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Abstract

Previous stochastic approaches to generation
do not include a tree-based representation of
syntax. While this may be adequate or even
advantageous for some applications, other ap-
plications pro�t from using as much syntactic
knowledge as is available, leaving to a stochas-
tic model only those issues that are not deter-
mined by the grammar. We present initial re-
sults showing that a tree-based model derived
from a tree-annotated corpus improves on a tree
model derived from an unannotated corpus, and
that a tree-based stochastic model with a hand-
crafted grammar outperforms both.

1 Introduction

For many applications in natural language gen-
eration (NLG), the range of linguistic expres-
sions that must be generated is quite restricted,
and a grammar for generation can be fully spec-
i�ed by hand. Moreover, in many cases it is very
important not to deviate from certain linguis-
tic standards in generation, in which case hand-
crafted grammars give excellent control. How-
ever, in other applications for NLG the variety
of the output is much bigger, and the demands
on the quality of the output somewhat less strin-
gent. A typical example is NLG in the con-
text of (interlingua- or transfer-based) machine
translation. Another reason for relaxing the
quality of the output may be that not enough
time is available to develop a full grammar for
a new target language in NLG. In all these
cases, stochastic (\empiricist") methods pro-
vide an alternative to hand-crafted (\rational-
ist") approaches to NLG. To our knowledge, the
�rst to use stochastic techniques in NLG were
Langkilde and Knight (1998a) and (1998b). In
this paper, we present Fergus (Flexible Em-
piricist/Rationalist Generation Using Syntax).

Fergus follows Langkilde and Knight's seminal
work in using an n-gram language model, but we
augment it with a tree-based stochastic model
and a traditional tree-based syntactic grammar.
More recent work on aspects of stochastic gen-
eration include (Langkilde and Knight, 2000),
(Malouf, 1999) and (Ratnaparkhi, 2000).
Before we describe in more detail how we use

stochastic models in NLG, we recall the basic
tasks in NLG (Rambow and Korelsky, 1992; Re-
iter, 1994). During text planning, content and
structure of the target text are determined to
achieve the overall communicative goal. Dur-
ing sentence planning, linguistic means { in
particular, lexical and syntactic means { are de-
termined to convey smaller pieces of meaning.
During realization, the speci�cation chosen in
sentence planning is transformed into a surface
string, by linearizing and in
ecting words in the
sentence (and typically, adding function words).
As in the work by Langkilde and Knight, our
work ignores the text planning stage, but it does
address the sentence planning and the realiza-
tion stages.
The structure of the paper is as follows. In

Section 2, we present the underlying grammat-
ical formalism, lexicalized tree-adjoining gram-
mar (LTAG). In Section 3, we describe the ar-
chitecture of the system, and some of the mod-
ules. In Section 4 we discuss three experiments.
In Section 5 we compare our work to that of
Langkilde and Knight (1998a). We conclude
with a summary of on-going work.

2 Modeling Syntax

In order to model syntax, we use an existing
wide-coverage grammar of English, the XTAG
grammar developed at the University of Penn-
sylvania (XTAG-Group, 1999). XTAG is a tree-
adjoining grammar (TAG) (Joshi, 1987a). In
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Figure 1: An excerpt from the XTAG grammar to derive There was no cost estimate for the second
phase; dotted lines show possible adjunctions that were not made

a TAG, the elementary structures are phrase-
structure trees which are composed using two
operations, substitution (which appends one
tree at the frontier of another) and adjunction
(which inserts one tree into the middle of an-
other). In graphical representation, nodes at
which substitution can take place are marked
with down-arrows. In linguistic uses of TAG,
we associate one lexical item (its anchor) with
each tree, and one or (typically) more trees with
each lexical item; as a result we obtain a lexi-
calized TAG or LTAG. Since each lexical item
is associated with a whole tree (rather than
just a phrase-structure rule, for example), we
can specify both the predicate-argument struc-
ture of the lexeme (by including nodes at which
its arguments must substitute) and morpho-
syntactic constraints such as subject-verb agree-
ment within the structure associated with the
lexeme. This property is referred to as TAG's
extended domain of locality. Note that in an
LTAG, there is no distinction between lexicon
and grammar. A sample grammar is shown in
Figure 1.

