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Abstract

This paper describes a hybrid proposal to
combine n-grams and Stochastic Context-Free
Grammars (SCFGs) for language modeling. A
classical n-gram model is used to capture the
local relations between words, while a stochas-
tic grammatical model is considered to repre-
sent the long-term relations between syntactical
structures. In order to de�ne this grammatical
model, which will be used on large-vocabulary
complex tasks, a category-based SCFG and a
probabilistic model of word distribution in the
categories have been proposed. Methods for
learning these stochastic models for complex
tasks are described, and algorithms for com-
puting the word transition probabilities are also
presented. Finally, experiments using the Penn
Treebank corpus improved by 30% the test set
perplexity with regard to the classical n-gram
models.

1 Introduction

Language modeling is an important aspect to
consider in large-vocabulary speech recognition
systems (Bahl et al., 1983; Jelinek, 1998). The
n-gram models are the most widely-used for a
wide range of domains (Bahl et al., 1983). The
n-grams are simple and robust models and ad-
equately capture the local restrictions between
words. Moreover, it is well-known how to es-
timate the parameters of the model and how
to integrate them in a speech recognition sys-
tem. However, the n-gram models cannot ad-
equately characterize the long-term constraints
of the sentences of the tasks.
On the other hand, Stochastic Context-Free

Grammars (SCFGs) allow us a better model-

� This work has been partially supported by the Spanish
CICYT under contract (TIC98/0423-C06).

ing of long-term relations and work well on
limited-domain tasks of low perplexity. How-
ever, SCFGs work poorly for large-vocabulary,
general-purpose tasks because learning SCFGs
and the computation of word transition proba-
bilities present serious problems for complex real
tasks.
In the literature, a number of works have pro-

posed ways to generalize the n-gram models (Je-
linek, 1998; Siu and Ostendorf, 2000) or com-
bining with other structural models (Bellegarda,
1998; Gilet and Ward, 1998; Chelba and Jelinek,
1998).
In this paper, we present a combined lan-

guage model de�ned as a linear combination of
n-grams, which are used to capture the local re-
lations between words, and a stochastic gram-
matical model which is used to represent the
global relation between syntactic structures. In
order to capture these long-term relations and to
solve the main problems derived from the large-
vocabulary complex tasks, we propose here to
de�ne: a category-based SCFG and a probabilis-
tic model of word distribution in the categories.
Taking into account this proposal, we also de-
scribe here how to solve the learning of these
stochastic models and their integration prob-
lems.
With regard to the learning problem, several

algorithms that learn SCFGs by means of es-
timation algorithms have been proposed (Lari
and Young, 1990; Pereira and Schabes, 1992;
Sánchez and Benedí, 1998), and promising re-
sults have been achieved with category-based
SCFGs on real tasks (Sánchez and Benedí,
1999).
In relation to the integration problem, we

present two algorithms that compute the word
transition probability: the �rst algorithm is
based on the Left-to-Right Inside algorithm



(LRI) (Jelinek and La�erty, 1991), and the sec-
ond is based on an application of a Viterbi
scheme to the LRI algorithm (the VLRI algo-
rithm) (Sánchez and Benedí, 1997).
Finally, in order to evaluate the behavior of

this proposal, experiments with a part of the
Wall Street Journal processed in the Penn Tree-
bank project were carried out and signi�cant im-
provements with regard to the classical n-gram
models were achieved.

2 The language model

An important problem related to language mod-
eling is the evaluation of Pr(wk j w1 : : : wk�1).
In order to compute this probability, we pro-
pose a hybrid language model de�ned as a sim-
ple linear combination of n-gram models and a
stochastic grammatical model Gs:

Pr(wkjw1 : : : wk�1) = �Pr(wkjwk�n : : : wk�1)

+(1� �) Pr(wkjw1 : : : wk�1; Gs); (1)

where 0 � � � 1 is a weight factor which de-
pends on the task.
The expression Pr(wkjwk�n : : : wk�1) is the

word probability of occurrence of wk given by
the n-gram model. The parameters of this
model can be easily estimated, and the ex-
pression Pr(wkjwk�n : : : wk�1) can be e�ciently
computed (Bahl et al., 1983; Jelinek, 1998).
In order to de�ne the stochastic gram-

matical model Gs of the expression
Pr(wkjw1 : : : wk�1; Gs) for large-vocabulary
complex tasks, we propose a combination of
two di�erent stochastic models: a category-
based SCFG (Gc), that allows us to represent
the long-term relations between these syntacti-
cal structures and a probabilistic model of word
distribution into categories (Cw).
This proposal introduces two important as-

pects, which are the estimation of the parame-
ters of the stochastic models, Gc and Cw, and
the computation of the following expression:

Pr(wkjw1 : : : wk�1; Gc; Cw)

=
Pr(w1 : : : wk : : : jGc; Cw)

