assigned

an index which refers to the φ-corresponding f-structure
unit. For example, the representation in figure 6 is
indexed as

(S.1 (NP.2 John.2)
(VP.1 fell.1))

where

1 --> [  (SUBJ = 2)
(TENSE = PAST)
(PRED = fall(SUBJ)) ]

2 --> [ (PRED = John)
          (NUM = SG) ]

The indexed trees are then fragmented by applying the
Tree-DOP decomposition operations described in section
2. Next, the LFG-DOP decomposition operations Root,
Frontier and Discard are applied to the f-structure units
that correspond to the indices in the c-structure subtrees.
Having obtained the set of LFG-DOP fragments in this
way, each test sentence is parsed by a bottom-up chart
parser using initially the indexed subtrees only. Thus
only the Category-matching condition is enforced during



the chart-parsing process. The Uniqueness and
Coherence conditions of the corresponding f-structure
units are enforced during the disambiguation (or chart-
decoding) process. Disambiguation is accomplished by
computing a large number of random derivations from
the chart; this technique is known as "Monte Carlo
disambiguation" and has been extensively described in
the literature (e.g. Bod 1998; Chappelier & Rajman
1998; Goodman 1998). Sampling a random derivation
from the chart consists of choosing at random one of the
fragments from the set of composable fragments at every
labeled chart-entry (in a top-down, leftmost order so as
to maintain the LFG-DOP derivation order). Thus the
competition set of composable fragments is computed
on the fly at each derivation step during the Monte
Carlo sampling process by grouping the f-structure units
that unify and that are coherent with the subderivation
built so far.

As mentioned in 2.4, the Completeness
condition can only be checked after the derivation
process. Incomplete derivations are simply removed
from the sampling distribution. After sampling a large
number of random derivations that satisfy the LFG
validity requirements, the most probable analysis is
estimated by the analysis which results most often from
the sampled derivations. For our experiments in section
3.2, we used a sample size of N = 10,000 derivations

which corresponds to a maximal standard error σ  of

0.005 (σ ≤ 1/(2√Ν), see Bod 1998).

3.2  Experiments with LFG-DOP
We tested LFG-DOP on two LFG-annotated corpora: the
Verbmobil corpus, which contains appointment planning
dialogues, and the Homecentre corpus, which contains
Xerox printer documentation. Both corpora have been
annotated by Xerox PARC. They contain packed LFG-
representations (Maxwell & Kaplan 1991) of the
grammatical parses of each sentence together with an
indication which of these parses is the correct one. The
parses are represented in a binary form and were
debinarized using software provided to us by Xerox
PARC.3 For our experiments we only used the correct
parses of each sentence resulting in 540 Verbmobil
parses and 980 Homecentre parses. Each corpus was
divided into a 90% training set and a 10% test set. This
division was random except for one constraint: that all
the words in the test set actually occurred in the training
set. The sentences from the test set were parsed and
disambiguated by means of the fragments from the
training set. Due to memory limitations, we limited the
depth of the indexed subtrees to 4. Because of the small

3 Thanks to Hadar Shemtov for providing us with the relevant
software.

size of the corpora we averaged our results on 10
different training/test set splits. Besides an exact match
accuracy metric, we also used a more fine-grained
metric based on the well-known PARSEVAL metrics
that evaluate phrase-structure trees (Black et al. 1991).
The PARSEVAL metrics compare a proposed parse P
with the corresponding correct treebank parse T  as
follows:

Precision =
 # correct constituents in P

# constituents in P 

 # correct constituents in P

# constituents in T 
Recall =  

In order to apply these metrics to LFG analyses, we
extend the PARSEVAL notion of "correct constituent" in
the following way: a constituent in P is correct if there
exists a constituent in T of the same label that spans the

same words and that φ-corresponds to the same f-
structure unit.

We illustrate the evaluation metrics with a
simple example. In the next figure, a proposed parse P is
compared with the correct parse T for the test sentence
Kim fell. The proposed parse is incorrect since it has the
incorrect feature value for the TENSE attribute. Thus, if
this were the only test sentence, the exact match would
be 0%. The precision, on the other hand, is higher than
0% as it compares the parse on a constituent basis. Both
the proposed parse and the correct parse contain three
constituents: S, NP and VP. While all three constituents
in P have the same label and span the same words as in
T, only the NP constituent in P also maps to the same f-
structure unit as in T. The precision is thus equal to 1/3.
Note that in this example the recall is equal to the
precision, but this need not always be the case.

S

NP VP

PRED  'Kim'

NUM    SG 
SUBJ

PRED      'fall(SUBJ)'Kim fell

TENSE     PRESENT

Proposed parse P

S

NP VP

PRED  'Kim'

NUM    SG 
SUBJ

TENSE      PAST

PRED      'fall(SUBJ)'Kim fell

Correct parse T

In our experiments we are first of all interested in
comparing the performance of Bod & Kaplan's
probability model against our probability model (as
explained in section 2.4). Moreover, we also want to



study the contribution of Discard-generated fragments to
the parse accuracy. We therefore created for each
training set two sets of fragments: one which contains
all fragments (up to depth 4) and one which excludes
the fragments generated by Discard. The exclusion of
the Discard -generated fragments means that all
probability mass goes to the fragments generated by
Root and Frontier in which case our model is equivalent
to Bod & Kaplan's. The following two tables present the
results of our experiments where +Discard refers to the

full set of fragments and −Discard refers to the fragment
set without Discard-generated fragments.