We depart from XTAG in our treatment of
trees for adjuncts (such as adverbs), and in-
stead follow McDonald and Pustejovsky (1985).
While in XTAG the elementary tree for an ad-
junct contains phrase structure that attaches
the adjunct to nodes in another tree with the

stag anchored by adjoins to direction

1 Det NP right

2 N N right

3 Aux S, VP right

4 Prep NP, VP left

or S right

5 Adj N right

Figure 2: Adjunction table for grammar frag-
ment

speci�ed label (say, VP) from the speci�ed di-
rection (say, from the left), in our system the
trees for adjuncts simply express their active va-
lency, but not how they connect to the lexical
item they modify. This information is kept in
the adjunction table which is associated with the
grammar; an excerpt is shown in Figure 2. Trees
that can adjoin to other trees (and have entries
in the adjunction table) are called gamma-trees,
the other trees (which can only be substituted
into other trees) are alpha-trees.

Note that we can refer to a tree by a combi-
nation of its name, called its supertag, and its
anchor. For example, �1 is the supertag of an
alpha-tree anchored by a noun that projects up
to NP, while 
2 is the supertag of a gamma tree
anchored by a noun that only projects to N (we



assume adjectives are adjoined at N), and, as
the adjunction table shows, can right-adjoin to
an N. So that estimate�2 is a particular tree
in our LTAG grammar. Another tree that a su-
pertag can be associated with is �2, which rep-
resents the predicative use of a noun.1 Not all
nouns are associated with all nominal supertags:
the expletive there is only an �1.

When we derive a sentence using an LTAG,
we combine elementary trees from the grammar
using adjunction and substitution. For exam-
ple, to derive the sentence There was no cost
estimate for the second phase from the gram-
mar in Figure 1, we substitute the tree for there
into the tree for estimate. We then adjoin in
the trees for the auxiliary was, the determiner
no, and the modifying noun cost. Note that
these adjunctions occur at di�erent nodes: at
VP, NP, and N, respectively. We then adjoin in
the preposition, into which we substitute phase,
into which we adjoin the and second. Note that
all adjunctions are by gamma trees, and all sub-
stitution by alpha trees.

If we want to represent this derivation graphi-
cally, we can do so in a derivation tree, which we
obtain as follows: whenever we adjoin or sub-
stitute a tree t1 into a tree t2, we add a new
daughter labeled t1 to the node labeled t2. As
explained above, the name of each tree used is
the lexeme along with the supertag. (We omit
the address at which substitution or adjunction
takes place.) The derivation tree for our deriva-
tion is shown in Figure 3. As can be seen, this
structure is a dependency tree and resembles a
representation of lexical argument structure.

Joshi (1987b) claims that TAG's properties
make it particularly suited as a syntactic rep-
resentation for generation. Speci�cally, its ex-
tended domain of locality is useful in genera-
tion for localizing syntactic properties (includ-
ing word order as well as agreement and other
morphological processes), and lexicalization is
useful for providing an interface from seman-
tics (the derivation tree represent the sentence's
predicate-argument structure). Indeed, LTAG
has been used extensively in generation, start-
ing with (McDonald and Pustejovsky, 1985).

1Sentences such as Peter is a doctor can be analyzed
with with be as the head, as is more usual, or with doctor

as the head, as is done in XTAG because the be really
behaves like an auxiliary, not like a full verb.
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Figure 3: Derivation tree for LTAG derivation
of There was no cost estimate for the second
phase

3 System Overview

Fergus is composed of three modules: the Tree
Chooser, the Unraveler, and the Linear Prece-
dence (LP) Chooser. The input to the system is
a dependency tree as shown in Figure 4. Note
that the nodes are labeled only with lexemes,
not with supertags.2 The Tree Chooser then
uses a stochastic tree model to choose TAG
trees for the nodes in the input structure. This
step can be seen as analogous to \supertag-
ging" (Bangalore and Joshi, 1999), except that
now supertags (i.e., names of trees) must be
found for words in a tree rather than for words
in a linear sequence. The Unraveler then uses
the XTAG grammar to produce a lattice of all
possible linearizations that are compatible with
the supertagged tree and the XTAG. The LP
Chooser then chooses the most likely traversal
of this lattice, given a language model. We dis-
cuss the three components in more detail.
The Tree Chooser draws on a tree model,

which is a representation of XTAG derivation
for 1,000,000 words of the Wall Street Journal.3

The Tree Chooser makes the simplifying as-

2In the system that we used in the experiments de-
scribed in Section 4, all words (including function words)
need to be present in the input representation, fully in-

ected. This is of course unrealistic for applications. In
this paper, we only aim to show that the use of a Tree
Model improves performance of a stochastic generator.
See Section 6 for further discussion.