Pr(w1 : : : wk�1 : : : jGc; Cw)
(2)

3 Training of the models

The parameters of the described model are es-
timated from a training sample, that is, from

a set of sentences. Each word of the sentence
has a part-of-speech tag (POStag) associated
to it. These POStags are considered as word
categories and are the terminal symbols of the
SCFG. From this training sample, the parame-
ters of Gc and Cw can be estimated as follows.
First, the parameters of Cw, represented by

Pr(wjc), are computed as:

Pr(wjc) =
N(w; c)P
w0 N(w0; c)

; (3)

where N(w; c) is the number of times that the
word w has been labeled with the POStag c. It
is important to note that a word w can belong to
di�erent categories. In addition, it may happen
that a word in a test set does not appear in
the training set, and therefore some smoothing
technique has to be carried out.

With regard to the estimation of the category-
based SCFGs, one of the most widely-known
methods is the Inside-Outside (IO) algo-
rithm (Lari and Young, 1990). The application
of this algorithm presents important problems
which are accentuated in real tasks: the time
complexity per iteration and the large number
of iterations that are necessary to converge. An
alternative to the IO algorithm is an algorithm
based on the Viterbi score (VS algorithm) (Ney,
1992). The convergence of the VS algorithm
is faster than the IO algorithm. However, the
SCFGs obtained are, in general, not as well
learned (Sánchez et al., 1996).
Another possibility for estimating SCFGs,

which is somewhere between the IO and VS al-
gorithms, has recently been proposed. This ap-
proach considers only a certain subset of deriva-
tions in the estimation process. In order to
select this subset of derivations, two alterna-
tives have been considered: from structural in-
formation content in a bracketed corpus (Pereira
and Schabes, 1992; Amaya et al., 1999), and
from statistical information content in the k-
best derivations (Sánchez and Benedí, 1998).
In the �rst alternative, the IOb and VSb algo-
rithms which learn SCFGs from partially brack-
eted corpora were de�ned (Pereira and Schabes,
1992; Amaya et al., 1999). In the second alter-
native, the kVS algorithm for the estimation of
the probability distributions of a SCFG from the
k-best derivations was proposed (Sánchez and
Benedí, 1998).



All of these algorithms have a time complexity
O(n3jP j), where n is the length of the input
string, and jP j is the size of the SCFG.
These algorithms have been tested in

real tasks for estimating category-based
SCFGs (Sánchez and Benedí, 1999) and the
results obtained justify their application in
complex real tasks.

4 Integration of the model

From expression (2), it can bee seen that in or-
der to integrate the model, it is necessary to
e�ciently compute the expression:

Pr(w1 : : : wk : : : jGc; Cw): (4)

In order to describe how this computation can
be made, we �rst introduce some notation.
A Context-Free Grammar G is a four-tuple

(N;�; P; S), where N is the �nite set of nonter-
minals, � is the �nite set of terminals (N \� =
;), S 2 N is the axiom or initial symbol and
P is the �nite set of productions or rules of the
form A ! �, where A 2 N and � 2 (N [ �)+

(only grammars with non empty rules are con-
sidered). For simplicity (but without loss of gen-
erality) only context-free grammars in Chomsky
Normal Form are considered, that is, grammars
with rules of the form A! BC or A! v where
A;B;C 2 N and v 2 �.
A Stochastic Context-Free Grammar Gs is a

pair (G; p), where G is a context-free gram-
mar and p : P !]0; 1] is a probability func-
tion of rule application such that 8A 2 N :P

�2(N[�)+ p(A! �) = 1.

Now, we present two algorithms in order to
compute the word transition probability. The
�rst algorithm is based on the LRI algorithm,
and the second is based on an application of a
Viterbi scheme to the LRI algorithm (the VLRI
algorithm).

Probability of generating an initial

substring

The computation of (4) is based on an algo-
rithm which is a modi�cation of the LRI algo-
rithm (Jelinek and La�erty, 1991). This new
algorithm is based on the de�nition of Pr(A <<

i; j)) = Pr(A
�
) wi : : : wj : : : jGc; Cw) as the

probability that A generates the initial substring
wi : : : wj : : : given Gc and Cw. This can be com-
puted with the following dynamic programming

scheme:

Pr(A << i; i) =
X
c

(p(A! c) Pr(wijc)

+
X
D

Q(A) D)p(D ! c) Pr(wijc));

Pr(A << i; j) =
X

B;C2N

j�1X
l=i

Q(A) BC)

Pr(B < i; l >) Pr(C << l + 1; j) :

In this way, Pr(w1 : : : wk : : : jGc; Cw) =
Pr(S << 1; k).
In this expression, Q(A ) D) is the proba-

bility that D is the leftmost nonterminal in all
sentential forms which are derived from A. The
value Q(A ) BC) is the probability that BC
is the initial substring of all sentential forms de-
rived from A. Pr(B < i; l >) is the probability
that the substring wi : : : wl is generated from B
given Gc and Cw. Its computation will be de-
�ned later.
It should be noted that the combination of

the models Gc and Cw is carried out in the value
Pr(A << i; i). This is the main di�erence with
respect the LRI algorithm.