              Exact Match         Precision   Recall
+Discard  −Discard +Discard  −Discard +Discard  −Discard

Bod&Kaplan98 1.1%       35.2% 13.8%        76.0% 11.5%       74.9%

OurModel 35.9%        35.2% 77.5%        76.0% 76.4%       74.9%

Table 1. Experimental results on the Verbmobil corpus

              Exact Match         Precision   Recall
+Discard  −Discard +Discard  −Discard +Discard  −Discard

Bod&Kaplan98 2.7%       37.9% 17.1%        77.8% 15.5%       77.2%

OurModel 38.4%        37.9% 80.0%        77.8% 78.6%       77.2%

Table 2. Experimental results on the Homecentre corpus

The tables show that Bod & Kaplan's model scores
extremely bad if all fragments are used: the exact match
is only 1.1% on the Verbmobil corpus and 2.7% on the
Homecentre corpus, whereas our model scores
respectively 35.9% and 38.4% on these corpora. Also the
more fine-grained precision and recall scores of Bod &
Kaplan's model are quite low: e.g. 13.8% and 11.5% on
the Verbmobil corpus, where our model obtains 77.5%
and 76.4%. We found out that even for the few test
sentences that occur literally in the training set, Bod &
Kaplan's model does not always generate the correct
analysis, whereas our model does. Interestingly, the
accuracy of Bod & Kaplan's model is much higher if
Discard-generated fragments are excluded. This suggests
that treating generalized fragments probabilistically in
the same way as ungeneralized fragments is harmful.
Cormons (1999) has made a mathematical observation
which also shows that generalized fragments can get too
much probability mass.

The tables also show that our way of assigning
probabilities to Discard-generated fragments leads only
to a slight accuracy increase (compared to the
experiments in which Discard-generated fragments are
excluded). According to paired t-testing none of these

differences in accuracy were statistically significant.
This suggests that Discard-generated fragments do not
significantly contribute to the parse accuracy, or that
perhaps these fragments are too numerous to be reliably
estimated on the basis of our small corpora. We also
varied the probability mass assigned to Discard -
generated fragments: except for very small (≤ 0.01) or
large values (≥ 0.88), which led to an accuracy

decrease, there was no significant change.4

It is difficult to say how good or bad our results
are with respect to other approaches. The only other
published results on the LFG-annotated Verbmobil and
Homecentre corpora are by Johnson et al. (1999) and
Johnson & Riezler (2000) who use a log-linear model to
estimate probabilities. But while we first parse the test
sentences with fragments from the training set and
subsequently compute the most probable parse, Johnson
et al. directly use the packed LFG-representations from
the test set to select the most probable parse, thereby
completely skipping the parsing phase (Mark Johnson,
p.c.). Moreover, 42% of the Verbmobil sentences and
51% of the Homecentre sentences are unambiguous (i.e.
their packed LFG-representations contain only one
analysis), which makes Johnson et al's task completely
trivial for these sentences. In our approach, all test
sentences were ambiguous, resulting in a much more
difficult task. A quantitative comparison between our
model and Johnson et al.'s is therefore meaningless.

Finally, we are interested in the impact of
functional structures on predicting the correct
constituent structures. We therefore removed all f-
structure units from the fragments (thus yielding a Tree-
DOP model) and compared the results against our
version of LFG-DOP (which include the Discard-
generated fragments). We evaluated the parse accuracy
on the tree-structures only, using exact match together
with the PARSEVAL measures. We used the same
training/test set splits as in the previous experiments and
limited the maximum subtree depth again to 4. The
following tables show the results.

        Exact Match   Precision   Recall

Tree-DOP     46.6%     88.9% 86.7%

LFG-DOP     50.8%     90.3%         88.4%

Table 3. C-structure accuracy on the Verbmobil

4 Although generalized fragments thus seem statistically
unimportant for these corpora, they remain important for
parsing ungrammatical sentences (which was the original
motivation for including them -- see Bod & Kaplan 1998).



        Exact Match   Precision   Recall

Tree-DOP     49.0%     93.4% 92.1%

LFG-DOP     53.2%     95.8%         94.7%

Table 4. C-structure accuracy on the Homecentre

The results indicate that LFG-DOP's functional
structures help to improve the parse accuracy of tree-
structures. In other words, LFG-DOP outperforms Tree-
DOP if evaluated on tree-structures only. According to
paired t-tests the differences in accuracy were statis-
tically significant.

4  Conclusion
We have given an empirical assessment of the LFG-
DOP model introduced by Bod & Kaplan (1998). We
developed a new probability model for LFG-DOP which
treats fragments with generalized features as previously
unseen events. The experiments showed that our
probability model outperforms Bod & Kaplan's model on
the Verbmobil and Homecentre corpora. Moreover, Bod
& Kaplan's model turned out to be inadequate in dealing
with generalized fragments. We also established that the
contribution of generalized fragments to the parse
accuracy in our model is minimal and statistically
insignificant. Finally, we showed that LFG's functional
structures contribute to significantly higher parse
accuracy on tree structures. This suggests that our model
may be successfully used to exploit the functional
annotations in the Penn Treebank (Marcus et al. 1994),
provided that these annotations can be converted into
LFG-style functional structures. As future research, we
want to test LFG-DOP using log-linear models, as such
models maximize the likelihood of the training corpus.
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