3This was constructed from the Penn Tree Bank us-
ing some heuristics, since the Penn Tree Bank does not
contain full head-dependent information; as a result of
the use of heuristics, the Tree Model is not fully correct.
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sumptions that the choice of a tree for a node
depends only on its daughter nodes, thus allow-
ing for a top-down dynamic programming algo-
rithm. Speci�cally, a node � in the input struc-
ture is assigned a supertag s so that the proba-
bility of �nding the treelet composed of � with
supertag s and all of its daughters (as found
in the input structure) is maximized, and such
that s is compatible with �'s mother and her
supertag sm. Here, \compatible" means that
the tree represented by s can be adjoined or
substituted into the tree represented by sm, ac-
cording to the XTAG grammar. For our exam-
ple sentence, the input to the system is the tree
shown in Figure 4, and the output from the Tree
Chooser is the tree as shown in Figure 3. Note
that while a derivation tree in TAG fully spec-
i�es a derivation and thus a surface sentence,
the output from the Tree Chooser does not.
There are two reasons. Firstly, as explained at
the end of Section 2, for us trees correspond-
ing to adjuncts are underspeci�ed with respect
to the adjunction site and/or the adjunction
direction (from left or from right) in the tree
of the mother node, or they may be unordered
with respect to other adjuncts (for example, the
famous adjective ordering problem). Secondly,
supertags may have been chosen incorrectly or
not at all.
The Unraveler takes as input the semi-

speci�ed derivation tree (Figure 3) and pro-
duces a word lattice. Each node in the deriva-
tion tree consists of a lexical item and a su-
pertag. The linear order of the daughters with
respect to the head position of a supertag is
speci�ed in the XTAG grammar. This informa-
tion is consulted to order the daughter nodes

TAG Derivation Tree
without Supertags

Tree Chooser

One single semi-specified
TAG Derivation Trees

String

XTAG

Grammar

Word Lattice

Model

Unraveler

LP Chooser

Tree
Model

Language

Figure 5: Architecture of Fergus

with respect to the head at each level of the
derivation tree. In cases where a daughter node
can be attached at more than one place in the
head supertag (as is the case in our example for
was and for), a disjunction of all these positions
are assigned to the daughter node. A bottom-
up algorithm then constructs a lattice that en-
codes the strings represented by each level of
the derivation tree. The lattice at the root of
the derivation tree is the result of the Unraveler.
The resulting lattice for the example sentence is
shown in Figure 6.

The lattice output from the Unraveler en-
codes all possible word sequences permitted
by the derivation structure. We rank these
word sequences in the order of their likeli-
hood by composing the lattice with a �nite-
state machine representing a trigram language
model. This model has been constructed from
1,000,0000 words of Wall Street Journal corpus.
We pick the best path through the lattice re-
sulting from the composition using the Viterbi
algorithm, and this top ranking word sequence
is the output of the LP Chooser.

4 Experiments and Results

In order to show that the use of a tree model
and a grammar does indeed help performance,
we performed three experiments:
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Figure 6: Word lattice for example sentence
after Tree Chooser and Unraveler using the
supertag-based model

� For the baseline experiment, we impose a
random tree structure for each sentence of
the corpus and build a Tree Model whose
parameters consist of whether a lexeme ld
precedes or follows her mother lexeme lm.
We call this the Baseline Left-Right (LR)
Model. This model generates There was
estimate for phase the second no cost . for
our example input.

� In the second experiment, we derive the
parameters for the LR model from an an-
notated corpus, in particular, the XTAG
derivation tree corpus. This model gener-
ates There no estimate for the second phase
was cost . for our example input.

� In the third experiment, as described
in Section 3, we employ the supertag-based
tree model whose parameters consist of
whether a lexeme ld with supertag sd is a
dependent of lm with supertag sm. Fur-
thermore we use the supertag information
provided by the XTAG grammar to or-
der the dependents. This model generates
There was no cost estimate for the second
phase . for our example input, which is in-
deed the sentence found in the WSJ.

As in the case of machine translation, evalu-
ation in generation is a complex issue. We use
two metrics suggested in the MT literature (Al-
shawi et al., 1998) based on string edit distance
between the output of the generation system
and the reference corpus string from the WSJ.
These metrics, simple accuracy and generation
accuracy, allow us to evaluate without human
intervention, automatically and objectively.4

Simple accuracy is the number of insertion
(I), deletion (D) and substitutions (S) errors
between the target language strings in the test
corpus and the strings produced by the genera-
tion model. The metric is summarized in Equa-
tion (1). R is the number of tokens in the target
string. This metric is similar to the string dis-
tance metric used for measuring speech recog-
nition accuracy.