Probability of the best derivation
generating an initial substring

An algorithm which is similar to the previous
one can be de�ned based on the Viterbi scheme.
In this way, it is possible to obtain the best pars-
ing of an initial substring. This new algorithm is
also related to the VLRI algorithm (Sánchez and
Benedí, 1997) and is based on the de�nition of
cPr(A << i; j)) = cPr(A �

) wi : : : wj : : : jGc; Cw)
as the probability of the most probable parsing
which generates wi : : : wj : : : from A given Gc

and Cw. This can be computed as follows:

cPr(A << i; i) = max
c

(p(A! c) Pr(wijc);

max
D

( bQ(A) D)p(D ! c) Pr(wijc)));

cPr(A << i; j) = max
B;C2N

max
l=i:::j�1

( bQ(A) BC)

cPr(B < i; l >)cPr(C << l + 1; j)) :

Therefore cPr(w1 : : : wk : : : jGc; Cw) = cPr(S <<
1; k).

In this expression, bQ(A ) D) is the prob-
ability that D is the leftmost nonterminal in



the most probable sentential form which is de-

rived from A. The value bQ(A ) BC) is the
probability that BC is the initial substring of
most the probable sentential form derived from

A. cPr(B < i; l >) is the probability of the most
probable parse which generates wi : : : wl from B.

Probability of generating a string

The value Pr(A < i; j >) = Pr(A
�
)

wi : : : wjjGc; Cw) is de�ned as the probability
that the substring wi : : : wj is generated from
A given Gc and Cw. To calculate this proba-
bility a modi�cation of the well-known Inside
algorithm (Lari and Young, 1990) is proposed.
This computation is carried out by using the
following dynamic programming scheme:

Pr(A < i; i >) =
X
c

p(A! c) Pr(wijc) ;

Pr(A < i; j >) =
X

B;C2N

j�1X
l=i

p(A! BC)

Pr(B < i; l >) Pr(C < l + 1; j >):

In this way, Pr(w1 : : : wnjGc; Cw) = Pr(S <
1; n >).
As we have commented above, the combina-

tion of the two parts of the grammatical model
is carried out in the value Pr(A < i; i >).

Probability of the best derivation
generating a string

The probability of the best derivation that

generates a string, cPr(w1 : : : wnjGc; Cw), can
be evaluated using a Viterbi-like scheme (Ney,
1992). As in the previous case, the computation
of this probability is based on the de�nition ofcPr(A < i; j >) = cPr(A �

) wi : : : wj jGc; Cw) as
the probability of the best derivation that gen-
erates the substring wi : : : wj from A given Gc

and Cw. Similarly:

cPr(A < i; i >) = max
c

p(A! C) Pr(wijc) ;

cPr(A < i; j >) = max
B;C2N

max
l=i:::j�1

p(A! BC)

cPr(B < i; l >)cPr(C < l + 1; j >) :

Therefore, cPr(w1 : : : wnjGc; Cw) = cPr(S <
1; n >).

Finally, the time complexity of these algo-
rithms is the same as the algorithms they are

related to, therefore the time complexity is
O(k3jP j), where k is the length of the input
string and jP j is the size of the SCFG.

5 Experiments with the Penn
Treebank Corpus

The corpus used in the experiments was the part
of the Wall Street Journal which had been pro-
cessed in the Penn Treebank project1 (Marcus et
al., 1993). This corpus consists of English texts
collected from the Wall Street Journal from edi-
tions of the late eighties. It contains approx-
imately one million words. This corpus was
automatically labelled, analyzed and manually
checked as described in (Marcus et al., 1993).
There are two kinds of labelling: a POStag la-
belling and a syntactic labelling. The size of
the vocabulary is greater than 25,000 di�erent
words, the POStag vocabulary is composed of
45 labels2 and the syntactic vocabulary is com-
posed of 14 labels.
The corpus was divided into sentences accord-

ing to the bracketing. In this way, we obtained
a corpus whose main characteristics are shown
in Table 1.

Table 1: Characteristics of the Penn Treebank
corpus once it was divided into sentences.