SimpleAccuracy = (1�
I +D + S

R
) (1)

4We do not address the issue of whether these metrics
can be used for comparative evaluation of other genera-
tion systems.



Tree Simple Generation Average time
Model Accuracy Accuracy per sentence

Baseline LR Model 41.2% 56.2% 186ms
Treebank derived LR Model 52.9% 66.8% 129ms

Supertag-based Model 58.9% 72.4% 517ms

Table 1: Performance results from the three tree models.

Unlike speech recognition, the task of gener-
ation involves reordering of tokens. The simple
accuracy metric, however, penalizes a misplaced
token twice, as a deletion from its expected posi-
tion and insertion at a di�erent position. We use
a second metric, Generation Accuracy, shown in
Equation (2), which treats deletion of a token
at one location in the string and the insertion
of the same token at another location in the
string as one single movement error (M). This
is in addition to the remaining insertions (I 0)
and deletions (D0).

GenerationAccuracy = (1�
M + I 0 +D0 + S

R
)

(2)

The simple accuracy, generation accuracy and
the average time for generation of each test sen-
tence for the three experiments are tabulated in
Table 1. The test set consisted of 100 randomly
chosen WSJ sentence with an average length of
16 words. As can be seen, the supertag-based
model improves over the LR model derived from
annotated data and both models improve over
the baseline LR model.

Supertags incorporate richer information
such as argument and adjunct distinction, and
number and types of arguments. We expect to
improve the performance of the supertag-based
model by taking these features into account.

In ongoing work, we have developed tree-
based metrics in addition to the string-based
presented here, in order to evaluate stochastic
generation models. We have also attempted to
correlate these quantitative metrics with human
qualitative judgements. A detailed discussion
of these experiments and results is presented
in (Bangalore et al., 2000).

5 Comparison with Langkilde &
Knight

Langkilde and Knight (1998a) use a hand-
crafted grammar that maps semantic represen-
tations to sequences of words with linearization
constraints. A complex semantic structure is
translated to a lattice, and a bigram language
model then chooses among the possible surface
strings encoded in the lattice.

The system of Langkilde & Knight, Nitrogen,
is similar to Fergus in that generation is di-
vided into two phases, the �rst of which results
in a lattice from which a surface string is chosen
during the second phase using a language model
(in our case a trigram model, in Nitrogen's case
a bigram model). However, the �rst phases are
quite di�erent. In Fergus, we start with a lex-
ical predicate-argument structure, while in Ni-
trogen, a more semantic input is used. Fergus
could easily be augmented with a preprocessor
that maps a semantic representation to our syn-
tactic input; this is not the focus of our research.
However, there are two more important di�er-
ences. First, the hand-crafted grammar in Ni-
trogen maps directly from semantics to a linear
representation, skipping the arborescent repre-
sentation usually favored for the representation
of syntax. There is no stochastic tree model,
since there are no trees. In Fergus, initial
choices are made stochastically based on the
tree representation in the Tree Chooser. This
allows us to capture stochastically certain long-
distance e�ects which n-grams cannot, such as
separation of parts of a collocations (such as
perform an operation) through interposing ad-
juncts (John performed a long, somewhat te-
dious, and quite frustrating operation on his
border collie). Second, the hand-crafted gram-
mar used in Fergus was crafted independently
from the need for generation and is a purely
declarative representation of English syntax. As



such, we can use it to handle morphological ef-
fects such as agreement, which cannot in gen-
eral be done by an n-gram model and which are,
at the same time, descriptively straightforward
and which are handled by all non-stochastic
generation modules.

6 Conclusion and Outlook

We have presented empirical evidence that us-
ing a tree model in addition to a language model
can improve stochastic NLG.
Fergus as presented in this paper is not

ready to be used as a module in applications.
Speci�cally, we will add a morphological compo-
nent, a component that handles function words
(auxiliaries, determiners), and a component
that handles punctuation. In all three cases, we
will provide both knowledge-based and stochas-
tic components, with the aim of comparing their
behaviors, and using one type as a back-up for
the other type. Finally, we will explore Fer-

gus when applied to a language for which a
much more limited XTAG grammar is available
(for example, specifying only the basic sentence
word order as, say, SVO, and specifying subject-
verb agreement). In the long run, we intend
Fergus to become a 
exible system which will
use hand-crafted knowledge as much as possible
and stochastic models as much as necessary.
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