No. of Av. Std. Min. Max.
senten. length deviation length length

49,207 23.61 11.13 1 249

We took advantage of the category-based
SCFGs estimated in a previous work (Sánchez
and Benedí, 1998). These SCFGs were esti-
mated with sentences which had less than 15
words. Therefore, in this work, we assumed such
restriction. The vocabulary size of the new cor-
pus was 6,333 di�erent words. For the exper-
iments, the corpus was divided into a training
corpus (directories 00 to 19) and a test corpus
(directories 20 to 24). The characteristics of
these sets can be seen in Table 2. The part of the

1Release 2 of this data set can be ob-
tained from the Linguistic Data Consor-
tium with Catalogue number LDC94T4B
(http://www.ldc.upenn.edu/ldc/noframe.html)

2There are 48 labels de�ned in (Marcus et al., 1993),
however, three of them do not appear in the corpus.



corpus labeled with POStags was used to esti-
mate the parameters of the grammatical model,
while the non-labeled part was used to estimate
the parameters of the n-gram model. We now
describe the estimation process in detail.

Table 2: Characteristics of the data sets de�ned
for the experiments when the sentences with
more than 15 POStags were removed.

Data No. of Av. Std.
set senten. length deviation

Training 9,933 10.67 3.46
Test 2,295 10.51 3.55

The parameters of a 3-gram model were es-
timated with the software tool described in
(Rosenfeld, 1995) 3. We used the linear interpo-
lation smooth technique supported by this tool.
The out-of-vocabulary words were grouped in
the same class and were used in the computa-
tion of the perplexity. The test set perplexity
with this model was 180.4.
The values of expression (3) were computed

from the tagged and non-tagged part of the
training corpus. In order to avoid null val-
ues, the unseen events were labeled with a spe-
cial symbol w0 which did not appear in the
vocabulary, in such a way that Pr(w0jc) 6= 0,
8c 2 C, where C was the set of categories.
That is, all the categories could generate the un-
seen event. This probability took a very small
value (several orders of magnitude less than
minw2V;c2C Pr(wjc), where V was the vocabu-
lary of the training corpus), and di�erent values
of this probability did not change the results.
The parameters of an initial ergodic SCFG

were estimated with each one of the estimation
methods mentioned in Section 3. This SCFG
had 3; 374 rules, composed from 45 terminal
symbols (the number of POStags) and 14 non-
terminal symbols (the number of syntactic la-
bels). The probabilities were randomly gener-
ated and three di�erent seeds were tested, but
only one of them is reported given that the re-
sults were very similar. The training corpus was
the labeled part of the described corpus. The
perplexity of the labeled part of the test set for

3Release 2.04 is available at http://svr-
www.eng.cam.ac.uk/� prc14/toolkit.html.

di�erent estimation algorithms can be seen in
Table 3.

Table 3: Perplexity of the labeled part of the
test set with the SCFG estimated with the
methods mentioned in Section 3.

VS kVS IOb VSb

21.56 20.65 13.14 21.84

Once we had estimated the parameters of the
de�ned model, we applied expression (1) by us-
ing the LRI algorithm and the VLRI algorithm
in expression (4). The test set perplexity that
was obtained in function of � for di�erent esti-
mation algorithms (VS, kVS, IOb and VSb) can
be seen in Fig. 1.
In the best case, the proposed language model

obtained more than a 30% improvement over
results obtained by the 3-gram language model
(see Table 4). This result was obtained when
the SCFG estimated with the IOb algorithm
was used. The SCFGs estimated with other al-
gorithms also obtained important improvements
compared to the 3-gram. In addition, it can be
observed that both the LRI algorithm and the
VLRI algorithm obtained good results.

Table 4: Best test perplexity for di�erent SCFG
estimation algorithms, and the percentage of im-
provement with respect to the 3-gram model.

VS kVS IOb VSb
LRI 133.6 130.3 124.6 136.3

% improv. 25.9% 27.8% 30.9% 24.5%

VLRI 143.4 137.2 132.4 149.7
% improv. 20.5% 23.0% 26.6% 17.0%

An important aspect to note is that the
weight of the grammatical part was approxi-
mately 50%, which means that this part pro-
vided important information to the language
model.

6 Conclusions

A new language model has been introduced.
This new language model is de�ned as a lin-
ear combination of an n-gram which repre-
sents relations between words, and a stochastic
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Figure 1: Test set perplexity obtained with
the proposed language models in function of
gamma. Di�erent curves correspond to SCFGs
estimated with di�erent algorithms. The up-
per graphic corresponds to the results obtained
when the LRI algorithm was used in the lan-
guage models, and the lower graphic corre-
sponds to the results obtained with the VLRI
algorithm.

grammatical model which is used to represent
the global relation between syntactic structures.
The stochastic grammatical model is composed
of a category-based SCFG and a probabilistic
model of word distribution in the categories.
Several algorithms have been described to esti-
mate the parameters of the model from a the
sample. In addition, e�cient algorithms for
solving the problem of the interpretation with
this model have been presented.
The proposed model has been tested on the

part of Wall Street Journal processed in the
Penn Treebank project, and the results obtained
improved by more than 30% the test set per-

plexity over results obtained by a simple 3-gram
model.
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